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a b s t r a c t

In this paper, we develop a multi-objective stochastic programming approach for supply

chain design under uncertainty. Demands, supplies, processing, transportation, shortage

and capacity expansion costs are all considered as the uncertain parameters. To develop

a robust model, two additional objective functions are added into the traditional

comprehensive supply chain design problem. So, our multi-objective model includes (i)

the minimization of the sum of current investment costs and the expected future

processing, transportation, shortage and capacity expansion costs, (ii) the minimization

of the variance of the total cost and (iii) the minimization of the financial risk or the

probability of not meeting a certain budget. The ideas of unreliable suppliers and

capacity expansion, after the realization of uncertain parameters, are also incorporated

into the model. Finally, we use the goal attainment technique to obtain the Pareto-

optimal solutions that can be used for decision-making.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

A supply chain (SC) is a network of suppliers,
manufacturing plants, warehouses and distribution chan-
nels organized to acquire raw materials, convert these
raw materials to finished products and distribute these
products to customers. The concept of SC management,
which appeared in the early 1990s, has recently raised a
lot of interest since the opportunity of an integrated
management of the SC can reduce the propagation of
unexpected/undesirable events through the network and
can affect decisively the profitability of all the members.

A crucial component of the planning activities of a
manufacturing firm is the efficient design and operation
ll rights reserved.
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of its SC. Strategic-level SC planning involves deciding the
configuration of the network, i.e., the number, location,
capacity and technology of the facilities. The tactical-level
planning of SC operations involves deciding the aggregate
quantities and material flows for purchasing, processing
and distributing of products. The strategic configuration of
the SC is a key factor influencing efficient tactical
operations, and therefore has a long-lasting impact on
the firm. Furthermore, the fact that the SC configuration
involves the commitment of substantial capital resources
over long periods of time makes the SC design problem an
extremely important one.

Many attempts have been made to model and optimize
SC design, most of which are based on deterministic
approaches, see for example Bok et al. (2000), Timpe and
Kallrath (2000), Gjerdrum et al. (2000) and many others.
However, most real SC design problems are characterized
by numerous sources of technical and commercial
uncertainty, and so the assumption that all model
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parameters, such as cost coefficients, supplies, demand,
etc., are known with certainty is not realistic.

In order to take into account the effects of the
uncertainty in the production scenario, a two-stage
stochastic model is proposed in this paper. Decision
variables, which characterize the network configuration,
namely those binary variables that represent the existence
and the location of plants and warehouses of the SC, are
considered as first-stage variables—it is assumed that
they have to be taken at the design stage before the
realization of the uncertainty. On the other hand, decision
variables related to the amount of products to be
produced and stored in the nodes of the SC and the
flows of materials transported among the entities of
the network are considered as second-stage variables,
corresponding to decisions taken after the uncertain
parameters have been revealed.

In traditional stochastic programming approaches, the
objective function consists of the sum of the first-stage
performance measure and the expected second-stage
performance, and most commonly, the dominant uncer-
tain parameters are the product demands. Approaches
differ primarily in the selection of the decision variables
and the way in which the expected value term, which in
principle involves a multidimensional integral involving
the joint probability distribution of the uncertain para-
meters, is computed.

There are a few research works addressing compre-
hensive (strategic and tactical issues simultaneously)
design of SC networks using two-stage stochastic models.
MirHassani et al. (2000) considered a two-stage model for
multi-period capacity planning of SC networks. The
authors used Benders decomposition to solve the result-
ing stochastic integer program. Tsiakis et al. (2001) also
considered a two-stage stochastic programming model for
SC network design under demand uncertainty. The
authors developed a large-scale mixed-integer linear
programming model for this problem. Alonso-Ayuso
et al. (2003) proposed a branch-and-fix heuristic for
solving two-stage stochastic SC design problems. Santoso
et al. (2005) integrated a sampling strategy with an
accelerated Benders decomposition to solve SC design
problems with continuous distributions for the uncertain
parameters. There are also some other papers in SC
planning under uncertainty. Petkov and Maranas (1997),
Gupta and Maranas (2003) and Gupta et al. (2000)
incorporated the uncertain demands as multivariate-
normal distributions. Then, they converted stochastic
features of the problem into a chance-constraint program-
ming problem. Goh et al. (2007) developed a stochastic
model of the multi-stage global SC network problem,
considering supply, demand, exchange and disruption as
the uncertain parameters. However, the robustness of
decision to uncertain parameters is not considered in
above studies.

Although stochastic programming has been studied for
four decades, conventional stochastic programming mod-
els are severely limited owing to its inability to handle risk
aversion or decision-makers’ preferences in a direct
manner, subsequently excluding many important domains
of application. Mulvey et al. (1995) presented an improved
stochastic programming called robust programming cap-
able of tackling the decision-makers’ favored risk aversion.
In this method, the variance term is simply added into the
main objective function with an associated weighting
parameter that represents the risk tolerance of the
modeler, see for example Yu and Li (2000) and Lai and
Ng (2005). This idea has also been used in some other
areas, which are not directly related to the SC design
problem. For example, Ahmed and Sahinidis (1998) used
this construct to develop a linear programming recourse
formulation for production planning in the presence of
scenarios. Bok et al. (1998) also employed the penalized
variance term and introduced an additional penalized
term reflecting the underutilization of capacity.

The main disadvantages of traditional stochastic SC
design approaches are as follows:
1.
 Minimizing cost or maximizing profit as a single
objective is often the optimization focus (Cohen and
Lee, 1989; Tsiakis et al., 2001).
2.
 Most multi-objective SC approaches are either deter-
ministic (Chen et al., 2003) or only demand is
considered as the source of uncertainty (Guillen
et al., 2005).
3.
 Minimizing the risk reflected by the variance of the
total cost and the financial risk has not been con-
sidered in existing comprehensive SC design models.
4.
 Reliability issues have not been considered during the
strategic planning phase.
To overcome these disadvantages, we develop a robust
stochastic programming approach for designing SCs under
uncertainty. In our approach, not only demands, but also
supplies, processing, transportation, shortage and capacity
expansion costs are all considered as the uncertain
parameters. Moreover, we assume that suppliers are
unreliable and may lose their abilities to supply, like oil
suppliers in the Middle East. The reliabilities of suppliers
are known in advance, but the actual situations of
suppliers become clear after building the facilities.

The first objective function of our proposed model is
the minimization of the sum of first-stage investment
costs and the expected second-stage processing, trans-
portation, shortage and capacity expansion costs. To
develop a robust model, two additional objective func-
tions are added into the final model. The first additional
objective function is the minimization of the variance of
the total cost. The variance of the total cost should be
considered in the model, because when we focus only on
the expected total cost, the design scheme may be sub-
optimal if the total cost substantially varies because of
randomness. Practically, the variance of the total cost is
difficult to interpret. Therefore, it is necessary to introduce
a new objective function to clearly capture the notion of
risk. This objective function is the minimization of the
financial risk. The financial risk associated with a design
project under uncertainty is defined as the probability of
not meeting a certain cost level or budget.

Although the ideas of variance and financial risk have
been considered in other areas, but to the best of our
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knowledge, it is the first time they are considered all
together in a multi-objective scheme to design robust
SCs under uncertainty and unreliable suppliers. Moreover,
the idea of capacity expansion at the second stage,
after the realization of uncertain parameters, is also
incorporated into the model. Using this idea, we have
the option of expanding the capacities of plants and
warehouses, if we face favourable economic conditions
with large demands.

Since the expected total cost, the variance of the total
cost and the financial risk are in conflict with each other, it
is proposed to set up a multi-objective design problem
whose solution will be a set of Pareto-optimal possible
design alternatives representing the trade-off among
different objectives rather than a unique solution. To the
best of our knowledge, only e�constraint method (Guillen
et al., 2005) and fuzzy optimization (Chen and Lee, 2004)
have been used to solve multi-objective SC design models.
We use the goal attainment technique, see Hwang and
Masud (1979) for details, to solve the resulting multi-
objective problem.

The present work formulates the SC design problem as
a multi-objective stochastic mixed-integer nonlinear
programming problem, which is solved by using the goal
attainment technique. This formulation takes into account
not only SC expected total cost, but also the risk reflected
by the variance of the total cost and the financial risk. The
result of the model provides a set of Pareto-optimal
solutions to be used by the decision-maker in order to find
the best SC configuration according to his/her preferences.

This paper is organized as follows. In Section 2, we
describe the SC design problem. Section 3 presents the
multi-objective SC design problem considering risk. In
Section 4, we explain about the goal attainment technique
to solve the multi-objective problem. Section 5 presents
the computational experiments. Finally, we draw the
conclusion of the paper in Section 6.
2. Problem description

We first describe a deterministic mathematical for-
mulation for the SC design problem. Consider an SC
network G ¼ (N, A), where N is the set of nodes and A is
the set of arcs. The set N consists of the set of suppliers S,
the set of possible processing facilities P and the set of
customer centers C, i.e., N ¼ S[P[C. The processing
facilities include manufacturing centers M and ware-
houses W, i.e., P ¼ M[W. Let K be the set of products
flowing through the SC.

The SC configuration decisions consist of deciding
which of the processing centers to build. We associate a
binary variable yi to these decisions: yi ¼ 1 if processing
facility i is built, and 0 otherwise. The tactical decisions
consist of routing the flow of each product kAK from the
suppliers to the customers. We let xk

ij denote the flow of
product k from a node i to a node j of the network where
(ij)AA, and zk

j denote shortfall of product k at customer
center j, when it is impossible to meet demand.
A deterministic mathematical model for this SC design
problem is formulated as follows (see Santoso et al. (2005)
for more details):

Min
X
i2P

ciyi þ
X
k2K

X
ðijÞ2A

qk
ijx

k
ij þ

X
k2K

X
j2C

hk
j zk

j

s:t: (1.1)

y 2 Y � f0;1gjPj (1.2)

X
i2N

xk
ij �

X
l2N

xk
jl ¼ 0 8j 2 P; 8k 2 K (1.3)

X
i2N

xk
ij þ zk

j Xdk
j 8j 2 C; 8k 2 K (1.4)

X
j2N

xk
ijpsk

i 8i 2 S; 8k 2 K (1.5)

X
k2K

rk
j

X
i2N

xk
ij

 !
pmjyj 8j 2 P (1.6)

xk
ijX0 8ðijÞ 2 A; 8k 2 K (1.7)

zk
j X0 8j 2 C; 8k 2 K (1.8)

In the above model, ci denotes the investment cost for
building facility i, qk

ij denotes the per-unit cost of
processing product k at facility i and/or transporting
product k on arc (ij), and hk

j denotes the per-unit penalty
incurred for failing to meet demand of product k at
customer center j. The objective function (1.1) consists of
minimizing total investment, tactical and shortage costs.
Constraint (1.2) enforces the binary nature of the config-
uration decisions for the processing facilities. Constraint
(1.3) enforces the flow conservation of product k across
each processing node j. Constraint (1.4) requires that the
total flow of product k to a customer node j plus shortfall
should exceed the demand dj

k at that node. Constraint
(1.5) requires that the total flow of product k from a
supplier node i should be less than the supply si

k at that
node. Constraint (1.6) enforces capacity constraints of the
processing nodes. Here, rj

k denotes per-unit processing
requirement for product k at node j. The capacity
constraint then requires that the total processing require-
ment of all products flowing into a processing node j

should be smaller than the capacity mj of facility j if it is
built (yj ¼ 1). If facility j is not built (yj ¼ 0), the constraint
will force all flow variables xk

ij ¼ 0 for all iAN. Finally, the
last set of constraints enforces the non-negativity of the
flow variables and shortfalls.

It will be convenient to work with the following
compact notation for models (1.1)–(1.8):

Min cT yþ qT xþ hT z

s:t: (2.1)

y 2 Y � f0;1gjPj (2.2)

Bx ¼ 0 (2.3)

Dxþ zXd (2.4)

Sxps (2.5)
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RxpMy (2.6)

x 2 RjAj�jKjþ ; z 2 RjCj�jKjþ (2.7)

Above vectors c, q, h, d and s correspond to investment
costs, processing/transportation costs, shortfall costs,
demands and supplies, respectively. The matrices B, D

and S are appropriate matrices corresponding to the
summations on the left-hand side of the expressions
(1.3)–(1.5), respectively. The notation R corresponds to a
matrix of rj

k, and the notation M corresponds to a matrix
with mj along the diagonal.

We now propose a stochastic programming approach
based on a recourse model with two stages to incorporate
the uncertainty associated with demands, supplies, pro-
cessing costs, transportation costs, shortage costs and
capacity expansion costs.

In a two-stage stochastic optimization approach, the
uncertain parameters are considered as random variables
with an associated probability distribution and the
decision variables are classified into two stages. The
first-stage variables correspond to those decisions that
need to be made here-and-now, prior to the realization of
the uncertainty. The second-stage or recourse variables
correspond to those decisions made after the uncertainty
is unveiled and are usually referred to as wait-and-see
decisions. After the first-stage decisions are taken and the
random events realized, the second-stage decisions are
subjected to the restrictions imposed by the second-stage
problem. Due to the stochastic nature of the performance
associated with the second-stage decisions, the objective
function, traditionally, consists of the sum of the first-
stage performance measure and the expected second-
stage performance; refer to Birge and Louveaux (1997) for
more details.

It is assumed that we have the option of expanding the
capacities of plants and warehouses after the realization
of uncertain parameters. Clearly, when we face favourable
economic conditions with high demands, at the second-
stage, it may be reasonable to expand the capacities of
sites, even if unit expansion costs are relatively high.

Considering vectors e, f, O and x ¼ (q, h, f, d, s) as
capacity expansions, per-unit expansion costs, expansion
limits and random data, respectively, the two-stage
stochastic model is formulated as follows:

Min cT yþ E½Gðy; xÞ�
s:t: (3.1)

y 2 Y � f0;1gjPj (3.2)

where G(y,x) is the optimal value of the following
problem:

Min qT xþ hT zþ f T e

s:t: (3.3)

Bx ¼ 0 (3.4)

Dxþ zXd (3.5)

Sxps (3.6)
RxpMyþ e (3.7)

epOy (3.8)

x 2 RjAj�jKjþ ; z 2 RjCj�jKjþ ; e 2 RjPjþ (3.9)

Note that the optimal value G(y,x) of the second-stage
problem (3.3)–(3.9) is a function of the first-stage decision
variable y and a realization x ¼ (q, h, f, d, s) of the
uncertain parameters. The expectation in (3.1) is taken
with respect to the joint probability distribution of
uncertain parameters.

In the above problem, decision variables, which
represent the existence of the different nodes of the SC,
are considered as first-stage variables as it is assumed that
they have to be taken at the design stage before the
uncertain parameters are unveiled. On the other hand,
decision variables related to the amount of products to be
produced and stored in the nodes of the SC, the flows of
materials transported among the entities of the network,
shortfalls at the customer centers and the amount of
expansion of the capacities of sites are considered as
second-stage variables.

It should be mentioned that stochastic programming is
generally difficult to handle and implement. The readers
may refer to van Delft and Vial (2004), which describes a
powerful tool for practical implementation of stochastic
programming in an SC problem.

In this paper, the uncertainty associated with demands,
supplies, processing, transportation, shortage and capacity
expansion costs is represented by a set of discrete
scenarios with given probability of occurrence. Such
scenarios together with their associated probabilities,
and also the reliabilities of suppliers are provided as input
data into the model. The difficulty of continuous distribu-
tions is avoided by introducing discrete scenarios, or
combinations of discrete samples of all the uncertain
parameters using Monte Carlo simulation. This approach
is explained in detail at the end of Section 4.

3. Multi-objective supply chain design problem

As explained, to develop a robust model, two addi-
tional objective functions are added into the traditional SC
design problem. The first is the minimization of the
variance of the total cost, and the second is the
minimization of the probability of not meeting a certain
budget. However, by considering the variance of the total
cost as an objective function, we actually introduce
nonlinearity into the proposed model, but that is the only
nonlinear term in the final mathematical program.

We also assume that some suppliers may lose their
abilities to supply, like oil suppliers in the Middle East.
The reliabilities of suppliers are known in advance. But the
situations of suppliers will actually clear after building the
facilities. So, we will have 2jSj scenarios for the situations
of suppliers, in some of them one or more suppliers are
unable to supply. If in each scenario, some suppliers are
unable to supply, those suppliers with their external links
can be easily dropped off from further consideration. So, it
will affect the topology of network and decrease the
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number of decision variables and constraints of the final
mathematical model. An alternative method to deal with
unreliable suppliers is to set the supply values of the
unreliable suppliers in the corresponding scenarios to
zero.

Let T be the set of scenarios with given probability of
occurrence associated with demands, supplies, processing
costs, transportation costs, shortage costs and capacity
expansion costs. Such scenarios together with their
associated probabilities must be provided as input data
into the model.

A different value for the sum of the first-stage and the
second-stage costs is obtained for each particular realiza-
tion of uncertain parameters. The proposed model
accounts for the minimization of the sum of first-stage
and the expected second-stage costs, minimization of the
variance of second-stage costs and the minimization of
financial risk or the probability of not meeting a certain
budget.

The financial risk associated with a design project
under uncertainty is defined as the probability of not
meeting a certain target cost level. For the two-stage
stochastic problem, the financial risk associated with a
certain budget O can be rewritten with the help of binary
variables as follows:

Risk ¼
XL

l¼1

plul (4)

where pl denotes the occurrence probability of the lth
scenario, L ¼ jTj �2jSj denotes the total number of scenar-
ios including those related to the reliabilities of suppliers
and ul is a new binary variable defined for each scenario as
follows:

ul ¼
1 if Costl4O;
0 otherwise

�
(5)

where Costl is the total cost when the lth scenario is
realized.

Considering V as a very large constant value (approach-
ing infinity), the proper multi-objective stochastic model
for our SC design problem would be

Min cT yþ
XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ (6.1)

Min
XL

l¼1

pl qT
l xl þ hT

l zl þ f T
l el �

XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ

 !2

(6.2)

Min
XL

l¼1

plul

s:t: (6.3)

Bxl ¼ 0 l ¼ 1; . . . ; L (6.4)

Dxl þ zlXdl l ¼ 1; . . . ; L (6.5)

Sxlpsl l ¼ 1; . . . ; L (6.6)
RxlpMyþ el l ¼ 1; . . . ; L (6.7)

elpOy l ¼ 1; . . . ; L (6.8)

cT yþ qT
l xl þ hT

l zl þ f T
l el �OpVul l ¼ 1; . . . ; L (6.9)

y 2 Y � f0;1g Pj j; u 2 U � f0;1gL (6.10)

x 2 RjAj�jKj�L
þ ; z 2 RjCj�jKj�L

þ ; e 2 RjPj�L
þ (6.11)

Objective function (6.1) is related to the expected total
cost or the sum of the first-stage and the expected second-
stage costs. Objective function (6.2) is related to the
variance of second-stage costs or the variance of total cost.
Objective function (6.3) is related to the financial risk.
Constraint (6.8) enforces the capacity expansion limit for
each processing facility, if it is built. According to
constraint (6.9), if the total cost for a scenario is greater
than a certain budget O, then the binary variable
associated with that particular scenario will be equal to
1, which increases the financial risk (6.3) by the
corresponding probability. Otherwise, if the total cost for
a scenario is smaller than O, then the binary variable
associated with this scenario will be equal to 0, because
we intend to minimize (6.3). Therefore, this situation will
not change the value of financial risk.

Using a multi-objective model in an SC context is not
an artificial one, as we know from ‘‘portfolio optimization’’
that it is not possible to give any monetary value to risk,
which leads to the concept of ‘‘efficient frontier’’ defined
by Markowitz (1952, 1959). We may treat volatility and
expected return as proxies for risk and reward. Out of the
entire universe of possible portfolios, certain ones will
optimally balance risk and reward. These comprise what
Markowitz called an efficient frontier of portfolios. This
frontier is a curve in the ‘‘risk vs expected return’’ space. If
it was possible to replace risk by reward/loss, then we
would have had only a single dot in this space represent-
ing the optimal portfolio. But we know from finance
theory that it is not the case; having said that it is possible
only if one can clearly define his/her utility function
(a relation between risk and return).

Now, the question is how to define the firm’s utility
function in an SC. We will show in one SC problem
(Section 5) that the relationship between cost, variance
and risk is not clear, and that decision-makers need
support in determining what that utility function should
be—they need to see the effect of weighting the criteria
differently before they can make their decision, and
obviously, setting a single function does not guarantee
us a Pareto-optimal solution. That is why we are adopting
a multi-objective approach to this SC problem.

4. Goal attainment technique

We use the goal attainment technique, which is a
variation of goal programming technique, to solve the
multi-objective problem. Goal attainment method is one
of the multi-objective techniques with priori articulation
of preference information given. In this method, the
preferred solution is sensitive to the goal vector and the
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weighting vector given by the decision-maker; the same
as the goal programming technique.

Goal attainment method has fewer variables to work
with and is a one-stage method, unlike interactive multi-
objective techniques, so it will be computationally faster.
Therefore, in terms of computational time, it is one of the
best techniques to solve our SC problem, whose determi-
nistic equivalent form is a large-scale mixed-integer
nonlinear program. We successfully applied the goal
attainment technique in solving a number of real-world
multi-objective problems arising in reliability optimiza-
tion (Azaron et al., 2007a), project management (Azaron
et al., 2007b) and production systems (Azaron et al.,
2006), and it is for the first time that we use this
technique to solve a multi-objective SC design problem
and to generate its Pareto-optimal solutions.

This method requires setting up a goal and weight, bj

and gj (gjX0) for j ¼ 1, 2, 3, for the three mentioned
objective functions. The gj relates the relative under-
attainment of the bj. For under-attainment of the goals, a
smaller gj is associated with the more important objec-
tives. When gj approaches 0, then the associated objective
function should be fully satisfied or the corresponding
objective function value should be less than or equal to its
goal bj. gj, j ¼ 1, 2, 3, are generally normalized so thatP3

j¼1gj ¼ 1. The proper goal attainment formulation for
our problem is

Min w

s:t: (7.1)

cT yþ
XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ � g1wpb1 (7.2)

XL

l¼1

pl qT
l xl þ hT

l zl þ f T
l el �

XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ

 !2

� g2wpb2 (7.3)

XL

l¼1

plul � g3wpb3 (7.4)

Bxl ¼ 0 l ¼ 1; . . . ; L (7.5)

Dxl þ zlXdl l ¼ 1; . . . ; L (7.6)

Sxlpsl l ¼ 1; . . . ; L (7.7)

RxlpMyþ el l ¼ 1; . . . ; L (7.8)

elpOy l ¼ 1; . . . ; L (7.9)

cT yþ qT
l xl þ hT

l zl þ f T
l el �OpVul l ¼ 1; . . . ; L (7.10)

y 2 Y � f0;1g Pj j; u 2 U � f0;1gL (7.11)

x 2 RjAj�jKj�L
þ ; z 2 RjCj�jKj�L

þ ; e 2 RjPj�L
þ (7.12)

Lemma 1. If (y*, u*, x*, z*, e*) is Pareto-optimal, then there
exists a b, g pair such that (y*, u*, x*, z*, e*) is an optimal
solution to the optimization problem (7).
The optimal solution using this formulation is sensitive
to b and g. Depending on the values for b, it is possible that
g does not appreciably influence the optimal solution.
Instead, the optimal solution can be determined by the
nearest Pareto-optimal solution from b. This might require
that g be varied parametrically to generate a set of Pareto-
optimal solutions. In the next section, we consider several
pairs of b and g to generate different Pareto-optimal
solutions.

The mixed-integer nonlinear programming problem
(7) has (jAj � jKj+jCj � jKj+jPj)� L+1 continuous decision
variables, excluding slack variables, jPj+L binary variables
and
(jAj � jKj+2� jCj � jKj+jPj � jKj+jSj � jKj+3� jPj+1)� L+3
constraints.

In case the random data vector x ¼ (q, h, f, d, s) follows
a known continuous joint distribution, one should resort
to a sampling procedure, for example Santoso et al.
(2005), to solve the proposed model. In the sampling
strategy, a random sample x1,x2,y, xQ of Q realizations of
the random vector x is generated. Then, considering
L ¼ Q�2jSj in this case, the proper goal attainment
formulation can be approximated as

Min w

s:t: (8.1)

cT yþ
1

L

XL

l¼1

ðqT
l xl þ hT

l zl þ f T
l elÞ � g1wpb1 (8.2)

1

L� 1

XL

l¼1

qT
l xl þ hT

l zl þ f T
l el

�

�
1

L

XL

l¼1

ðqT
l xl þ hT

l zl þ f T
l elÞ

!2

� g2wpb2 (8.3)

1

L

XL

l¼1

ul � g3wpb3 (8.4)

Bxl ¼ 0 l ¼ 1; . . . ; L (8.5)

Dxl þ zlpdl l ¼ 1; . . . ; L (8.6)

Sxlpsl l ¼ 1; . . . ; L (8.7)

RxlpMyþ el l ¼ 1; . . . ; L (8.8)

elpOy l ¼ 1; . . . ; L (8.9)

cT yþ qT
l xl þ hT

l zl þ f T
l el �OpVul l ¼ 1; . . . ; L (8.10)

y 2 Y � f0;1gjPj; u 2 U � f0;1gL (8.11)

x 2 RjAj�jKj�L
þ ; z 2 RjCj�jKj�L

þ ; e 2 RjPj�L
þ (8.12)

where the expected total cost, the variance of the total
cost and financial risk are approximated by (8.2), (8.3) and
(8.4), respectively.

Let vQ and ŷQ be the optimal value and the optimal
solution vector, respectively, of the approximated problem
(8). Clearly, for a particular realization x1, x2,y, xQ of the
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random vector, problem (8) is deterministic. It is possible
to show that under mild regularity conditions, as the
sample size Q increases, vQ and ŷQ converge with
probability one to their true counterparts, see Kleywegt
et al. (2001). The performance of the sampling strategy is
beyond the scope of this paper and can be considered as a
direction for future research in this area.

5. Numerical experiments

Consider the SC network design problem depicted in
Fig. 1 (modified from Yu and Li, 2000). A wine company is
willing to design its SC. This company owns three
customer centers located in three different cities L, M
and N. Uniform-quality wine in bulk (raw material) is
supplied from four wineries located in A, B, C and D. There
are four possible locations E, F, G and H for building the
bottling plants.

For simplicity, without considering other market
behaviors (e.g. novel promotion, marketing strategies of
competitors and market-share effect in different markets),
each market demand merely depends on the local
economic conditions. Assume that the future economy is
either boom, good, fair or poor, i.e. four situations with
associated probabilities of .13, .25, .45 or .17, respectively.
The unit production costs and market demands under
each scenario are shown in Table 1.

The supplies, transportation costs and shortage costs
are considered as deterministic parameters. In all,
A

B

C

D

L

N

M

E

F

G

H

Fig. 1. The supply chain design problem of the wine company.

Table 1
Characteristics of the problem

Future economy Demands Unit

L M N E

Boom 400 188 200 755

Good 350 161 185 700

Fair 280 150 160 675

Poor 240 143 130 650
475,000, 425,000, 500,000 and 450,000 are investment
costs for building each bottling plant E, F, G and H,
respectively. In all, 65.6, 155.5, 64.3, 175.3, 62, 150.5, 59.1,
175.2, 84, 174.5, 87.5, 208.9, 110.5, 100.5, 109, 97.8 are the
unit costs of transporting bulk wine from each winery A,
B, C and D to each bottling plant E, F, G and H, respectively.
The unit costs of transporting bottled wine from each
bottling plant E, F, G and H to each distribution center L,
M, and N, respectively, are 200.5, 300.5, 699.5, 693, 533,
362, 163.8, 307, 594.8, 625, 613.6, 335.5. The unit shortage
costs at each distribution center L, M and N are 10,000,
13,000 and 12,000, respectively. In all, 375, 187, 250 and
150 are the maximum amount of bulk wine that can be
shipped from each winery A, B, C and D, respectively, if it
is reliable. In all, 315, 260, 340 and 280 are the capacities
of each bottling plant E, F, G and H, respectively, if it is
built.

We also have the option of expanding the capacity of
bottling plant F, if it is built. In all, 100, 80, 60 and 50 are
the unit capacity expansion costs, when the future
economy is boom, good, fair or poor, respectively. In
addition, we cannot expand the capacity of this plant
more than 40 units in any situation. Moreover, winery D is
an unreliable supplier and may lose its ability to supply
the bottling plants. The reliability of this winery is
estimated as .9. So, the total number of scenarios for this
SC design problem is equal to 4�2 ¼ 8.

Clearly, this system produces one type of product and
the processing facilities include only manufacturing
centers M. So, the per-unit processing requirements rj

k

are all equal to 1 and W ¼ f.
This problem attempts to minimize the expected total

cost, the variance of the total cost and the financial risk in
a multi-objective scheme while making the following
determinations:
(a)
produ
Which of the bottling plants to build (first-stage
variables)?
(b)
 Amount of bulk wine to be bottled in each bottling
plant, amount of bulk wine and bottled wine to be
transported among the entities of the network,
amount of shortfall at each customer center and
finally amount of expansion of the capacity of bottling
plant F, if it is built (second-stage variables)?
We use goal attainment formulation (7) to solve this
multi-objective SC design problem. The mathematical
model has 12 binary variables, 257 continuous decision
variables and 407 constraints.
ction costs Probabilities

F G H

650 700 800 .13

600 650 750 .25

580 620 720 .45

570 600 700 .17
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Table 2
Pareto-optimal solutions

No. g1 g2 g3 b1 b2 b3 O E F G H Mean Variance Risk Time

1 E�6 .99999 E�8 185E4 E9 .1 218E4 1 1 1 0 2,007,034 109,871E5 .13 2:21

2 E�4 .99989 E�8 185E4 E8 .1 218E4 1 1 1 0 2,086,941 246,917E4 .13 2:49

3 .01 .98999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,184,688 133,134E3 .397 2:52

4 .01 .98999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,467 134,974E3 .13 3:11

5 .1 .89999 E�9 185E4 E9 .1 221E4 1 1 0 1 2,221,661 912,376E3 .13 4:15

6 .1 .89999 E�8 185E4 E9 .1 221E4 1 1 1 0 2,150,000 715,080E3 .13 0:46

7 .1 .89999 E�8 185E4 E8 .1 221E4 1 1 1 0 2,188,285 103,045E3 .13 0:48

8 .1 .89999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,186,120 127,592E3 .4 2:21

9 .1 .89999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,467 134,974E3 .13 3:51

10 .1 .89999 E�7 185E4 E8 .1 218E4 1 1 1 0 2,192,098 105,670E3 .73 1:01

11 .1 .89999 E�7 185E4 E9 .1 218E4 1 1 1 0 2,132,511 100,254E4 .13 5:12

12 .25 .74999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,186,493 125,924E3 .442 2:30

13 .25 .74999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,503 137,060E3 .13 4:01

14 .25 .74999 E�8 185E4 E9 .1 218E4 1 1 1 0 2,184,596 146,415E3 .13 3:51

15 .5 .49999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,187,987 121,750E3 .535 2:26

16 .5 .49999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,582 134,462E3 .155 0:41

17 .75 .24999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,188,794 115,646E3 .622 1:48

18 .75 .24999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,893 133,072E3 .217 1:59

19 .9 .09999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,192,212 106,300E3 .73 1:54

20 .9 .09999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,185,957 128,321E3 .38 5:21

21 .9 .09999 E�9 185E4 E9 .1 218E4 1 1 1 0 2,184,470 135,165E3 .13 2:48

22 .9 .09999 E�9 185E4 E10 .1 218E4 0 1 1 1 2,192,825 110,321E4 .13 3:55

23 .99 .00999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,194,198 100,677E3 .777 1:23

24 .99 .00999 E�8 185E4 E9 .1 218E4 1 1 1 0 2,184,469 135,041E3 .13 1:10

25 .9999 E�4 E�8 185E4 E8 .1 218E4 1 1 1 0 2,192,571 100,007E3 .777 2:51

26 .99999 E�6 E�9 220E4 E2 .1 222E4 1 0 0 0 1022E5 0 1 1:16

27 9E�4 .9991 E�8 185E4 E8 .1 220E4 1 1 1 0 2,159,937 444,064E3 .13 2:03

28 E�5 .99999 E�9 185E4 E8 .1 220E4 1 1 1 0 2,007,034 109,871E5 .13 1:56

29 E�8 .99999 E�8 185E4 E9 .1 220E4 0 1 1 0 1,853,385 310,218E6 .13 2:37

30 9E�6 .99999 E�6 200E4 E8 .1 222E4 1 1 1 0 2,046,929 531,427E4 .013 0:55

31 9E�6 .99999 E�6 185E4 E9 .1 222E4 1 1 1 0 2,007,034 109,871E5 .013 2:32

32 E�6 .99999 E�6 185E4 E10 .1 221E4 1 1 1 0 2,007,034 109,871E5 .13 2:16

33 E�7 .99999 E�7 185E4 E10 .1 221E4 0 1 1 0 1,878,088 290,880E6 .13 2:18

34 E�7 .99999 E�9 185E4 E10 .1 210E4 1 1 1 0 2,104,936 232,243E4 .13 1:48

35 .099 .9 .001 185E4 E7 .1 220E4 1 1 1 0 2,205,472 132,316E2 1 1:18

36 .099 .9 .001 185E4 E9 .1 220E4 1 1 1 0 2,132,510 100,257E4 .13 3:10

37 .08999 .91 3E�7 185E4 E7 .1 220E4 1 1 1 0 2,205,337 135,929E2 1 1:57

38 .09 .90999 2E�7 185E4 E7 .1 220E4 1 1 1 0 2,206,307 136,992E2 .913 2:14

39 .005 .99499 E�6 185E4 E8 .1 220E4 1 1 1 0 2,181,185 165,906E3 .13 3:02

40 .009 .99 .001 185E4 E8 .1 220E4 1 1 1 0 2,184,267 136,769E3 .13 2:48

41 .009 .99 .001 185E4 E9 .1 220E4 1 1 1 0 2,131,358 103,095E4 .13 2:12

42 .49999 .5 5E�7 185E4 E7 .1 220E4 1 1 1 0 2,209,452 108,300E2 .93 1:49

43 .89999 .1 5E�7 185E4 E7 .1 220E4 1 1 1 0 2,222,635 970,609E1 .983 6:06

44 .89999 .1 E�9 185E4 E10 .1 221E4 0 1 1 1 2,215,469 851,956E3 .13 2:30

45 .79999 .2 2E�6 185E4 E7 .1 220E4 1 1 1 0 2,209,999 930,143E1 1 3:51

46 .94999 .05 5E�6 185E4 E6 .1 220E4 1 1 1 0 2,215,476 101,924E1 1 4:23

47 .98999 .01 E�5 185E4 E6 .1 220E4 1 1 1 0 2,215,543 100,369E1 1 1:26

48 .99899 .001 E�5 215E4 E6 .1 220E4 1 1 1 0 2,239,909 251,188 1 1:46

49 .9989 .001 E�4 215E4 E5 .1 220E4 1 1 1 0 2,221,516 100,072 1 3:26

50 .99989 E�4 E�6 215E4 E5 .1 220E4 1 0 1 1 2,279,960 61,998 1 3:47

51 .99998 E�6 E�5 220E4 E4 .1 220E4 1 0 1 1 2,278,040 2229 1 4:31

52 .99999 E�6 E�6 220E4 E2 .1 220E4 1 1 1 1 2,689,734 0 1 3:24

53 .99998 E�6 E�5 220E4 E4 .1 222E4 1 1 1 0 2,225,870 4104 1 3:48

54 .99999 E�6 E�6 220E4 E2 .1 222E4 1 1 1 0 2,224,348 57 1 4:39

55 .99989 E�4 E�6 200E4 E6 .1 225E4 1 1 1 0 2,215,559 10,0002E1 0 1:29
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Then, we use LINGO 10 to solve the problem on a PC
Pentium IV 2.1-GHz processor and to generate different
Pareto-optimal solutions. Table 2 shows 55 generated
Pareto-optimal configurations (1 means the bottling plant
is built and 0 otherwise), the values of the expected total
cost, the variance of the total cost, the financial risk and
the computational times (mm:ss).

To generate the Pareto-optimal solutions, b, g and O are
varied manually. When one of the parameters is varied
and the others are fixed, changing the output shows its
sensitivity with respect to that parameter. According to
the obtained absolute minimum values for the expected
total cost, the variance of the total cost and the financial
risk, by solving the associated single objective problems,
b3 is fixed at .1, b2 is varied from 100 to 10,000,000,000, b1

is varied from 1,850,000 (close to the absolute minimum
expected total cost) to 2,200,000 (close to the absolute
minimum expected total cost plus three times of the
maximum goal for the standard deviation of the total
cost), g1 is varied from .00000001 to .99999, g2 is varied
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from .000001 to .99999, g3 is varied from .000000001 to
.001 and O is varied from 2,100,000 to 2,250,000.

As mentioned, the weights relate the relative under-
attainment of the goals and a smaller gj is associated with
the more important objectives. For each goal vector b, the
corresponding weight vector g can be obtained using
Saaty’s method of pairwise comparisons (Hwang and
Yoon, 1981). For each pair of b and g, the solution
is Pareto-optimal. If we are not satisfied with any
Pareto-optimal solution or there are much differences
between some of the obtained objective function values
and the corresponding goals, the g vector should be
modified. For example, if the obtained financial risk value
is much greater than .1, g3 should be decreased (e.g. 10
times) and both g1 and g2 should be increased from their
earlier values, appropriately, in which the summation
of gj remains unchanged. This process continues with
several different pairs of b and g, and several Pareto-
optimal solutions are generated that can be used for
decision-making.

For example, the first set of g in Table 2 (instance 1)
implies that one dollar deviation of the expected total cost
from 1,850,000 is about 1,000,000 times as important as
one unit deviation of the variance of total cost from
1,000,000,000 and the same important as .01 deviation of
the financial risk from .1. In this instance, the goal and
weight for the expected total cost and weight for financial
risk are relatively low, which causes the solution to have
low expected total cost and risk values. In instance 26, we
have a high budget O, and a low financial risk weight g3,
which seems to indicate that the solution should have a
low risk value, but the goal for variance, b2, is very low,
with a low weight g2, and in the solution this overrides
risk, and the variance is minimized.

The lowest expected cost is from instance 29, with a
value of 1,853,385. This has relatively low risk, but high
variance. The optimal variance is obtained in two separate
instances (26 and 52), but these give widely different
values for cost (2.69E6 or 1.02E8). The optimal financial
risk is obtained in instance 55, with a cost of 2.22E6, a
variance of 1.00E6 and a budget of 2.25E6. So, the
expected cost ranges from 1.85E6 to 1.02E8. If we aim
for a financial risk of .13, within the budget of 2.20E6, then
the variance can still range from 1.37E8 to 3.10E11, and the
cost ranges from 1.85E6 to 2.18E6.

In order to make sense of this, and to arrive at an
appropriate solution, the decision-maker needs to see this
range of outcomes, to be able to trade-off one criteria
against the other in terms of the results. So, by solving this
SC design problem, it is concluded that the relationship
between cost, variance and risk is not clear and it is not
possible to easily define a utility function (a relation
between risk and return). That is why we are adopting a
multi-objective approach to this SC problem.

According to the numerical results, increasing goal for
the variance and also decreasing weight for the expected
total cost cause the financial risk to be decreased.
Moreover, increasing goal for the variance causes both
the expected total cost and the financial risk to be
decreased. Also, increasing goal for the expected
total cost causes the variance of the total cost to be
decreased. So, it seems by increasing goal for any of the
objectives, we give more space for other objectives to be
improved. It is also concluded that there are some positive
correlations between the expected cost and the financial
risk.

It is also seen that in most instances we have to build
the bottling plant in F, which is expandable, and then
expand it when we either face boom economy or reliable
suppliers. For example, in instance 5, where the bottling
plants are built in E, F and H, the capacity of F should be
expanded 40, 31.4 and 40 units, when the economy is
boom and D is reliable (scenario 1), the economy is fair
and D is reliable (scenario 3) and the economy is boom
and D is not reliable (scenario 5), respectively.

In order to evaluate the performance of the proposed
method in solving larger cases, we consider another
problem with 10 suppliers, 10 plants and 10 customer
centers with the same number of unreliable suppliers,
expandable plants and scenarios as the earlier case. In this
case, the unit production costs, market demands and
capacity expansion costs are uncertain, while the other
parameters are supposed to be certain following the
similar pattern of the earlier case. Then, it is solved on the
same computer and 10 new Pareto-optimal solutions are
generated. The mean computational time for this medium
size case is equal to 14:18, while the mean computational
time in 55 generated Pareto-optimal solutions of the
earlier small size case was equal to 2:41.

In order to show the sensitivity of the numerical
solution with respect to the number of scenarios, we also
conduct two more experiments with 4 and 16 scenarios.
In the smaller case with 4 scenarios, it is assumed that all
suppliers are reliable. In the bigger case with 16 scenarios,
it is assumed that the future economy will have eight
situations, instead of four in the original problem, and one
of the suppliers is unreliable. In both cases, the uncertain
parameters are the unit production costs, capacity expan-
sion costs and market demands, but with different values
for each scenario, while the other parameters are all
certain following the same pattern of the original
problem. Then, 10 new Pareto-optimal solutions for each
of the new problems are generated. The mean computa-
tional time for the smallest size case with 4 scenarios and
the largest size case with 16 scenarios are equal to 0:57
and 6:46, respectively, comparable to 2:41 in the original
case with 8 scenarios. So, it seems the proposed model can
at least solve the medium size cases with limited number
of scenarios in acceptable CPU time.
6. Conclusion

Determining the optimal SC configuration is a difficult
problem since a lot of factors and objectives must be taken
into account when designing the network under uncer-
tainty. The proposed model in this paper accounts for the
minimization of the expected total cost, the variance of
the total cost and the financial risk in a multi-objective
scheme to design a robust SC network. Therefore, this
approach seems to be a good way of capturing the high
complexity of the problem.
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According to the numerical experiments, considering
risk directly affects the design of the SC networks under
uncertainty. By using this methodology, the trade-off
between the expected total cost and risk terms can be
obtained. The interaction between the design objectives
has been shown. This way of generating different possible
configurations will help the decision-maker determine the
best design among all generated Pareto-optimal solutions
based on his/her preferences.

We used the goal attainment technique, which is a
variation of the goal programming technique, to solve
the multi-objective SC design problem and to generate the
Pareto-optimal solutions. Goal attainment method is one
of the multi-objective techniques with priori articulation
of preference information given. This method has the
same disadvantages as those of goal programming,
namely, the preferred solution is sensitive to the goal
vector and the weighting vector given by the decision-
maker. However, the goal attainment method has fewer
variables to work with, and therefore is one of the best
methods to solve this large-scale mixed-integer nonlinear
programming problem, in terms of computational time. In
this regard, using a meta-heuristic approach such as
genetic algorithm or simulated annealing in solving large-
scale cases would be suitable.

An interactive multi-objective technique such as SWT
or STEM can also be used to solve the multi-objective
problem (6). The main disadvantage of the interactive
approaches is that the number of variables and also the
number of stages which we need to solve the associated
single-objective optimization problems to get the final
solution are much more than the goal attainment
technique. So, in terms of computational time, the goal
attainment technique is much better than any interactive
multi-objective technique for solving the SC design
problem proposed in this paper.

The proposed model can also be extended to the
multi-period case considering the associated production,
transportation and especially inventory-holding costs at
different time intervals. In this case, the suppliers’
lifetimes can also be considered as independent random
variables with time-dependent continuous or discrete
distributions such as exponential or geometric. Then, we
will need to develop a proper stochastic optimal control
model to solve the resulting problem.
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