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Abstract—Human activity recognition (HAR) has a wide range
of applications, such as monitoring ambulatory patients’ recov-
ery, workers for harmful movement patterns, or elderly popu-
lations for falls. These systems often operate in an environment
where battery lifespan, power consumption, and hence computa-
tional complexity, are of prime concern. This work explores three
methods for reducing the dimensionality of a HAR problem in
the context of an emergency first responders monitoring system.
We empirically estimate the accuracy of k-Nearest Neighbours,
Support Vector Machines, and Gradient Boosted Trees when
using different combinations of (A)ccelerometer, (G)yroscope and
(P)ressure sensors. We then apply Principal Component Analysis
for dimensionality reduction, and the Kruskal-Wallis test for
feature selection. Our results show that the best combination
is that which includes all three sensors (MAE: 3.6%), followed
by the A/G (MAE: 3.7%), and the A/P combination (MAE
4.3%): the same as that when using the accelerometer alone.
Moreover, our results show that the Kruskal-Wallis test can be
used to discard up to 50% of the features, and yet improve the
performance of classification algorithms.

I. INTRODUCTION

Human activity recognition (HAR) systems have a wide
range of applications, such as monitoring ambulatory patients,
workers for movement patterns associated with repetitive strain
injury (RSI), or elderly populations for dangerous falls [1]. A
substantial body of this work uses data obtained from wearable
inertial measurement units (IMUs), e.g., accelerometers, gyro-
scopes, and magnetometers, to train machine learning classi-
fication algorithms, such as Support Vector Machines (SVM)
or k-Nearest Neighbours (kNN), to discriminate among the
activities of interest [2]. In this framework, the classification
algorithm typically operates on a set of features that have been
extracted along a sliding window from a data-set of many
labelled trials of the activities of interest.

HAR systems often operate in constrained environments
where battery lifespan and power consumption are a prime
concern. In this context, it is important to reduce compu-
tational complexity—and hence power consumption—where
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possible. In this paper, we explore three different approaches
for reducing the dimensionality, and hence computational
complexity, of the HAR inference problem: sensor selection,
dimensionality reduction, and feature selection.

We estimate the accuracy of kNN, SVM, and Gradient
Boosted Trees (GBT) [3, ch. 10] when using 7 possible sensor
combinations. The best combination is then used in two more
experiments, in which unsupervised dimensionality reduction
via Principal Component Analysis (PCA), and supervised
feature selection via the Kruskal-Wallis (K-W) test are applied
to simplify the HAR inference problem. To our knowledge,
this is the first application of the K-W test for feature selection
in a HAR context. Using these data we show that a subject-
independent Mean Absolute Error (MAE) as low as 4.3% can
be achieved with just one sensor (or 40 features), and that a
simple feature selection, such as the K-W test, can be used to
discard 50% of the features and yet improve performance.

II. METHODS

In [4], we compared kNN, SVM and GBT using data
describing 17 human activities in the context of an emergency
first responders monitoring system [5] developed as part of
the European SAFESENS (Sensor Technologies for Enhanced
Safety and Security of Buildings and its Occupants) project.
The data-set consisted of 65 features which had been extracted
from acceleration and angular velocity signals collected by a
wearable IMU that was attached to the chest and equipped
with barometer, 3D accelerometer, and 3D gyroscope.

For this work, in addition to the accelerometer and gyro-
scope features described in [4], the data-set was enriched with
features extracted from the pressure signal. Because pressure is
directly related to altitude, the collected signal is bound to sep-
arate some activities with high accuracy at the place where the
data were collected—but the generalisation fails if the sensor is
moved to a different altitude. In order to avoid potential biases,
we first calculated the mean pressure over all samples of the
“standing” position in the data-set and subtracted it from the
pressure signal. Then, the pressure signal was subjected to the
same pre-processing and feature extraction—with exception
of the pairwise correlation features—procedure as the raw
gyroscope signal in [4].



Using these data, we conducted three experiments. In each,
we estimated the generalisation error for the three classi-
fiers using the algorithm parameters and estimation procedure
described in [4]. In the first experiment we compared the
predictive value of different sensor combinations by evaluat-
ing all possible combinations via leave-one-subject-out cross-
validation (LOSO CV). The best combination was then used
to run the second and third experiment, each of which eval-
uated (via LOSO CV) a different method for reducing the
dimensionality of the HAR inference problem. In one of them
we applied PCA for dimensionality reduction, retaining only
the number of Principal Components (PC) required to explain
10%, 30%, 50%, 70%, and 90% of the total variance. In the
other, the K-W test was applied for feature selection.

The K-W test is a non-parametric statistical test against the
null hypothesis that the tested samples were generated by the
same distribution. We leveraged the K-W test for supervised
feature selection by applying it to each of the features—which
had been partitioned into 17 disjoint samples according to the
target class for this purpose—in turn. Then, the features were
ranked according to the K-W test statistic, and the top 10th,
30th, 50th, 70th, and 90th percentile was retained as inputs
for the inference algorithm.

III. RESULTS & DISCUSSION

Tables I–III each list the MAE and its standard error
(SE)—calculated across the 11 folds of the LOSO CV and
subsequently averaged over the 17 target classes—as well as
the standard deviation (SD) among the target classes from one
of the three experiments. The MAE estimates (with precision
SE) the generalisation error we can expect on data from unseen
individuals, while the SD serves as a measure of how much the
MAE varies among the 17 target classes. Each of the entries
in these tables summarises a set of class-wise MAEs. Three
examples of these are shown in Table IV which lists class-wise
MAEs that resulted when using the K-W test to select feature
subsets of varying sizes as input for the GBT algorithm.

The results for each combination of the (A)ccelerometer,
(G)yroscope, and (P)ressure sensor are given in Table I. The
results from the PCA experiments are shown in Table II, where
the cumulative percentage of variance explained is given by
the first column and the corresponding number of components
(n) by the second. The results from our experiments with K-W
feature selection are given in Table III, where the percentile
that is being retained is given by the first column and the
corresponding number of features (n) by the second.

According to the results shown in Table I, the best com-
bination is indeed that which includes all three sensors (72
features), where the best performance (MAE: 3.6% ± 0.9%)
was achieved with the GBT algorithm. However, comparable
(MAE: 4.3% ± 1%) performance can be obtained using only
one sensor, namely the accelerometer; thus retaining 40 of
the 72 features and reducing the dimensionality by 44%. In
contrast, neither the gyroscope (25 features) nor the pressure
sensor (7 features) appears to be very useful on its own. A
particularly bad choice for a single-sensor HAR system is the

TABLE I
MAE (± SE) AND SD (ALL IN %) FOR ALL SENSOR COMBINATIONS

GBT SVM kNN
MAE SD MAE SD MAE SD

A G P 3.6 ± 0.9 2.3 3.8 ± 0.8 2.0 4.2 ± 0.8 2.6
A G 3.7 ± 0.9 2.2 3.9 ± 0.8 2.1 4.2 ± 0.8 2.5
A 4.3 ± 0.9 2.3 4.6 ± 0.9 2.2 5.0 ± 0.9 2.5
A P 4.3 ± 1.0 2.3 4.6 ± 1.0 2.2 5.0 ± 1.0 2.6
G P 5.8 ± 1.0 3.3 6.1 ± 1.0 2.7 6.4 ± 1.1 3.1
G 6.1 ± 1.0 2.9 6.5 ± 1.0 2.5 6.5 ± 1.0 2.9
P 10.4 ± 1.8 6.0 10.5 ± 1.2 4.9 10.5 ± 1.6 5.2

TABLE II
MAE (± SE) AND SD (ALL IN %) WHEN USING PCA

GBT SVM kNN
% n MAE SD MAE SD MAE SD

10 1 9.4 ± 1.1 3.9 9.5 ± 1.1 3.9 9.4 ± 1.1 3.8
30 3 8.0 ± 1.2 3.2 8.4 ± 1.1 3.2 8.1 ± 1.1 3.1
50 9 4.7 ± 0.9 2.7 5.0 ± 0.9 2.5 4.9 ± 1.0 2.6
70 21 4.5 ± 0.8 2.7 4.5 ± 0.8 2.5 4.7 ± 0.9 2.7
90 40 4.4 ± 0.8 2.6 4.1 ± 0.8 2.3 4.4 ± 0.8 2.6

TABLE III
MAE (± SE) AND SD (ALL IN %) WITH K-W FEATURE SELECTION

GBT SVM kNN
% n MAE SD MAE SD MAE SD

10 7 6.6 ± 1.0 2.8 7.1 ± 1.0 2.9 6.6 ± 1.0 2.8
30 21 4.8 ± 1.1 2.5 4.8 ± 0.9 2.6 5.2 ± 1.2 2.7
50 36 3.5 ± 0.9 2.1 3.9 ± 0.9 2.2 3.8 ± 0.8 2.2
70 50 3.5 ± 0.9 2.2 3.8 ± 0.9 2.2 3.7 ± 0.8 2.2
90 64 3.5 ± 0.8 2.3 3.7 ± 0.8 2.0 3.9 ± 0.8 2.4

pressure sensor, especially considering that a dummy model,
which makes predictions solely based on the class proportions,
results in an MAE of 10.3%. The best two-sensor combination
is clearly that of accelerometer and gyroscope (A G), whose
performance is very close to that of the A G P combination,
while using only 65 (86%) of the 72 features. Furthermore,
while differences among classifiers that are based on the same
sensor combination are well below any of their underlying
estimates’ precision, there is a visible gap separating combi-
nations that include the accelerometer from those that do not.

The results from our PCA experiments in Table II show
that it can maintain an MAE below 5%, while reducing the
dimensionality of the three-sensor (A G P) inference problem
beyond what is feasible by simply discarding sensors. An
average MAE of 4.7% is obtained with only 9 PCs (explaining
10% of the total variance), but even retaining as many as 40
PCs (explaining 90% of the total variance) the performance
does not approach that of the A G P, or even the A G (65
features), combination in Table I.

As the K-W feature selection experiments in Table III
show, we can improve, albeit only marginally, on the best
combination from Table I if we retain as few as half of the
features, thereby halving the inference problem’s dimension-
ality from 72 to 36 features and—assuming the algorithm’s



TABLE IV
MAE (± SE) FOR GBT WITH K-W, RETAINING DIFFERENT PERCENTILES

Percentile 30 50 70

All 4s 6.0 ± 2.4 6.0 ± 2.4 6.0 ± 2.4
Crawl H & K 2.3 ± 0.9 1.7 ± 0.5 1.6 ± 0.5
Crawl M 2.7 ± 0.8 2.0 ± 0.5 1.8 ± 0.5
Crouch 5.2 ± 0.8 5.1 ± 0.8 5.2 ± 0.8
Duck walk 1.6 ± 0.5 1.5 ± 0.5 1.2 ± 0.5
Fall 0.8 ± 0.2 0.8 ± 0.2 0.7 ± 0.2
Jump off 1.9 ± 0.5 1.7 ± 0.5 1.7 ± 0.5
Jump on 1.9 ± 0.4 1.7 ± 0.5 1.6 ± 0.5
Lie 4.8 ± 2.4 4.3 ± 2.4 4.3 ± 2.4
Run 7.1 ± 1.6 3.6 ± 1.1 3.3 ± 1.0
Run down 6.8 ± 0.9 3.7 ± 0.8 3.8 ± 0.7
Run up 7.7 ± 1.4 2.1 ± 0.6 2.0 ± 0.5
Sit 7.1 ± 1.3 6.4 ± 1.2 6.5 ± 1.2
Stand 8.6 ± 1.6 8.4 ± 1.4 8.5 ± 1.4
Walk 3.9 ± 0.8 3.0 ± 0.7 3.1 ± 0.7
Walk down 7.8 ± 1.0 4.7 ± 0.7 4.7 ± 0.7
Walk up 5.5 ± 0.7 2.9 ± 0.4 2.8 ± 0.4

Average 4.8 ± 1.1 3.5 ± 0.9 3.5 ± 0.9

time complexity is linear or worse in the number of features—
at least halving the run-time. If we decrease the number
of features further, we observe deteriorating performance, as
expected, for all three algorithms—most notable in the case of
kNN—and we might expect that moving in the other direction
and increasing the number of features would have the opposite
effect, namely to improve performance. However, our data
show that this is not necessarily the case. While SVM does
indeed improve its performance marginally—starting with an
MAE of 3.9% when using 50%, to 3.8% when using 70%,
to 3.7% when using 90% of the features—GBT, instead,
maintains a stable MAE of 3.5%, regardless if 50%, 70%, or
80% of the features are being retained; and kNN achieves its
best performance when using 70% of the features—if passed
a larger percentage, its performance begins to deteriorate.

The class-wise MAEs shown in Table IV further illustrate
what happens when we increase the percentile of features that
is being retained, using the GBT results as an example. What
stands out is that the reduction of the average MAE that can be
seen when moving from the 30th to the 50th percentile can be
attributed mainly to the significantly reduced MAE from the
three running (“Run”, “Run down”, and “Run up”), as well as
the “Walk down” and “Walk up” activities, and—to a much
lesser extent—the “Walk” (horizontally) activity. This means
that at least some of the features that are in the 50th, but not in
the 30th percentile, are useful for discriminating among these
activities. It also means that there is little benefit from using
more than 30% of the features for applications, such as fall
detection, where fine-grained distinctions like these can be of
little practical concern or impact.

We conclude our discussion with a summary of the K-W
ranked percentiles illustrated in Fig. 1. The 10th percentile,
amounting to 10% of the accelerometer (Acc), and 12% of the
gyroscope (Gyro) features, consists of the SD of the x and y,
and the inter-quartile range (IQR) of the Acc y axes; as well as
the SD of the x and y, and IQR of the Gyro x axes. The 30th
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Fig. 1. Number of features per sensor and K-W percentile

percentile adds IQR, SD, and signal magnitude area features
amounting to 27% of the Acc, and 18% of the Gyro features
not present in the 10th percentile. The 50th percentile contains
all types of features that had been extracted, except pairwise
correlations, adding 38% of the Acc, 11% of the Gyro, and
68% of the pressure features not present in the 30th percentile.
The 70th percentile adds 25% of the Acc, and 63% of the Gyro
features not present in the 50th percentile. The 90th percentile
adds what are mostly peak power frequency, spectral entropy,
and pairwise correlation features, amounting to 58% of the
Acc, 100% of the Gyro, and 50% of the pressure features that
were not present in the 70th percentile.

IV. CONCLUSION

We showed that the single best sensor (among the three
evaluated) for HAR is the accelerometer, resulting in an MAE
of 4.3% ± 0.9% when used with the GBT algorithm. At the
other extreme we found the pressure sensor, which resulted in
an MAE of 10.4%, no better than what we would get when
merely guessing the proportion of activities (classes) in the
data-set. The sensor combination that achieved the best results
was that with accelerometer, gyroscope, and pressure, with an
MAE of 3.6% ± 0.9%, closely followed by the accelerom-
eter/gyroscope combination with an MAE of 3.7% ± 0.9%.
Moreover, our results showed that a simple univariate feature
selection method such as the Kruskal-Wallis test can be used
to reduce the complexity of a HAR inference problem by as
much as 50% while not only maintaining, but even improving
the performance of HAR inference algorithms.
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