
INFORMS Journal on Computing
Vol. 21, No. 4, Fall 2009, pp. 549–561
issn 1091-9856 �eissn 1526-5528 �09 �2104 �0549

informs ®

doi 10.1287/ijoc.1080.0307
©2009 INFORMS

A Constraint Programming Approach for Solving
a Queueing Design and Control Problem

Daria Terekhov, J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada

{dterekho@mie.utoronto.ca, jcb@mie.utoronto.ca}

Kenneth N. Brown
Cork Constraint Computation Centre, Department of Computer Science, University College Cork,

Cork, Ireland, k.brown@cs.ucc.ie

Afacility with frontroom and backroom operations has the option of hiring specialized or cross-trained work-
ers. Cross-trained workers can be switched between the two rooms depending on demand but are more

expensive than specialized ones. Assuming stochastic customer arrival and service times, we seek a smallest-
cost combination of cross-trained and specialized workers, together with a policy for switching the cross-trained
workers between the rooms, which satisfies constraints on the expected customer waiting time and expected
number of workers in the back room. A constraint programming approach using logic-based Benders’ decom-
position is presented. Experimental results demonstrate the strong performance of this approach across a wide
variety of problem parameters. This paper provides one of the first links between queueing optimization prob-
lems and constraint programming.

Key words : constraint programming; queues; optimization; hybrid algorithms
History : Accepted by John Hooker, Area Editor for Constraint Programming and Optimization; received
October 2007; revised August 2008; accepted September 2008. Published online in Articles in Advance
February 5, 2009.

1. Introduction
Constraint programming (CP) has proven to be a suc-
cessful technique for solving large-scale and complex
deterministic resource allocation problems (Baptiste
et al. 2006, Fox 1983). More recently, there has also
been work in the artificial intelligence community on
developing methods for stochastic versions of such
problems (Brown and Miguel 2006). Resource allo-
cation under uncertainty is also of interest in oper-
ations research (OR). In particular, queueing theory
addresses problems related to the optimal design and
control of queues and allows one to determine, for
example, how to assign servers to different types of
jobs or how many servers to employ so as to opti-
mize some measure of system performance (Tadj and
Choudhury 2005, Gross and Harris 1998). The inte-
gration of these two powerful techniques, constraint
programming and queueing theory, offers the poten-
tial for solving more complex stochastic resource allo-
cation problems.
In this work, we generalize an existing queueing

design and control problem (Berman et al. 2005) and
propose a complete hybrid solution technique com-
bining logic-based Benders’ decomposition (Hooker
and Ottosson 2003), an extension of an existing
heuristic, and CP. This paper has two main contri-
butions. First, we provide a complete method for a

generalization of a queueing design and control prob-
lem from the literature that has only been solved
using a heuristic technique. Second, this paper creates
a link between constraint programming and queue-
ing theory: it establishes CP as a method for solving
queueing optimization problems.
The paper is organized as follows. Section 2 pre-

sents a detailed description of our queueing design
and control problem. In §3, we discuss related work.
In §4, the details of our overall approach for solving
the problem are presented. Experimental results and
their analysis are given in §§5 and 6. Some ideas for
further work are presented in §7. Section 8 concludes
the paper.

2. Background
We consider a facility, such as a bank, with back-
room and frontroom operations. In the front room, the
workload depends on a stochastic process of customer
arrivals and service times. If all frontroom workers
are busy, customers form a queue and wait to be
served. In the back room, tasks include sorting of
material and paperwork, and do not directly depend
on customer arrivals. The facility can hire either cross-
trained workers, who are able to perform tasks in
both rooms, or specialized workers, who are able
only to serve customers or only to work in the back

549

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
550 INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS

room. Cross-trained workers provide flexibility since
they may be switched between the back room and the
front room depending on demand. However, cross-
trained workers are more expensive than specialized
ones because they possess more skills. Managers of
the facility are therefore interested in finding the opti-
mal number of workers of each type and, if this com-
bination includes cross-trained workers, in knowing
when to switch them between the two rooms.
The current work addresses a generalization of two

problems studied by Berman et al. (2005), who as-
sume that only cross-trained workers can be hired by
the facility. The objective of the Berman et al. (2005)
problem P1 is to determine when to switch workers
between the two rooms so that expected customer
waiting time is minimized, but the requirement on
the minimum number of backroom workers is met.
In problem P2, the goal is to find the minimum num-
ber of cross-trained workers such that a switching
policy exists to meet constraints on the expected cus-
tomer waiting time and on the expected number of
backroom workers. Berman et al. (2005) propose two
heuristics, also called P1 and P2, for solving these
problems.

2.1. Problem Description
Using the notation of Berman et al. (2005), let S denote
the maximum number of customers allowed in the
front room at any time. When there are S customers
present, arriving customers are blocked from entering
the facility. To ensure that all backroom work is com-
pleted, there is a known minimum requirement, Bl, for
the expected number of workers in the back room.
Wu denotes the upper bound on the expected cus-
tomer waiting time, Wq . It is assumed that only one
worker is allowed to be switched at a time, and both
switching time and cost are negligible. Customers
arrive according to a Poisson process with rate �. Cus-
tomer service times follow an exponential distribution
with rate 	.
We extend P2 to allow specialized front and back-

room workers in addition to cross-trained ones. Given
a different staffing cost for each type of worker, the
goal of this generalization is to find the lowest-cost
combination of specialized and cross-trained workers
so as to ensure that the expected waiting time of cus-
tomers does not exceed Wu and that there are enough
workers in the back room to ensure that all backroom
work is completed.
Let f be the number of specialized frontroom work-

ers, b the number of specialized backroom workers,
and x the number of cross-trained workers in the facil-
ity. It is assumed that the service rate of a worker in
the front room is equal to 	 regardless of whether
the worker is specialized or cross-trained. Similarly,
cross-trained and specialized employees working in

the back room are assumed to be able to perform back-
room tasks equally well. Denote the staffing costs as
cf , cb, and cx, respectively, for frontroom, backroom,
and cross-trained workers. We assume that cx ≥ cf > 0,
cx ≥ cb > 0, and cx ≤ cf + cb. See the work of Terekhov
and Beck (2009) for an analysis of the problem under
other cost assumptions.
Given particular values of x, f , and b, and a pol-

icy specifying when cross-trained workers are to be
switched between the two rooms, one can calculate
the expected customer waiting time, Wq , and the ex-
pected number of workers in the back room, B. Since
we are required to find both the optimal staff mix
and a satisfying switching policy, this problem is both
a queueing design and a queueing control problem.
Previously, no methods have been proposed for solv-
ing this problem, and even its special case, when there
are only cross-trained workers in the facility, has only
been addressed heuristically.
Formally, the problem of finding the optimal staff

mix given frontroom and backroom constraints can be
stated as

minimize cf f + cbb+ cxx
s.t. Wq ≤Wu�

B ≥ Bl�
(1)

2.2. Switching Policy
An essential part of the problem is the question of
how workers are to be switched between the two
rooms. We assume that these decisions are made
using a policy, that is, an a priori rule that specifies
when a switch should be made. We extend the policy
formulation proposed by Berman et al. (2005) to the
case when specialized, in addition to cross-trained,
workers can be hired. Thus, in this paper, a policy
is defined as a sequence of “switching points,” ki,
for i= 0�1� � � � � x+ f , with the interpretation that the
number of “busy” workers (ones who are currently
serving a customer) in the front room is i when-
ever the number of customers in the front room is
between ki−1 + 1 and ki. Switching points with index
i < f state that as another customer arrives to the
front room, the number of specialized workers who
are busy increases; switching points with index i ≥ f
specify when to switch cross-trained workers between
the front room and the back room. In other words,
the number of workers in the front room is always
equal to max�f � i�. Switching point kx+f is a con-
stant and is equal to S. Thus, a policy is a vector
K = �k0� k1� � � � � kx+f � with ki < ki+1 for i= 0�1� � � � � x+
f − 1, kx+f = S, ki = i ∀ i < f and ki ≥ i ∀ i≥ f .
For example, if f = 2, x = 1, and S = 6, the policy

�0�1�3�6� states that whenever the number of cus-
tomers is 1, there is one busy worker in the front
room, and whenever the number of customers is 2

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS 551

or 3, there are two busy workers in the front room.
When the number of customers becomes k2+ 1= 4,
a cross-trained worker is switched to the front room.
The interpretation that when there are four cus-
tomers in the room, there are three busy workers,
remains valid, even though one of the busy workers
is cross-trained.
It is important to realize that other policy types

could be used for modelling switching decisions. For
example, an alternative policy definition could be
based on two sets of switching points, one for switch-
ing workers to the front room and one for switch-
ing workers to the back room, as in the work by
Berman and Larson (2004). In this paper, however,
we address the problem using only the policy form
defined above. The quality of this policy type is dis-
cussed in a related paper (Terekhov and Beck 2009).

3. Related Work
The problem addressed in this paper belongs to the
class of problems usually referred to as “optimal de-
sign and control of queues,” which has applications
in many areas such as communication systems and
scheduling (Tadj and Choudhury 2005). Problems
dealing with queue design are static in nature: the
goal is to find optimal values for parameters that,
once determined, become fixed characteristics of the
queueing system, such as the maximum number of
allowed customers or the total number of available
servers (Gross and Harris 1998). Problems dealing
with queue control are dynamic: the goal is to deter-
mine an optimal action to take when the queue is in
a particular state (Gross and Harris 1998). The prob-
lem we address in this paper deals with both queue
design and queue control, since we would like to
determine how many workers of each type should
be hired by the facility (a fixed characteristic of the
system) and how cross-trained workers should be
switched between tasks (what action should be taken
in a particular state of the queue).
As noted earlier, our paper is closely linked with

the work of Berman et al. (2005). In our previous work
(Terekhov and Beck 2008), we proposed several con-
straint programming methods for solving the queue
control problem of Berman et al. (2005) (problem P1).
However, to our knowledge, no papers have exam-
ined applying CP to a problem that involves both
optimal queue design and control.
Related work also includes papers by Berman and

Larson (2004), and Berman and Sapna-Isotupa (2005),
both of which consider a retail facility with two rooms
and cross-trained workers. Berman and Larson (2004)
assume that there are two kinds of customers in the
front room: ones who are “shopping” and ones who
are at the checkout. They use heuristics to determine

the minimum number of cross-trained workers that
should be hired. Berman and Sapna-Isotupa (2005)
consider the problem of minimizing the number of
cross-trained workers in a facility where the amount
of backroom work is correlated with the number of
customers in the front room. They model the problem
as a Markov decision problem and use a linear pro-
gramming approach to solve it. One possible direction
for further work is therefore to examine the applica-
bility of our method to the case when there is corre-
lation between frontroom and backroom tasks.
Our problem of interest deals with the management

of cross-trained workers. Various problems involv-
ing this subject have been considered in the literature
using simulation (Chevalier and Tabordon 2003) and
linear and mixed-integer programming (Cezik and
L’Ecuyer 2008, Batta et al. 2007, Brusco 2008). How-
ever, to our knowledge, CP has not been applied to
such problems.

4. Logic-Based Benders’
Decomposition Approach

Benders’ decomposition was originally developed
for solving mixed-integer programming problems
(Benders 1962). More generally, the method can be
applied to any problem in which the variables and
constraints can be separated into a master problem
and a subproblem, which are solved in an alternat-
ing fashion until an optimality criterion is satisfied.
Each time the subproblem is solved, a constraint that
eliminates at least the current solution is added to
the master problem. This ensures that all further solu-
tions either result in better objective function values
or are closer to being feasible for the overall prob-
lem. The master problem and the subproblem may be
modelled and solved using linear or integer program-
ming (Benders 1962), or CP, as in logic-based Benders’
decomposition (Hooker and Ottosson 2003, Tarim and
Miguel 2005).
Given our previous work (Terekhov and Beck 2008),

it is natural to decompose our problem into the mas-
ter problem of finding a combination of cross-trained
and specialized workers (a queueing design prob-
lem) and the subproblem of finding a switching pol-
icy that satisfies the backroom and frontroom service-
level constraints given an employee configuration (a
queueing control problem).
Our approach is to first derive a set of constraints

on the values of x, f , and b by solving problem (1)
with x = 0. These constraints are then used to form
the master problem, which is solved to identify a cost-
optimal, but possibly infeasible, combination of cross-
trained and specialized workers, say, x= x′, f = f ′,
and b = b′. If a feasible subproblem solution can be
found, then the master solution is optimal. Otherwise,

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
552 INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS

the cut (x > x′ ∨ f > f ′ ∨ b > b′), where ∨ represents
a logical disjunction, is added to the master problem.
The master problem and the subproblem are then re-
solved to determine if a feasible policy exists for the
new master problem solution.

4.1. The “Specialized-Only” Solution
When x = 0, the number of workers required for the
back room is independent of the number of workers
required for the front room. Thus, to find the min-
imum-cost specialized-only solution, one can inde-
pendently determine Ftotal, the smallest number of
specialized frontroom workers sufficient to satisfy the
waiting-time constraint, and Btotal, the smallest num-
ber of specialized backroom workers needed to satisfy
the backroom constraint.
To find Ftotal, Wq is calculated for each value of f ≥ 1

using the equation

Wq =
P0

∑i=S
i=1��/	�

i−1i/D�i�
	�1− ��/	�SP0�1/D�S���

− 1
	
� (2)

where

D�i�=
i∏
j=1
d�j�� d�i�=

i if i≤ f �
f otherwise�

(3)

and

P0 = 1+
i=S∑
i=1

(
�

	

)i 1
D�i�

� (4)

until the constraint Wq ≤ Wu is satisfied for some
value of f . We derived this equation from the expres-
sion for Wq , which appears in the work of Berman
et al. (2005) (see Equation (12) below) using the fact
that, when only specialized workers are considered,
the front room is a queue with exponential inter-
arrival and service times, f servers, and a capacity
of S (an M/M/f/S queue) (Gross and Harris 1998).
Btotal is simply
Bl� because, when there are no

cross-trained workers, this is the smallest possible
number of backroom workers required to complete all
of the backroom work.
By definition of Ftotal and Btotal, there have to be

at least Ftotal cross-trained and frontroom workers in
the facility in order for the constraint on Wq to be sat-
isfied, and at least Btotal cross-trained and backroom
workers in order for the backroom constraint to be
satisfied. Thus, constraints f + x ≥ Ftotal and b + x ≥
Btotal are valid for problem (1). In addition, in any fea-
sible solution, the number of specialized frontroom
workers does not ever have to exceed Ftotal, and the
number of specialized backroom workers does not
ever have to exceed Btotal, because these values already
satisfy the constraints in their respective rooms, and
having more workers would only incur additional
cost. Therefore, Ftotal− 1 is an upper bound for f and
Btotal− 1 is an upper bound for b. Ftotal+Btotal− 1 is an

upper bound for x, since employing a greater number
of cross-trained workers will result in a solution of
greater cost than the cost of the solution with only
specialized workers.
Additionally, since one needs at least Ftotal workers

in the facility to satisfy the frontroom constraint, and
at least Btotal workers in the facility to satisfy the back-
room constraint, it is clear that at least max�Ftotal�Btotal�
workers need to be hired. The lower bound on x is 1,
since the best solution with x = 0 has already been
found.
The cost of the specialized-only solution is an upper

bound on the cost of the optimal solution. The lower
bound on the optimal cost is the maximum of cf Ftotal
and cbBtotal since at least the maximum of Ftotal or Btotal
workers will have to be employed in the facility, and
the cost of a cross-trained worker is assumed to be
greater than or equal to the cost of either of the spe-
cialized workers.

4.2. Master Problem
Given the constraints derived from the specialized-
only solution, the master problem can be stated as

minimize cost= cf f + cbb+ cxx
s.t. f + x≥ Ftotal�

b+ x≥ Btotal�
0≤ f ≤ Ftotal− 1�
0≤ b ≤ Btotal− 1�
1≤ x≤ Ftotal+Btotal− 1�
f + b+ x≥max�Ftotal�Btotal��
max�cf Ftotal� cbBtotal�

≤ cost≤ cf Ftotal+ cbBtotal�
cuts

(5)

where cuts are constraints that are added to the mas-
ter problem each time the subproblem is not able to
find a feasible solution. Initially, cuts is the empty set.
Further on, the constraints in this set remove the cur-
rent optimal solution of the master problem because
it does not result in a feasible policy. The master prob-
lem is re-solved each time a new cut is added, and
the resulting values of f , b, and x define the subprob-
lem. We solve the master problem with a CP model
identical to (5). As it is a simple minimization prob-
lem with three integer variables, finding a solution is
trivial.

4.3. Solving the Subproblem
Given values for f , b, and x, the goal of the subprob-
lem is to find a policy K such that the constraints
Wq ≤Wu and B ≥ Bl are satisfied. The subproblem is
very similar to problem P1 of Berman et al. (2005).

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS 553

Therefore, the method we use for solving the subprob-
lem is a modification of the PSums-P1 Hybrid method
proposed by Terekhov and Beck (2008), which com-
bines a CP model with the Berman et al. heuristic.
More specifically, to solve the subproblem, we run a
modified version of the Berman et al. heuristic P1 fol-
lowed by a combination of shaving and search.
In this section, we review the definition of a switch-

ing policy and present the equivalents of the Berman
et al. (2005) expressions for calculating the quan-
tities of interest given that there may be special-
ized workers in the facility. These expressions are
used throughout a modified version of the Berman
et al. heuristic, which is presented in §4.3.2. We then
present a CP model of the subproblem, which we
refer to as PSumsSubproblem, and the details of shav-
ing procedures used in conjunction with this model.

4.3.1. Switching Policy. Recall that a policy is a
sequence of “switching points,” ki, for i = 0�1� � � � �
x + f , with the interpretation that the number of
“busy” workers (ones who are currently serving a
customer) in the front room is i whenever the num-
ber of customers in the front room is between ki−1+1
and ki. That is, it is a vector K = �k0� k1� � � � � kx+f �, such
that ki < ki+1 for i= 0�1� � � � � x+ f − 1, kx+f = S, ki = i
∀ i < f , and ki ≥ i ∀ i≥ f .
This policy formulation can be seen as a special

case of the policy formulation of Berman et al. (2005),
with the first f switching points always being fixed to
their minimum possible values. Therefore, by replac-
ing each occurrence of N by x + f in Theorem 1 of
Berman et al. (2005), we can generalize this theorem to
the case when specialized workers can be employed
in the facility:

Theorem 1 (Berman et al. 2005). Consider two po-
licies K and K ′, which are equal in all but one ki. In partic-
ular, suppose that the value of k′J equals kJ − 1 for some J
from the set "f � � � � � x+f −1#, kJ −kJ−1 ≥ 2, while k′i = ki
for all i �= J . Then (a) Wq�K�≥Wq�K

′�, (b) F �K�≤ F �K ′�,
and (c) B�K�≥ B�K ′�.

As a result of Theorem 1, we can define the equiva-

lents of the Berman et al. policies K and K. In particu-
lar, for the problem involving three types of workers,
the policy yielding the greatest possible values of Wq

and B is

K = {
k0 = 0� � � � � kf−1 = f − 1� kf = S− x�
kf+1 = S− x+ 1� � � � � kx+f−1 = S− 1� kx+f = S

}
�

The policy that results in the smallest possible values
of Wq and B is

K = {
k0 = 0� k1 = 1� k2 = 2� � � � � kx+f−1

= x+ f − 1� kx+f = S
}
�

The notions of types 1 and 2 components can be
defined in a manner similar to Berman et al. (2005).
A type 1 component is a ki with the smallest index i
satisfying the condition ki − ki−1 > 1 for f ≤ i ≤ x +
f − 1. A type 2 component is a ki having the smallest
index and satisfying the condition ki+1 − ki > 1, for
f ≤ i≤ x+ f − 1.
For the remainder of the paper, we refer to a policy

satisfying the constraint B ≥ Bl as B-feasible, and a pol-
icy satisfying the constraint Wq ≤ Wu as Wq-feasible.
Similarly, policies violating these constraints are called
B-infeasible and Wq-infeasible, respectively.

4.3.2. Modified Berman et al. (2005) Heuristic.
Given the above policy formulation, the subproblem
can be modelled analogously to the way Berman et al.
model problem P1. In particular, to calculate the quan-
tities of interest (e.g., Wq), a set of probabilities P�j�,
for j between 0 and S, is defined. Each P�j� denotes
the steady-state probability of there being j customers
in the front room. These values have to satisfy the set
of balance equations

P�j��= P�j + 1�i	�
j = ki−1� ki−1+ 1� � � � � ki− 1 i= 1� � � � � x+ f � (6)

Consequently, each probability can be calculated
using the following expressions:

P�j�= $jP�k0�� (7)

where

$j =

1 if j = k0�
��/	�j−k0�1/i�j−ki−1Xi

if ki−1+ 1≤ j ≤ ki i= 1� � � � � x+ f �

Xi =
i−1∏
g=1

(
1
g

)kg−kg−1
i= 2� � � � � x+ f � X1 ≡ 1�

(8)

and

P�k0�
S∑
j=0
$j = 1� (9)

The expected number of cross-trained workers in the
front room, Fcross, is therefore

Fcross =
x+f∑
i=f+1

ki∑
j=ki−1+1

iP�j�� (10)

Because there is the possibility of hiring special-
ized back-room workers, the expression for the total
expected number of workers in the back room, B, is
b+ x− Fcross.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
554 INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS

The expected number of customers in the front
room is exactly the same as in problem P1:

L =
S∑

j=k0
jP �j�� (11)

The expected waiting time in the queue can be
obtained by replacing N by x+f in the Wq expression
of Berman et al. (2005):

Wq =
L

��1− P�kx+f ��
− 1
	
� (12)

Based on the above equations, Theorem 1 and the

definitions of K and K, the equivalent of the Berman
et al. P1 heuristic for this problem, which will be fur-
ther referred to as heuristic P3, can be stated as
Step 1. Start with K = K.
Step 2. If B�K� < Bl, the problem is infeasible. Oth-

erwise, let imb_Wq = Wq�K� and imb_K = K. Set J =
x+ f .

Step 3. Find the smallest j∗ s.t. f ≤ j∗ < J , and kj∗ is
a type 1 component. If no such j∗ exists, go to Step 5.
Otherwise, set kj∗ = kj∗ − 1. If B�K� < Bl, set J = j∗ and
go to Step 5. If B�K�≥ Bl, go to Step 4.
Step 4. If Wq�K� < imb_Wq , let imb_Wq =Wq�K� and

imb_K =K. Go to Step 3.
Step 5. Find the smallest j∗ s.t. f ≤ j∗ < J , and kj∗ is

a type 2 component. If no such j∗ exists, go to Step 6.
Otherwise, set kj∗ = kj∗ + 1. If B�K� < Bl, repeat Step 5.
Otherwise, go to Step 4.
Step 6. Stop and return imb_K as the best solution.

This heuristic alternates between trying to reach a
policy with smaller Wq and a policy with higher B.
Each time a B-infeasible policy is found, the set of
switching points that can be increased or decreased at
subsequent steps is reduced to prevent cycling. The
heuristic stops when it is unable to find any more
switching points to decrease or increase, in which case
it returns the B-feasible policy with the best value
of Wq that it has been able to find.
As stated above, we use a method similar to the

PSums-P1 Hybrid presented in our previous work
(Terekhov and Beck 2008) to solve the subproblem.
In this method, we run heuristic P3 first. If the Wq

value returned by P3 is smaller than Wu (the policy
is Wq-feasible), then the current subproblem and mas-
ter solutions are optimal. Otherwise, the CP method
based on the PSumsSubproblem model and shaving is
applied.

4.3.3. The PSumsSubproblem Model. The PSums-
Subproblem model has, as its decision variables, the set
of ki, i = 0�1� � � � � x + f , each with an initial domain
of �0 � � � S�. Additionally, it has two types of probabil-
ity variables: PSums�ki� for i = 0� � � � � x+ f − 1, and

P�j� for j = k0� k1� k2� � � � � kx+f , which are necessary for
the calculation of Wq and B given a switching policy.
We relate these three types of variables via a set of
constraints that ensures that the probability values
satisfy the steady-state conditions of the frontroom
queue. We also include constraints for expressing Wq

and B in terms of the variables ki, PSums�ki�, and
P�ki�. These constraints are analogous to ones used
in the PSums model proposed by Terekhov and Beck
(2008) for problem P1.
PSums�ki� represents the probability of there being

between ki and ki+1 − 1 customers in the front room
and is defined in Equation (13). Equation (14) is a
recursive formula for computing P�ki+1�, the proba-
bility of having ki+1 customers in the facility, where
P�k0� = �

∑x+f
i=0 $Sum�ki��

−1 and $Sum�ki�, i = 1� � � � �
x+ f , is defined in Equation (15).

PSums�ki� =

P�ki�
1− ��/��i+ 1�	��ki+1−ki
1−�/��i+ 1�	�

if
�

��i+ 1�	� �= 1�

P�ki��ki+1− ki� otherwise�

(13)

P�ki+1�=
[

�

�i+ 1�	
]ki+1−ki

P �ki�� (14)

$Sum�ki� =
ki∑

j=ki−1+1
$j

=

Xi

(
�

	

)ki−1−k0+1(1
i

)[
1−��/�i	��ki−ki−1
1−��/�i	��

]

if
�

i	
�=1�

Xi

(
�

	

)ki−1−k0+1(l
i

)
�ki−ki−1�

otherwise�

(15)

The expected total number of cross-trained workers
in the front room is

Fcross =
x∑
i=1
i�PSums�ki+f−1�− P�ki+f−1�+ P�ki+f ��� (16)

The expected number of workers in the back room, B,
is defined as b+ x− Fcross.
The expected number of customers in the front

room, L, is defined as

L=
x+f−1∑
i=0

L�ki�+ kx+f P �kx+f �� (17)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS 555

where

L�ki� = kiPSums�ki�+ P�ki�
�

�i+ 1�	
× ����/��i+ 1�	��ki+1−ki−1�ki− ki+1�

+ ��/��i+ 1�	��ki+1−ki �ki+1− ki− 1�+ 1�
· �1−�/��i+ 1�	��−2��

Expected customer waiting time is defined as in
Equation (12).
The equations defining PSums�ki�, P�ki�, L, B, and

Wq , together with Wq ≤Wu and B ≥ Bl, are the major
constraints of the CP model of the subproblem. Addi-
tionally, the set of constraints necessary for the defi-
nition of a policy (presented in §4.3.1) is included in
this model.

4.3.4. Shaving. Shaving is a consistency-enforcing
procedure for constraint programs based on tempo-
rarily adding constraints to the problem, performing
propagation, and making inferences according to the
resulting state of the problem (Demassey et al. 2005,
van Dongen 2006). We use two shaving procedures:
BlShaving, which makes inferences based on the feasi-
bility of policies with respect to the Bl constraint, and
WuShaving, which makes inferences based on feasi-
bility with respect to the Wu constraint.
Let min�ki� and max�ki� be, respectively, the small-

est and largest values in the current domain of vari-
able ki, and suppose that the constraint Wq ≤ Wu is
temporarily removed. At each step of the BlShaving
procedure, ki = min�ki� or ki = max�ki� is temporar-
ily added to the model for i ∈ "0� � � � � x + f − 1#. If
ki =min�ki� is added, then all other switching points
are assigned the maximum possible values subject to
the condition that kn < kn+1, ∀n ∈ "0� � � � � x + f − 1#.
This is done using the function gMax, which, given
an array of variables, assigns the maximum possible
values to all of the variables that do not yet have
a value, returning true if the resulting assignment is
B-feasible and false otherwise. If gMax returns false
and min�ki�+ 1≤max�ki�, the constraint ki >min�ki�
can be permanently added: if all variables except ki
are set to their maximum values, and the problem is
infeasible with respect to the Bl constraint, then, by
Theorem 1, in any feasible policy ki must be greater
than min�ki�. If gMax returns false and min�ki� +
1 > max�ki�, there can be no B-feasible policy satis-
fying the Wq ≤Wu constraint, and the subproblem is
proven to be infeasible. Otherwise, if gMax returns
true, we check if the policy is Wq-feasible, in which
case the procedure stops since feasibility of the sub-
problem has been proved.
If ki = max�ki� is added, the rest of the variables

are assigned the minimum values from their domains
using the function gMin. These assignments are made

Algorithm 1: BlShaving
Input: S, 	, �, Bl, Wu (instance parameters); x, f , b (current master
problem solution)

Output: Wq , policy (satisfying policy and its objective value),
or (possibly) modified domains of the variables ki , or proof that
subproblem is infeasible

changed= true
while (changed)
changed= false
for all i from 0 to x+ f − 1
successfulShave= true
while (successfulShave)
successfulShave= false
add(ki =max�Domain�ki��)
if (gMin)
if (Wq <Wu)
return policy, Wq ; stop, subproblem solution found

if (max�Domain�ki��− 1≥min�Domain�ki��)
add(ki <max�Domain�ki��)
successfulShave= true
changed= true

else
stop, no policy with a better Wq value exists;
subproblem is infeasible

remove(ki =max�Domain�ki��)
successfulShave= true
while (successfulShave)
successfulShave= false
add(ki =min�Domain�ki��)
if (gMax)
if (Wq <Wu)
return policy, Wq ; stop, subproblem solution found

else
if (min�Domain�ki��+ 1≤max�Domain�ki��)
add(ki >min�Domain�ki��)
successfulShave= true
changed= true

else
stop, no policy with a better Wq value exists;
subproblem is infeasible

remove(ki =min�Domain�ki��)

Figure 1 BlShaving Algorithm

in a way that respects the constraints kn < kn+1, ∀n ∈
"0� � � � � x + f − 1#. If the resulting policy is B-feasible
but Wq-infeasible, the constraint ki < max�ki� can be
permanently added, assuming max�ki�− 1 ≥min�ki�.
Because all variables except ki are at their minimum
values already, and ki is at its maximum, it must be
true, again by Theorem 1, that in any solution with
smaller Wq the value of ki has to be smaller than
max�ki�. If max�ki�− 1<min�ki�, there can be no pol-
icy with a betterWq than any B-feasible policy encoun-
tered so far during the procedure, and the subproblem
is proved to be infeasible. On the other hand, if the pol-
icy obtained by applying gMin is both B-feasible and
Wq-feasible, the procedure stops, and the current mas-
ter and subproblem solutions are optimal. The com-
plete BlShaving algorithm is presented in Figure 1.
The WuShaving procedure makes inferences based

strictly on the constraint Wq ≤ Wu. The constraint

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
556 INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS

Algorithm 2: WuShaving
Input: S, 	, �, Bl, Wu (instance parameters); x, f , b (current
master problem solution)

Output: (possibly) modified domains of the variables ki ,
or proof that subproblem is infeasible

changed= true
while (changed)
changed= false
for all i from 0 to x+ f − 1
successfulShave= true
while (successfulShave)
successfulShave= false
add(ki =max�Domain�ki��)
if (!gMin)
if (max�Domain�ki��− 1≥min�Domain�ki��)
add(ki <max�Domain�ki��)
successfulShave= true
changed= true

else
stop, no policy with a better Wq value exists;
subproblem is infeasible

remove(ki =max�Domain�ki��)

Figure 2 WuShaving Algorithm

B ≥ Bl is removed prior to running this procedure.
A constraint of the form ki = max�ki� is added, and
the smallest possible values are assigned to the rest of
the variables using the function gMin. As the Bl con-
straint has been removed, the only reason why the
policy could be infeasible is because it has a Wq value
greater thanWu. Because all switching points except ki
are assigned their smallest possible values, this implies
that in any solution with a better expected waiting
time, the value of ki has to be strictly smaller than
max�ki�. If max�ki� − 1 < min�ki�, infeasibility of the
subproblem is proven. The WuShaving algorithm is
stated in Figure 2.
To solve the subproblem, we run BlShaving and

WuShaving in an alternating fashion because the do-
main reductions inferred during one procedure may
lead to further inferences being made by the other.
This method stops when a policy satisfying both con-
straints is found, when a constraint is inferred that
violates the current upper or lower bound of a ki, or
when no further inferences can be made. In the final
case, standard CP search is performed to determine
whether a feasible policy exists.

4.4. Summary
Recall that we take a logic-based Benders’ decompo-
sition approach to our problem of finding the optimal
staffing configuration. The master problem is pre-
sented as Equation (5). As it is a simple minimization
problem, it can be easily solved by CP. Once a master
solution is obtained, it is used to define the subprob-
lem, where the aim is to find a policy that simulta-
neously satisfies the constraints B ≥ Bl and Wq ≤Wu.
Every time it is proven that no such policy exists for
the current master solution, x = x′, f = f ′, and b= b′,

the cut (x > x′ ∨ f > f ′ ∨ b > b′) is added to the master
problem, and it is re-solved. The alternation between
the master problem and the subproblem continues
until a policy is found in the subproblem, which is
both B-feasible andWq-feasible, implying that the cur-
rent master problem solution is optimal.
The subproblem is solved by first applying heuris-

tic P3. If no B-feasible policy exists, the heuristic is able
to recognize this, proving the infeasibility of the cur-
rent master solution. On the contrary, if the heuristic
finds a policy that satisfies the back room constraint,
two cases may occur. First, the policy may also be
Wq-feasible, in which case the current master solu-
tion is proven to be optimal. Second, the policy may
not be able to satisfy the Wq constraint. In this case,
there is no guarantee that the subproblem is infeasi-
ble, and we therefore use the PSumsSubproblem model
with shaving and search. Shaving is composed of two
procedures, BlShaving and WuShaving, which are run
iteratively until either feasibility or infeasibility of the
current master solution is proven, or no more domain
reductions are possible. In the latter case, standard
CP search is applied to look for a feasible solution or
show that none exists.

5. Experimental Results and
Analysis I

Because our problem has not been previously solved,
our first set of experiments focuses on determining
some of the reasons for the CPU times required to
solve various problem instances and on evaluating
the effect of different parameter values on the effi-
ciency of our method. (Note: Numerical values in
some of the results are slightly different from the
ones presented in the previous work by Terekhov
et al. 2007 because of some minor errors discovered
after the publication of that paper. The main conclu-
sions and analysis of the previous work by Terekhov
et al. 2007 remain valid, however.) Our approach was
implemented in ILOG Solver 6.2, and all experiments
were performed on a Dual Core AMD 270 CPU with
1 MB cache, 4 GB of main memory, running Red Hat
Enterprise Linux 4. It should be noted that the results
presented below are sensitive to the level of preci-
sion that is set. For example, with a different pre-
cision level, the number of iterations and the mean
run time, as well as the optimal staffing configuration,
may be different for a particular instance. We set the
default ILOG Solver precision to 0.000001 for all of
our experiments.

5.1. Problem Size
Recall that S is the total number of customers allowed in
the system at any one time and therefore is the prime
determinant of problem size. In our first experiment,
we use a set of 300 instances, 30 for each value of S

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS 557

Table 1 Mean CPU Time (Seconds), Mean Number of Iterations, Mean
Total Number of Workers in the Optimal Solution, and Mean
Percentage Differences Between the Cost of the Optimal
Solution and the Two “Naive” Solutions for Each Value of S

Statistic/
value of S 10 20 30 40 50 60 70 80 90 100

CPU time 0�04 0.70 2�59 0.28 0.72 0.55 0.33 93�27 5�25 6�43
(seconds)

No. of iterations 4�57 7.77 16�07 6.13 8.00 7.23 8.23 34�73 27�60 23�83
Total no. of 4�07 6.33 9�17 4.80 5.40 5.60 5.27 15�33 8�83 8�93

workers
Difference 15�40 4.17 0�48 5.21 5.54 1.28 2.91 0�09 0 0

compared to
spec.-only (%)

Difference 2�11 2.95 3�71 4.43 4.08 5.72 6.10 5�73 5�90 6�00
compared to
cross.-only (%)

from "10�20� � � � �90�100#, with costs cx = 32, cf = 31,
and cb = 30. The values of the rest of the parameters
are taken from the experiments of Terekhov and Beck
(2008), for which they were generated in such a way
as to ensure nontrivial solutions for Berman’s prob-
lem P1. The bestWq values found in those experiments
were used as the Wu values for our instances. Because
P1 is similar to our subproblem, it was expected that
using these parameters would give us instances of
various difficulty.
Our method solved all but one instance (at S of 80)

within 10 CPU minutes. In Table 1, the mean CPU
time, the mean number of times the subproblem is
solved (number of iterations), and the mean total
number of workers in the optimal solution over 30
instances for each value of S are presented. For the
unsolved instance at S = 80, we assume, in these cal-
culations, that the run time is 600 seconds, the num-
ber of iterations is the number that was completed
within the time limit, and the optimal configuration
consists of Ftotal frontroom workers and Btotal back-
room workers (this solution can be obtained for all
problem instances in a negligible amount of time).
Therefore, our mean run time and mean number of
iterations statistics are slight underestimates of the
true values for S of 80. The total number of workers in
the optimal solution statistic may be exact if the opti-
mal solution in the unsolved instance is indeed the
specialized-only solution; otherwise, it is a slight over-
estimate. Similarly, the percentage differences may be
exact if the optimal configuration of this instance does
not consist of any cross-trained workers.
The mean run times show a significant peak at

S = 80 and are approximately correlated with both the
total number of workers and the number of iterations.
This is not surprising: the more workers are needed in
the facility, the more staff combinations usually need
to be examined. An increase in the total number of
employees in the optimal solution also leads to higher

run times for each subproblem. This is because the
higher the total number of workers in the facility, the
larger the size of the policies, and the longer shav-
ing and search will take to prove feasibility or infea-
sibility. In our problem set, when S = 80, there are
several instances which have both a large number of
iterations (a maximum of 141) and difficult subprob-
lems (the maximum CPU time required to solve a
subproblem is approximately 82.84 seconds). More-
over, the mean total number of workers for S = 80
is greater than for the other values of S because of
the presence of several instances in this set that have
tight constraints on the expected customer waiting
time and the expected number of workers in the back
room.
Although higher values of S lead to larger domain

sizes for the kis, and thus may result in higher run
times, Table 1 shows that S is not the main parame-
ter determining the difficulty of a problem instance.
In particular, higher values of S do not necessarily
lead to higher run times: the mean CPU time at S = 30
is higher than those at S = 40, 50, 60, and 70, and the
mean CPU times at S = 90 and 100 are substantially
lower than that at S = 80.
5.2. Cost Combinations
Using the above instances, five different cost com-
binations, �cx� cf � cb�, are examined. When the costs
are �32�1�31�, �32�31�1�, and �32�24�24�, all 300 in-
stances are solved, with a mean run time of under
one second. For cost combinations �32�30�31� and
�32�32�32�, 298, and 295 instances, respectively, are
solved in each set, and the mean run times are 8.16
and 20.84 seconds, respectively. These results indicate
that as the difference between the cost of a cross-
trained worker and the sum of the costs of special-
ized workers increases, the time needed to solve the
instance increases. In these cases, the master problem
is likely to consider solutions with a larger number of
cross-trained workers, which implies larger domains
for the kis, and longer shaving and search times.
The general pattern in the mean CPU times for each
S seen in Table 1 also occurs under these five cost
combinations, indicating that problem difficulty is a
function of more than just the cost assumptions.

5.3. Other Parameters
To examine the effect of the rest of the problem
parameters, we use a set of instances with the S, �,
	, Bl, and Wu values from the 54 instances used in
the work of Berman et al. (2005). Ten different cost
combinations that satisfy our cost assumptions are
used, giving us 540 instances. The cost combinations
�cx� cf � cb� used are �32�5�30�, �32�15�25�, �32�15�30�,
�32�25�15�, �32�25�25�, �32�25�30�, �32�30�5�, �32�30�
15�, �32�30�25�, and �32�30�30�. In several instances
the value of � or 	 had to be rounded from the value
used by Berman et al. due to numerical instability.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
558 INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS

Table 2 Mean CPU Time (Seconds), Number of Iterations, Total
Number of Workers in the Optimal Solution, and Percentage
Differences Between the Cost of the Optimal Solution and the
Two “Naive” Solutions for Each Value of Wu/Bl

/�

10 15 20

�Wu�/Bl 55.83 21.87 6.15 38.34 10.84 3.55 28.56 8.12 2.37

CPU time 0�01 12�34 12�10 0�01 7�91 38�46 39�92 58�25 91�28
(seconds)

No. of iterations 1�00 3�20 11�30 1�00 5�70 22�58 3�20 14�10 36�50

Total no. of 11�00 11�60 12�70 16�00 17�00 18�82 21�60 22�80 25�10
workers

Difference 5�27 1�42 0�75 3�69 3�41 1�03 0�75 0�34 1�44
compared to
spec.-only (%)

Difference 61�46 55�22 46�85 67�92 59�35 48�36 68�01 60�26 47�61
compared to
cross.-only (%)

Although the values of the parameters vary, these
instances can be grouped into nine types according to
the value of �Wu/Bl, which is an indication of how
difficult it is to satisfy theWu and Bl constraints simul-
taneously, adjusted by the arrival rate. Smaller values
of this ratio lead to tighter problem instances. In addi-
tion, each triple out of these nine types has an equal
value of �/	, which is a representation of the work-
load of the facility.
All 540 instances were solved within 10 minutes.

From Table 2, it can be seen that as �/	 increases,
mean CPU times increase. This happens simultane-
ously with an increase in the mean number of itera-
tions and an increase in the total number of workers
in the optimal solution, confirming the observations
made from our experiment with different S values.
As the value of �Wu/Bl decreases while �/	 is held
constant, mean CPU times, number of iterations, and
total number of workers in the optimal solution in-
crease. Therefore, as the workload of the facility in-
creases and/or the expected waiting time bound
becomes tighter, the problem becomes harder to solve.

5.4. Cost of the Optimal Solution
Finding the optimal mix of specialized and cross-
trained workers is worthwhile only if there is a dif-
ference between the cost of the resulting solution and
the costs of the two “naive” solutions, the specialized-
only solution and the cross-trained-only solution. We
investigate this question by comparing the staffing
costs obtained using these three methods for the same
set of 540 problem instances.
The specialized-only solution f = Ftotal, b = Btotal,

x = 0 can be easily determined using the equations
of §4.1. The cross-trained-only solution f = 0, b= 0,
x=Xtotal, where Xtotal is the smallest number of cross-
trained workers required in the facility to satisfy both
constraints, is a solution to the Berman et al. (2005)

problem P2 (described in §2). To obtain the value of
Xtotal, we modified our method by changing the upper
bound of x to S and the upper bound on the cost to
S × cx in the master problem (Equation (5)) and ran
it with costs cx = 1, cf = 100, cb = 100. However, our
method was unable to solve 19 of the 300 instances
discussed in §5.1 within 600 seconds. In these cases,
we assume that the best cross-trained-only solution
consists of Ftotal + Btotal cross-trained workers, and our
results are slightly inaccurate.
Tables 1 and 2 present the mean percentage differ-

ence between the cost of the optimal solution, and the
costs of the specialized-only solution and the cross-
trained-only solution. To determine these values, we
calculate the difference between each pair of solutions
as a percentage of the cost of the optimal solution.
In most cases, there is a nonzero difference between
the costs of the optimal solution and the two “naive”
solutions, indicating that our approach may be valu-
able in practical applications.

6. Experimental Results and
Analysis II

The subproblem of our logic-based Benders’ decom-
position method, described in §4.3, has three main
components: the heuristic, the alternating shaving
procedure, and standard CP search. In this section,
we investigate the influence that each of these com-
ponents has on the effectiveness of our method. To do
this, we consider three approaches that are modifica-
tions of our original method:
• heuristicOnly, in which the solution to the sub-

problem can be found only by the heuristic (shaving
and search are removed);
• noShaving, in which the subproblem can be

solved by either the heuristic or search (the alternat-
ing shaving procedure is removed);
• noSearch, in which either the heuristic or shaving

can solve the subproblem (search is removed).
The heuristicOnly method is a complete method

only if, on every iteration in which the heuristic is
unable to find a feasible subproblem solution, the sub-
problem is truly infeasible. In particular, the heuristic
can guarantee infeasibility of the subproblem only if

the policy K violates the backroom constraint or the
policy K violates the frontroom constraint.
Similarly, the noSearch method is complete only

when either the heuristic or the alternating shav-
ing procedure is able to guarantee infeasibility on
every iteration in which they cannot find a feasible
solution. This may happen either when K is infea-

sible with respect to the frontroom constraint, or K
is infeasible for the backroom constraint, or shaving
attempts to make a domain reduction that violates

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS 559

the current upper or lower bound of a ki. If shav-
ing makes some domain reductions but is unable to
either find a feasible policy or prove infeasibility, the
subproblem is considered infeasible. Hence, in such
cases the noSearch method is incomplete.
The noShaving method is complete (given enough

run time) because on every iteration in which K is

feasible for the frontroom constraint and K is feasi-
ble for the backroom constraint, but the heuristic is
unable to find a feasible policy, search is run to prove
the feasibility or infeasibility of the subproblem. How-
ever, if this method takes longer than the allowed
run-time limit, we assume that the solution it returns
is the specialized-only solution (because this solution
is always found within a negligible run time prior to
the execution of the master problem). In these cases,
there is no guarantee that this solution is optimal.
We compare the heuristicOnly, the noSearch, and the

noShaving methods to our original method (which
employs a combination of heuristic, shaving, and
search as discussed in §4.3) on the set of 540 instances
from §5.3.

6.1. Solution Quality
Experiments with our set of 540 instances indicate
that the heuristicOnly method finds an optimal-cost
solution in 442 instances, or in 69.8% of instances for
which the optimal is not the specialized-only solution.
The noSearch method is able to find the optimal-cost
solution in 516 instances, or in 92.6% of instances for
which the optimal is not the specialized-only solution.
The noShaving method finds the optimal-cost solution
in 389 instances, or 53.5% of cases for which the opti-
mal staffing configuration is not the specialized-only
one. The original technique, employing the heuristic,
shaving, and search, finds the optimal-cost staff mix
in all 540 instances.
In Table 3, the percentage difference between the

cost of the optimal solution (found by our original
method) and the costs of the solutions found by
the other three methods is presented. It can be
observed that the heuristic performs well but that
there exist instances in which it is unable to find the

Table 3 Mean Percentage Difference Between the Cost of the Solution
Provided by the heuristicOnly, the noSearch, and the
noShaving Methods, and the Cost of the Optimal Solution
Found by Our Original Method for Each Value of Wu/Bl

/�

10 15 20

�Wu�/Bl 55.83 21.87 6.15 38.34 10.84 3.55 28.56 8.12 2.37

heuristicOnly 0 0.74 0�24 0 0 0�05 0�22 0�05 0�10
noSearch 0 0.24 0 0 0 0 0 0 0
noShaving 0 1.42 0�75 0 2�20 1�03 0 0�34 1�44

Table 4 Mean Run Times for heuristicOnly, noSearch, noShaving, and
Our Original Method for Each Value of Wu/Bl

/�

10 15 20

�Wu�/Bl 55.83 21.87 6.15 38.34 10.84 3.55 28.56 8.12 2.37

heuristicOnly 0.01 0�07 0�26 0.01 0�18 0�82 0�05 0�60 1�78
noSearch 0.01 8�12 12�07 0.01 7�94 38�49 39�84 58�11 91�45
noShaving 0.01 249�87 421�81 0.01 358�97 500�00 193�04 430�02 540�00

Original 0.01 12�34 12�10 0.01 7�91 38�46 39�92 58�25 91�28

optimal solution. In fact, Table 3 indicates that the
heuristicOnly method finds the optimal-cost solution
in a greater number of instances than the noShaving
method. This observation can be explained by the
fact that the noShaving method takes a long time to
prove the infeasibility of each infeasible subproblem,
reaches the time limit without having solved the prob-
lem in many instances (see the high run times of the
noShaving method presented in Table 4), and thus,
returns the specialized-only solution in many cases
in which this solution is not optimal. The noSearch
method performs better than either of the other two
methods, finding the optimal-cost solution in all cases
except when the ratio of �Wu and Bl is 21.87.
Based on these observations, we can conclude that,

in most cases, the optimal-cost solution in our orig-
inal method is found by either the heuristic or the
shaving procedure, indicating that both are essential
components of our overall approach.

6.2. Mean Run Time
Table 4 presents the mean run times for the heuristic-
Only, the noSearch, and the noShaving methods, and
our original method. The only method of these four
that is unable to solve all instances within 600 seconds
is the noShaving method (in fact, it does not solve 242
instances). In the calculation of the mean run times for
this method, we assume that the run time of instances
that are not solved is 600 seconds, and hence the mean
run time figures for the noShaving method presented
in the table are underestimates of the true means.
We can first observe that the mean run times of

our original method most closely resemble those of
the noSearch method. Second, it can be seen that the
heuristicOnlymethod is much faster than the rest, with
mean run times being below two seconds for all val-
ues of �Wu/Bl. This is not surprising, since the origi-
nal heuristic of Berman et al. (2005) has been shown
by Terekhov and Beck (2008) to be extremely fast for
problem P1.
Third, the longest run times result from the noShav-

ing method, since search has to be used in all cases for
which the heuristic is unable to guarantee infeasibility
and also unable to find a feasible solution. In previous
work (Terekhov and Beck 2008), we stated that one

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
560 INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS

possible reason for the PSums model without shaving
being unable to prove optimality in some instances
of problem P1 is that there is very little propagation
from the constraint Wq ≤ bestWq (where bestWq is the
best value of the expected waiting time found up to
that point in the search). The PSums model served as
the basis of the subproblem model, and the two are
similar in structure. Therefore, we can conjecture that
one of the reasons for the search taking a long time
to prove or disprove the feasibility of the subproblem
in some instances is the lack of propagation from the
constraint Wq ≤Wu.
These observations indicate that a majority of prob-

lems can be solved by using the heuristic and shav-
ing, and that, in such cases, most of the run time of
our original method is spent in the shaving stage.
More importantly, it is clear that the use of shaving
greatly reduces the run times needed by our original
method to guarantee optimality. We can also conjec-
ture that, in general, one of the reasons why there
exist instances in which our original method is unable
to solve the problem within 600 seconds (i.e., some
instances at S = 80 in experiments of §§5.1 and 5.2) is
the fact that shaving is unable to prove the feasibil-
ity or infeasibility of the last master problem solution
considered, and search needs a long time to do so.

6.3. Mean Number of Iterations
In Table 5, we see that the mean number of iterations
for all but one value of �Wu/Bl is the same for our
original method and the noSearch method, which is
not surprising given the similarity in the mean run
times between the two. The slight difference between
the two methods for �Wu/Bl = 21�87 is because, as
shown in §6.1, this subset of instances is the only
one for which the noSearch method is unable to find
the optimal solution in some cases. In particular, for
instances where shaving is not able to prove feasibil-
ity of the subproblem given the optimal master solu-
tion, it is (incorrectly) assumed that the subproblem is
infeasible, and the next master solution is considered
(increasing the number of iterations). On the other
hand, in our original method, search is able to recog-
nize the feasibility of the subproblem in these cases,
resulting in a smaller number of iterations.

Table 5 Mean Number of Iterations for heuristicOnly, noSearch,
noShaving, and Our Original Method for Each Value of Wu/Bl

/�

10 15 20

�Wu�/Bl 55.83 21.87 6.15 38.34 10.84 3.55 28.56 8.12 2.37

heuristicOnly 1.00 4.50 12�20 1.00 5.70 22�93 3.90 14�60 38�00
noSearch 1.00 3.60 11�30 1.00 5.70 22�58 3.20 14�10 36�50
noShaving 1.00 3.20 3�60 1.00 2.70 4�37 3.20 3�60 6�20

Original 1.00 3.20 11�30 1.00 5.70 22�58 3.20 14�10 36�50

We should also note that the noShaving method has
a smaller or equivalent number of iterations compared
with the other methods. This is because using search
to solve each subproblem often results in overall run
times of greater than 600 seconds after only a small
number of iterations.
The heuristicOnly method has the largest number of

iterations of the four methods for all values of �/	.
This is because the heuristic misses some feasible
solutions, and as a result, the method has to consider
more master solutions, increasing the total number of
iterations.

6.4. Summary
Overall, these results indicate, first, that the alter-
nating shaving procedure is an essential part of our
method, as it significantly reduces the run time re-
quired to prove the infeasibility of each infeasible
subproblem and, therefore, decreases the overall run
times of our method. In fact, without shaving, our
method would not have been able to solve a large pro-
portion of our problem instances to optimality. Addi-
tionally, shaving may also find a feasible solution in
a short amount of time if the heuristic is unable to
do so.
Second, we see that the heuristic is a helpful com-

ponent of our method, because, in most instances,
it allows us to quickly guarantee the feasibility of
the subproblem when the master problem solution is
optimal.
Search is also a useful component of our method,

since there are cases when the heuristic and shav-
ing are unable to find a feasible policy for the opti-
mal master solution. However, because the noSearch
method is able to guarantee optimality in most cases
(see Table 3), search is seldom used. When it is needed
for guaranteeing completeness, it usually results in
the instance not being solved within 600 seconds.

7. Further Work
In this paper, the operational question of when
worker switching should occur was addressed by
determining an a priori policy that ensures satisfac-
tory steady-state performance of the facility. How-
ever, switching of workers may be viewed as an
online decision. This observation raises the question
of whether the problem could be solved using, for
example, online stochastic combinatorial optimization
(OSCO) (Van Hentenryck and Bent 2006). Investiga-
tion of the applicability of both the modelling and
computational approaches from OSCO to the problem
of worker switching is one possible direction for fur-
ther work.
Future work may also focus on further integration

of queueing theory and constraint programming with
the goal of solving problems that have both a com-
plex combinatorial structure for which CP is known

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Terekhov, Beck, and Brown: CP Approach for Solving a Queueing Design and Control Problem
INFORMS Journal on Computing 21(4), pp. 549–561, © 2009 INFORMS 561

to work well, and a stochastic nature that can be effec-
tively modelled using queueing theory.

8. Conclusions
In this paper, a logic-based Benders’ decomposition-
based constraint programming method is proposed
for the problem of determining the optimal mix of
cross-trained and specialized workers in a retail facil-
ity given specific assumptions regarding the staffing
costs of these workers. This method is shown to per-
form well over a wide range of problem parameters.
In many cases, the cost of the optimal solution is
shown to deviate from both the solution in which
all workers are specialized and the solution in which
all workers are cross-trained. An examination of the
method used to solve the subproblem indicates that
all three of its components (the heuristic, the alternat-
ing shaving procedure, and the search) are important,
but that the effectiveness of our method is primarily
due to the shaving procedure’s ability to prove the
infeasibility of each infeasible subproblem quickly.
Because the problem discussed is a queueing design

and control problem, this paper demonstrates that
constraint programming may be a useful approach for
solving such problems. Thus, this work provides one
of the first links between queueing theory and CP.

Acknowledgments
This work has received support from the Science Founda-
tion Ireland under Grant 00/PI.1/C075, the Natural Sci-
ences and Engineering Research Council of Canada, Canada
Foundation for Innovation, and ILOG, SA. A preliminary
version of parts of this work has been previously published
(Terekhov et al. 2007).

References
Baptiste, P., P. Laborie, C. Le Pape, W. Nuijten. 2006. Constraint-

based scheduling and planning. F. Rossi, P. van Beek, T. Walsh,
eds. Handbook of Constraint Programming, Chapter 22. Elsevier,
Amsterdam, 761–799.

Batta, R., O. Berman, Q. Wang. 2007. Balancing staffing and switch-
ing costs in a service center with flexible servers. Eur. J. Oper.
Res. 177(2) 924–938.

Benders, J. F. 1962. Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik 4(1)
238–252.

Berman, O., R. C. Larson. 2004. A queueing control model for retail
services having backroom operations and cross-trained work-
ers. Comput. Oper. Res. 31(2) 201–222.

Berman, O., K. P. Sapna-Isotupa. 2005. Optimal control of servers
in front and back rooms with correlated work. IIE Trans. 37(2)
167–173.

Berman, O., J. Wang, K. P. Sapna. 2005. Optimal management
of cross-trained workers in services with negligible switching
costs. Eur. J. Oper. Res. 167(2) 349–369.

Brown, K. N., I. Miguel. 2006. Uncertainty and change. F. Rossi,
P. van Beek, T. Walsh, eds., Handbook of Constraint Programming,
Chapter 21. Elsevier, Amsterdam, 731–760.

Brusco, M. J. 2008. An exact algorithm for a workforce allocation
problem with application to an analysis of cross-training poli-
cies. IIE Trans. 40(5) 495–508.

Cezik, M. T., P. L’Ecuyer. 2008. Staffing multiskill call centers via
linear programming and simulation. Management Sci. 54(2)
310–323.

Chevalier, P., N. Tabordon. 2003. Overflow analysis and cross-
trained servers. Internat. J. Prod. Econom. 85(1) 47–60.

Demassey, S., C. Artigues, P. Michelon. 2005. Constraint-
propagation-based cutting planes: An application to the
resource-constrained project scheduling problem. INFORMS J.
Comput. 17(1) 52–65.

Fox, M. S. 1983. Constraint-directed search: A case study of job-
shop scheduling. Ph.D. thesis, CMU-RI-TR-85-7, Intelligent
Systems Laboratory, The Robotics Institute, Carnegie Mellon
University, Pittsburgh.

Gross, D., C. Harris. 1998. Fundamentals of Queueing Theory. John
Wiley & Sons, New York.

Hooker, J. N., G. Ottosson. 2003. Logic-based Benders’ decomposi-
tion. Math. Programming 96(1) 33–60.

Tadj, L., G. Choudhury. 2005. Optimal design and control of queues.
TOP 13(2) 359–412.

Tarim, S. A., I. Miguel. 2005. A hybrid Benders’ decomposition
method for solving stochastic constraint programs with lin-
ear recourse. B. Hnich, M. Carlsson, F. Fages, F. Rossi, eds.
Recent Advances in Constraints2 Joint ERCIM/CoLogNET Internat.
Workshop on Constraint Solving and Constraint Logic Program-
ming. Lecture Notes in Artificial Intelligence, Vol. 3978. Springer,
Heidelberg, Germany, 133–148.

Terekhov, D., J. C. Beck. 2008. A constraint programming approach
for solving a queueing control problem. J. Artificial Intelligence
Res. 32 123–167.

Terekhov, D., J. C. Beck. 2009. An extended queueing control model
for facilities with front room and back room operations and
mixed-skilled workers. Eur. J. Oper. Res. 198(1) 223–231.

Terekhov, D., J. C. Beck, K. N. Brown. 2007. Solving a stochas-
tic queueing design and control problem with constraint pro-
gramming. Proc. 22nd Conf. Artificial Intelligence �AAAI’07�,
Vancouver, Association for the Advancement of Artificial Intel-
ligence, Menlo Park, CA, 261–266.

van Dongen, M. R. C. 2006. Beyond singleton arc consistency. Proc.
17th Eur. Conf. Artificial Intelligence �ECAI’06�, Riva del Garda,
IOS Press, Amsterdam, 163–167.

Van Hentenryck, P., R. Bent. 2006. Online Stochastic Combinatorial
Optimization. MIT Press, Cambridge, MA.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

