
Minimizing the Driving Distance in Ride Sharing Systems

Vincent Armant and Kenneth N. Brown

Abstract—
Reducing the number of cars driving on roads is
an important objective for smart sustainable cities,
for reducing emissions and improving traffic flow.
To assist with this aim, ride-sharing systems match
intending drivers with prospective passengers. The
matching problem becomes more complex when
drivers can pick-up and drop-off several passengers,
both drivers and passengers have to travel within
a time-window and are willing to switch roles. We
present a mixed integer programming model for this
switching rider problem, with the objective of min-
imizing the total distance driven by the population.
We exhibit how the potential saving in kilometers
increases as the driver flexibility and the density of
the distribution of participants increases. Further, we
show how breaking symmetries among the switchers
improves performance, gaining over an order of
magnitude speed up in solving time, and allowing
approximately 50% more participants to be handled
in the same computation time.

Reducing pollution and carbon emissions while maintain-

ing the population mobility is an important objective for

sustainable societies. Particular attention is being paid to

reducing the total distance driven by motor vehicles, and to

reducing the number of those vehicles on the roads in cities

and on main through routes. One approach to achieving this

that is becoming more popular is the development of ride-

sharing schemes. In such schemes, a driver advertises an in-

tended trip, while prospective passengers make requests for

rides in vehicles between specific destinations. The agency

then attempts to match passengers to drivers. Each successful

match takes one vehicle off the road. Such schemes become

more successful as the number of participants increases.

In [7] this is described as a chicken-and-egg problem,

where both drivers and passengers agree to participapte

only if there are enough participants in the other role. [2]

investigates an extension of this general problem where a

set of shifters can take the role of either driver or passenger.

In this context, a ride-sharing solution must specify a clear

role for each shifter, and then match riders to drivers.

Since one of the aims is to reduce the total driven

distance, the problem is one of optimisation, converting

shifters with longer routes into passengers, and allocating

rides for as many passengers as possible. The problem of

computing an optimal matching to establish a ride-share

plan is challenging [3]. It becomes harder as the number of

shifters increases. Similarly, allowing drivers to pick up and

drop off multiple passengers on the same journey increases

the complexity.

Several reformulations of the ride-sharing problem to

a combinatorial problem have been proposed. [8] extends

the initial-commitment decision problem for tackling the

ride-sharing as a collaborative planning problem. The ex-

periments are conducted on a dataset of real-world trips,

and show the efficiency in terms of saved miles, cost and

time. That work considers a fixed number of pick-ups and

drop-offs per driver and includes shifters in the model. In

our experiments, we show that removing these limitations

increases the efficiency of the system. [9] focusses on the

satisfaction of user preferences to enhance the ride sharing

user experience. Furthermore, their system is able to trade-

off the minimization of vehicle kilometres travelled with

the overall probability of successful ride-shares. However,

only few dozen users are modelled in their experiments.

[3] has developed an optimization based approach aimed at

minimizing the total driving distance incurred by users and

their individual travel cost. Their system is able to build an

efficient ride share plan for a large number of users on short

time scales. They also investigate the possibility for users to

change role. However, drivers are only allowed to make a

single pick-up and a single drop-off. In addition, their exper-

iments, based on a simulation of ride-sharing announcements

from metropolitan Atlanta, show good results when the role

of each user is fixed. In this case the ride-sharing problem

returns to a polynomial bipartite graph matching problem

[6]. [5] proposes a multi-hop ride-sharing system where

prospective riders can share a ride with several drivers to

reach their destination. This approach, based on efficient

techniques for shortest path finding, scales with the number

of trip announcements. It does not model time windows or

the possibility to change role.

In this study, we propose a mixed integer programming

formulation of the ride-sharing problem with shifters, where

drivers are allowed to multiple pick-ups and drop-offs and

all users specify a time window. To tackle the combinatorial

issue, we introduce two optimisation techniques to our

model: linearization and symmetry breaking. We evaluate

our methods on randomly generated problems created from

real map data. We show that adding symmetry breaking

constraints offers an order of magnitude improvement in

runtime over the initial model. Furthermore, from optimising

ride sharing, we show benefits for sustainability and we

exhibit the impact on the metric of different concentrations

of users in space and time.

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.91

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.91

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.91

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.91

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.91

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.91

569

2014 IEEE 26th International Conference on Tools with Artificial Intelligence

1082-3409/14 $31.00 © 2014 IEEE

DOI 10.1109/ICTAI.2014.91

568

PROBLEM DESCRIPTION

Our intention is to model ride-sharing for daily commut-

ing scenarios, and the aim is to match riders to drivers,

satisfying car capacities and individual trip constraints, while

minimizing the total driven distance. Drivers and riders have

some flexibility in negotiating specific pick-up and drop-off

locations, thus, rather than assume each user has a unique

starting point and unique a destination, as is standard in

dial-a-ride problems [4], trips are initially arranged based

on a smaller set of standard locations, representing small

towns, districts or main junctions in the road network.

Many users may thus share the same origin or destination.

We assume travel times between all pairs of locations are

known, and we assume all drivers will use the same route

between a given pair. Similarly, we assume time windows

are based on standard intervals e.g. 15 minutes, and users

will specify their latest arrival time at that granularity. A

driver’s trip offer is specified as a route from start to finish,

a time window of earliest departure and latest arrival, and

the number of available seats for passengers. A rider’s trip

request specifies a start location and destination and a time

window. Some drivers (called shifters) are flexible, and are

willing to be selected as riders. Shifters specify both a trip

offer and a trip request. We assume a driver will definitely

drive, regardless of whether or not match is made; a shifter

will definitely travel, and thus will drive if not selected as

a passenger and no rider is matched; a rider who is not

offered a match may drive on their own, outside the system,

with a given probability, and otherwise they will take public

transport. Each driver that is allocated one or more riders

must be given a departure time and an arrival time at each

point on the route, such that the time gap between any pair

of locations is not less than the known travel times. For a

rider to be assigned to a driver, the rider’s start and finish

locations must be on the drivers route in the right order,

and the driver’s times must satisfy the rider’s time window.

Multiple riders can be allocated to the same driver, as long

as the number of passengers travelling between any pair of

locations on the route does not exceed the available number

of seats. If a shifter is assigned as a passenger for another

driver, then the shifter does not drive, and no rider can be

assigned to the shifter. Similarly, if a rider is assigned as

a passenger on the shifter’s trip, then the shifter cannot be

assigned as a passenger. A driver is served when at least

one rider is assigned to the driver’s trip; a rider is served

when he or she is assigned to a trip. A solution to the ride

sharing problem is then an assignment of a clear role to

shifters (driver or rider) and a matching of drivers to riders

that satisfies the above constraints. An optimal solution is

one that minimizes the total driven distance - that is, the sum

of the route distance for drivers, for shifters that are selected

to be drivers, and for the fixed proportion of unserved riders.

Mixed Integer Programming Formulation

We model the ride-sharing participants as follows:

User notation:
• D = {di, 1 ≤ i ≤ m} represents the finite set of

possible drivers.

• R = {rj , 0 ≤ j ≤ n} represents the finite set of

possible riders.

• S = D ∩ R represents the finite set of shifters (i.e.,

drivers or riders that are willing to change role).

• U = D ∪R represents the finite set of users.

Location notation:
• V = {vk, 1 ≤ k ≤ p} represents the set of user

locations.

• vsu is the departure location of u ∈ U .

• veu is the arrival location of u ∈ U .

• πd represents the preferred path (ordered list of loca-

tions) of d ∈ D.

• predπd
(v) denotes the predecessor of v in the path πd.

• startsπd
(v) denotes the set of riders that can start from

v ∈ πd.

• endsπd
(v) denotes the set of riders that can end at v ∈

πd.

Time windows, distance and car capacity notation:
• etu represents the earliest departure time of u.

• ltu represents the latest arrival time of u.

• stv,v′ denotes the minimum time from v to v′.
• dv,v′ denotes the distance corresponding to the mini-

mum time from v to v′.
• qd represents the car capacity of d ∈ D.

Decision Variables

• yd,r represents a matching between a driver d ∈ D and

a rider r ∈ R, if yd,r = 1 d and r share a ride, yd,r = 0
otherwise.

• td,v represents the departure time of the driver d from

the location v.

Auxiliary Variables

• xs represents the role of a shifter s ∈ S s.t. xs = 1 iff s
is a driver, xs = 0 otherwise. The value of xs entirely

depends on the ride sharing variables ys,r and yd,s.

• zr denotes a served rider r ∈ R \ S s.t. zr = 1 iff r
shares a ride, zr = 0 otherwise. The value of xs entirely

depends on the ride sharing variables yd,r, ∀d ∈ D.

• od,v denotes the car occupancy of driver d ∈ D when

leaving the location v ∈ V . It also depends on the ride

sharing variables yd,r, ∀d ∈ D.

We use the logical operators implication (⇒) and

equivalence (⇔) to model some constraints. Note that both

operators are provided in standard tools - e.g., CPLEX. In

the next section, we will discuss how to linearize those

constraints.

570570570570570570570570569

Our objective is to minimize:

Σ
s∈S

xs.dvss,ves + α Σ
r∈R\S

(1− zr).dvsr,ver (1)

subject to:

Σ
d∈D,d �=r

yd,r ≤ 1, ∀r ∈ R (2)

(Σ
d∈D,s�=d

yd,s = 1)⇔ xs = 0, ∀s ∈ S (3)

(Σ
r∈R,s�=r

ys,r ≥ 1)⇒ xs = 1, ∀s ∈ S (4)

(Σ
d∈D,r �=d

yd,r = 1)⇔ zr = 1, ∀s ∈ R \ S (5)

od,v = od,v′ + Σyd,r
r∈startsπd

(v)

− Σyd,r′
r′∈endsπd

(v)

,

∀d ∈ D, ∀v ∈ V
(6)

yd,r ⇒ etr ≤ td,vsr , ∀d ∈ D, ∀r ∈ R, d
= r (7)

yd,r ⇒ td,ver ≤ ltr, ∀d ∈ D, ∀r ∈ R, d
= r (8)

td,v + stv,v′ ≤ td,v′ , ∀d ∈ D, ∀v = predπd
(v′) (9)

yr,d ∈ {0, 1}, od,v ∈ [0, qd], td,v ∈ [etd, ltd] (10)

The aim is to minimize the total driven distance (1). The

objective only represents the shifters and the unserved riders,

since the pure drivers will contribute the same distance for

all feasible solutions. α is the proportion of unserved riders

that use their cars. The constraints (2) force each rider to be

a passenger of at most one driver. A shifter assigned to one

driver as a passenger is a rider, otherwise a driver (3). A

shifter that is assigned a passenger, then it must be a driver

(4). Note that this is an implication, and so a shifter with

no passengers may still drive. A rider is served if he shares

a trip with a driver (5). When a driver leaves a location its

car occupancy is equal to the difference between picked up

and dropped off passengers plus the car occupancy of the

previously visited location (6). A driver leaves a passenger’s

location not before the passenger’s earliest departure time

(7). A driver visits the passenger’s destination before the

passenger’s latest arrival time (8). The time spent between

two consecutive locations on a path is not less than the

minimum time to travel between the two locations (9). In

the experiments, to reduce the size of the model, we only

constrained drivers and rider for which the intersection of

time-windows allow feasible rides.

Our first potential improvement consists of linearizing all

the constraints in the previous model that contain logical

operators. Consider constraints (3). Given two boolean vari-

ables or two constraints c1 and c2, c1 ⇔ c2 can be rewritten

as c1 = c2. constraints (3) can be rewritten as the following

formula:

Σ
d∈D,s�=d

yd,s = 1− xs, ∀s ∈ S (11)

Similarly, constraints (5) can be rewritten as:

Σ
d∈D,r �=d

yd,r = zr, ∀r ∈ R \ S (12)

To linearize the set of constraints (4), we use the fact that

given two boolean variables or two constraints c1 and c2,

c1 ⇒ c2 can be rewritten as c1 ≤ c2. Thus, constraints (4)

can be rewritten introducing a reified variable vs s.t.

vs = Σ
r∈R,s�=r

ys,r ≥ 1 ∀s ∈ S. (13)

vs ≤ xs, ∀s ∈ S (14)

Without the insertion of the new variable vs, constraints (4)

can also be rewritten using a big integer M greater than any

variable upper bound.

Σ
r∈R,s�=r

ys,r ≤M × xs ∀s ∈ S (15)

Using the above concepts, constraints (7) can be rewritten

as follows:

(yd,r × etr) ≤ td,vsr , ∀d ∈ D, ∀r ∈ R, d
= r (16)

Similarly constraints (8) can be replaced by the following:

(M − td,ver) ≥ (M − ltr)× yd,r,

∀d ∈ D, ∀r ∈ R, d
= r
(17)

In the last constraint, replacing (8) with (−td,ver ≥ −ltr ×
yd,r) reformulates the implication when yd,r = 1 but

enforces td,ver = 0 when yd,r = 0. To let td,ver vary when

yd,r = 0, we introduce M in both sided of the inequality.

In the section Experiments, we compare the efficiency of

the basic model and the linearized models for solving ride-

sharing problems.

BREAKING SYMMETRIES BETWEEN POSSIBLE

PASSENGERS

Breaking symmetries is a powerful technique that has

been successfully applied for tackling the complexity issue

of many challenging problems. A symmetry breaking con-

straint among a set of variables aims to filter the search

space explored by an algorithm. It avoids the exploration

of branches that lead to solutions for which it suffices to

permute values to obtain a symmetrical assignment. For

example, in our ride-sharing setting, consider two shifters

s1 and s2 having the same trip announcement i.e., same

departure, same arrival, same time window. The only case

that can be filtered without obstructing the search of the

optimal ride-sharing plan is when s1 or s2 have a distinct

role. Indeed, for the assignment of shifters we have 3

possibilities.

1) xs1 = 1, xs2 = 1, both shifters are drivers. This

case cannot be filtered, since the optimal solution may

require s1 and s2 to drive.

2) xs1 = 0, xs2 = 0 both shifters are riders. Similarly,

this case cannot be filtered, since the optimal solution

may require s1 and s2 to ride.

571571571571571571571571570

3) (xs1 = 0 and xs2 = 1) or (xs1 = 1 and xs2 = 0), one

of the shifters is a rider and the other one is a driver.

Since we assume that drivers follow the same route,

each set of passengers picked up by s1 in a solution

where s1 is driver will be able to be picked-up in

a symmetric solution where s2 is a driver. Similarly,

since s1 and s2 share the same trip announcement,

each driver sharing a ride with s1, in a solution where

s1 is a rider, will be able to share his ride with s2 in

a symmetric solution where s2 is a rider.

More formally, to define the set of symmetry breaking con-

straints added to the basic ride-sharing model, we introduce

the following notation:

Definition 1: Two users ui and uj share the same trip

announcement α(ui) = α(uj) if:

• vsui = vsuj , ui and uj share the same departure.

• veui = veuj , ui and uj share the same arrival location.

• etui
= etuj

, ui and uj have the same earliest departure

time.

• ltui
= ltuj

, ui and uj have the same latest arrival time.

• if ui, uj ∈ D2 then πui = πuj

To avoid the computation of symmetrical solutions, we con-

sider an ordered set of possible riders (resp. drivers) sharing

the same announcement. The ordered sets of riders (resp.

drivers) can be seen as a queue of riders where the rider

with highest priority in the queue is served first. We denote

by A = {a1, ..., an} the set of different announcements and

Ra = {r ∈ R|a = α(r)} the ordered set of possible riders

sharing the announcement a s.t. R =
⋃

a∈A Ra. We partition

Ra in two ordered sets: Sa, the set of shifters and, PRa, the

set of pure riders. Si
a (resp. PRi

a) denotes the ith shifter in

Sa (resp. PRa). Using this notation we can formulate the

first set of symmetry breaking constraints between shifter

roles sharing the same trip announcement.

xSi
a
≤ xSi+1

a
, ∀a, ∀i ∈ [1..|Sa|[(18)

These last symmetry breaking constraints avoid the explo-

ration of the search space where the shifter Si
a drives (i.e.,

xSi
a
= 1) and the shifter Si+1

a is a rider xSi+1
a

= 0. The

remaining possibilities are explored. Similarly, if two (pure)

riders ρpra (i) and ρpra (i) share the same trip announcement,

we can avoid the exploration of solutions where one of them

is served and the other is not.

zPRi
a
≥ zPRi+1

a
, ∀a, ∀i ∈ [1..|PRa|[(19)

Note that, the shorter the symmetry breaking constraint, the

more efficient is the filtering on the search space. Suppose

we want to solve a problem with n variables. Without

considering the problem encoding, when the size of the

domain of each variable is d, for each non intersecting

symmetry constraint, we potentially filter dn−2 paths from

the maximal search space of size dn if the symmetric-

variables are in the top of the search tree. In practice, the

problem encoding, the search heuristic, the bound updates,

and the cuts discovery prevent us to explore all the potential

search space. Nevertheless, adding a small number of short

symmetry breaking constraints to a model can significantly

speed up the search. We show in our experiments that

this last remark remains valid in the case of ride-sharing

problem.

SIMULATION OF RIDE-SHARING

To evaluate the efficiency of our approach, we generate

sets of random instances of ride-sharing problems. Our

instance generator takes as input the main roads parsed from

the Open Street Map of Dublin area, a number of locations

|V |, a number of users |U |, a percentage of shifters among

the users |S|/|U |, and a rush-hour time-window between 6

and 12 am. V represents the l closest towns to Dublin that

had a node tag townhall in the OSM file. User trips are

chosen among these towns. The number of users represents

the number of announcements received by the ride-sharing

system i.e., driver or shifter trip-offers, rider trip requests.

The percentage of shifters represents the proportion of users

willing to change role. The rush-hour time window varies

from 0 to 5 hours, the latest arrival of 80% of the user

announcements are uniformly distributed within the rush-

hour time window. The rush-hour time basically represents

the arrival time at work in the morning. For each type of user,

a generated announcement describes: (i) start and arrival

locations, (ii) the earliest departure and the latest arrival at

destination, (iii) the fastest path for a potential driver. To

generate realistic trip announcements, we select and rank the

|V | towns surrounding Dublin having the greatest number

of public transport stations tagged in the OSM file. For

each announcement, the start location and destination of the

trip is randomly chosen. We give higher priority to towns

surrounded by the most public transport facilities. Implicitly,

we consider that ride sharing is an attractive alternative to

public transportation that tackles congestion issues in big

agglomeration. Once destinations are chosen, we determine

the size of user trip time windows to represent 130% of

the minimum time from the user trip departure to the user

trip destination. The user trip latest arrival is set up to at a

particular time. To set up a user latest arrival, the generator

split each hour in uniform intervals, then we calculate the

departure time accordingly. For example, for a generated trip

announcement from New Bridge to Dublin, the minimum

time is 43 mins, we set up the time window size to 56 mins

(43∗130%). If we consider users arrive at destination at any

quarter and we set up the latest arrival to 10:15 am for the

trip, the user departure is set up to 9:19 am.

EXPERIMENTS

To solve the problem instances and compare the different

MIP formulations, we use CPLEX [1]. More precisely, we

parametrize the solver to run a variant of Branch And Cut

572572572572572572572572571

Algorithm with a dynamic search heuristic. In the solving

process, CPLEX interleaves the solving of continuous re-

laxation, the addition of cuts to remove infeasible regions

from the search space and the branching on fractional-

valued variables which results in two new sub-problems

with restrictive bounds on the branching variables. In our

experiments, we notice that configuring CPLEX with a

dynamic search heuristic gives better performance that the

default Branch And Cut algorithm. In this study, we use

this solver as a black box for comparing the efficiency of

our different models. We run our experiment on a machine

with 2 Processors of 2.66Ghz, 12Gb of memory and, 8

cores. Each point drawn in the following figure represents

the average over 20 runs. We impose a time limit of 10

minutes. For parameters that are not being varied, we use

the following values:

• number of locations: 15

• number of users: 600

• percent of shifters: 80%

• rush-hour time window size: 2 hours

• percent of pure Rider 10%

• percent of pure Driver 10%

• user time window size 1.30% minimum time from

departure to destination.

For each set of experiments, we vary one of the first four

parameters above.

Scalability and solving time

When evaluating the scalability of the different encodings,

we gradually increase the size of the problem. We stop the

evaluation of an encoding after 10 successive executions

without verifying the optimal solution within the time limit.

cm

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700 800 900 1000

so
lut

ion
Ti

m
e

users

MinimizeKmIlpLinearized
MinimizeKmIlpSymBreakPossiblePassengers

MinimizeKmIlp

Figure 1: Number of users vs CPU time (in sec)

In Figure 1, we plot the solving time of the different

models as we increase the number of users. For up to

400 users, the optimal ride-plan is found almost instanta-

neously. For 500 hundred users, the basic MIP model and

the linearized version quickly increase to 150 seconds, and

some executions hit the time limit (Figure 2). The symmetry

breaking model solves all instances, averaging less than 5

seconds, representing an improvement by a factor of over 30.

As the number of users increases further, the first two models

repeatedly hit the time limit, while the symmetry breaking

model increases more gracefully, requiring less than 240

seconds on average for up to 800 users.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

pe
rc

en
tO

pt
im

alS
ols

users

MinimizeKmIlpLinearized
MinimizeKmIlpSymBreakPossiblePassengers

MinimizeKmIlp

Figure 2: Number of Users vs Percent of Optimal Solutions Found
in 10 mins

In Figure 3, we vary the proportion of shifters in the

population (size = 600). As that proportion increases to 0.8,

the first two models rapidly increase in solving time, and

start to hit the time limit. The symmetry breaking model is

able to solve to optimality all problems where all users are

potential shifters, with an average solving time of less than

200 seconds.

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

so
lut

ion
Ti

m
e

percentShifters

MinimizeKmIlpLinearized
MinimizeKmIlpSymBreakPossiblePassengers

MinimizeKmIlp

Figure 3: Percent of Shifters vs CPU time (in sec)

In Figures 4 and 5, we measure the impact of two other

problem parameters on solving time (for the symmetry

breaking model). In 4 we vary the length of the rush hour for

a fixed number of users over the half-day. If the rush hour

is 5 hours long, then there is essentially no rush hour, and

we have a uniform distribution of the number of participants

over time; if the window is 1 hour long, then the rush hour is

concentrated, and we have a high number of participants all

573573573573573573573573572

wanting to travel at the same time. We see that concentrated

rush hours significantly increase solving time, due to the

increase in the space of possible matches.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5

so
lut

ion
Ti

m
e

rushHourTimeWindow

MinimizeKmIlpSymBreakPossiblePassengers

Figure 4: rush-hour vs CPU time (in sec)

In Figure 5, we vary the number of locations, again

for a fixed number of users in the population. We start

by including the 5 locations closest to Dublin, gradually

extending the area at each step. As the number of locations

increases (without increasing the number of users), there are

fewer options for ride sharing, and so solving time is faster.

The spike at 15 locations is an artifact of our underlying

data - the locations ranked 11 to 15 are almost all along the

same road corridor, and so there is a large increase in the

combinatorial options.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60

so
lut

ion
Ti

m
e

locations

MinimizeKmIlpSymBreakPossiblePassengers

Figure 5: Number of Location Vs CPU time (in sec)

In Figure 6, we analyse the number of constraints gen-

erated by an encoding with symmetry breaking when the

number of intervals per hour increases for 800 users. We

recall that the number of intervals per hour corresponds

to the number of possible arrival times in one hour. For

example, when the number of intervals per hour is 4, we

consider that the latest arrival time of a user can be at any

quarter. The number of constraints starts approximately at

60000 for 1 interval per hour and increases linearly with

a factor of 1.6. The increasing number of constraints is

explained by the increasing number of overlapping time

windows of users. It is easy to understand that if the average

time size is less than one hour and if user latest arrivals are

set up every hour, there will be no ride sharing possibility

and then no constraints between users arriving at 9:00 and

the user arriving at 10:00. When the time between the

different latest arrivals decreases, the possibility of ride

sharing between users increases accordingly.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 2 4 6 8 10 12 14 16

nb
Co

ns
tra

int
s

nbIntervalsPerHour

MinimizeKmIlpSymBreakPossiblePassengers

Figure 6: Number of Intervals Per Hour Vs nb of Constraint

In Figure 7 we measure the percentage of symmetry

constraints among all the constraints. The percentage of

symmetries is extremely low even for a unique possibility of

latest arrival per hour (0.01%), and gradually decreases with

the number of intervals. Surprisingly, since the percentage

of symmetries is very low, but as expected it reaches a peak

when the the intervals between two successive arrival times

is larger.

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 2 4 6 8 10 12 14 16

pr
ctS

ym
Co

ns
tra

int
s

nbIntervalsPerHour

MinimizeKmIlpSymBreakPossiblePassengers

Figure 7: Number of Intervals Per Hour Vs Percentage Symmetries

In Figure 8 we compare the solving time of two models

when the number of intervals varies and the instances are

solved before the time limit. The model without symmetry

breaking shows a peak when the size of the intervals are

larger and there exist more similar trips between users. Both

of the models perform a fast solving for instances with small

intervals per hour.

574574574574574574574574573

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16

so
lut

ion
Ti

m
e

nbIntervalsPerHour

MinimizeKmIlpSymBreakPossiblePassengers
MinimizeKmIlp

Figure 8: Number of Intervals Per Hour Vs CPU time (in sec)

Sustainability and efficiency of ride sharing

We now measure the quality of the ride sharing solutions,

in terms of kilometres saved and the proportion of users

being served, as we vary the problem parameters. Note

that serving as many users as possible is an important

outcome, to encourage continued participation in the ride-

sharing scheme. In Figures 9 and 10, we measure the quality

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
tS

av
ed

Km

users

MinimizeKmIlpSymBreakPossiblePassengers

Figure 9: Nb users vs Percent Saved Km

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
tU

nS
ha

rin
gU

se
rs

users

MinimizeKmIlpSymBreakPossiblePassengers

Figure 10: Nb users vs Percent Unserved User

of the Ride-Share plan when varying the number of users.

For small population (size 100), we save on average, 25%

of the driving distance. This rises steadily, beginning to

stabilize around 60% as we increase to a population of 1000.

In Figure 10, the proportion of unserved users as the inverse

trend - for small populations, fewer than half the participants

receive a match, while for the large populations, over 80%

of participants receive a match.

In Figures 11 and 12, we vary the number of locations (as

for Figure 5). We observe a roughly linear trend - the more

heavily concentrated the population is, the more kilometres

can be saved and the more participants receive a match.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 10 20 30 40 50 60

Pe
rc

en
tS

av
ed

Km

locations

MinimizeKmIlpSymBreakPossiblePassengers

Figure 11: Nb locations vs Percent Saved Km

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 10 20 30 40 50 60

Pe
rc

en
tU

nS
ha

rin
gU

se
rs

locations

MinimizeKmIlpSymBreakPossiblePassengers

Figure 12: Nb locations vs Percent Unserved User

In Figure 13 , we vary the proportion of shifters. As

expected, the more flexibility we have to assign participants

to either role, the more kilometres we save and the more

participants receive a match.

Finally, in Figures 14 and 15, we again vary the length

of the rush hour for a fixed population, and again we

observe that a more concentrated rush hour (and thus more

participants seeking to travel at the same time) leads to

greater savings in driving distance and to higher number

of matched participants.

575575575575575575575575574

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
tS

av
ed

Km

percentShifters

MinimizeKmIlpSymBreakPossiblePassengers

Figure 13: Percent of Shifters vs Percent Saved Km

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 1 1.5 2 2.5 3 3.5 4 4.5 5

Pe
rc

en
tS

av
ed

Km

rushHourTimeWindow

MinimizeKmIlpSymBreakPossiblePassengers

Figure 14: Rush-Hour vs Percent Saved Km

CONCLUSION AND PERSPECTIVES

Reducing the total driving distance and the number of cars

on the road is an important societal objective. Ride sharing

systems are an increasingly popular way of achieving these

objectives. The associated ride-sharing problem is one of

matching prospective passengers to drivers, to ensure trip

constraints are satisfied, while minimizing the total driven

distance. The complexity of the problem increases when

participants have time windows, and where some drivers are

shifters who are willing to change role to become a passen-

ger. We present three mixed integer programming models

for this problem of flexible ride sharing systems. The third

model uses symmetry breaking on the shifters to reduce the

search space. We show that the symmetry breaking model

outperforms the other two, achieving an order of magnitude

speed up, and allowing 50% more participants to be handled

in the same computation time. We also demonstrate the

influence of different problem parameters on the societal

objective, showing, as expected, that a higher proportion of

shifters and a higher concentration of users allows us to

save significantly more kilometres. Future work will focus

on problems where drivers are willing to change routes, and

where participant preferences over possible matches must be

included in the objective.

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 1 1.5 2 2.5 3 3.5 4 4.5 5

Pe
rc

en
tU

nS
ha

rin
gU

se
rs

rushHourTimeWindow

MinimizeKmIlpSymBreakPossiblePassengers

Figure 15: Rush-Hour vs Percent Unserved User

REFERENCES

[1] Ibm ilog cplex optimization studio v12.6, 2014.

[2] Niels Agatz, Alan Erera, Martin Savelsbergh, and Xing Wang.
Optimization for dynamic ride-sharing: A review. European
Journal of Operational Research, 223(2):295 – 303, 2012.

[3] Niels A.H. Agatz, Alan L. Erera, Martin W.P. Savelsbergh,
and Xing Wang. Dynamic ride-sharing: A simulation study in
metro atlanta. Transportation Research Part B: Methodologi-
cal, 45(9):1450 – 1464, 2011.

[4] Jean-Franois Cordeau and Gilbert Laporte. The dial-a-ride
problem (darp): Variants, modeling issues and algorithms.
Quarterly Journal of the Belgian, French and Italian Oper-
ations Research Societies, 1(2):89–101, 2003.

[5] Florian Drews and Dennis Luxen. Multi-hop ride sharing. In
Proceedings of the Sixth Annual Symposium on Combinatorial
Search, SOCS 2013, Leavenworth, Washington, USA, July 11-
13, 2013, 2013.

[6] Jack Edmonds and Ellis L. Johnson. Matching: a well-
solved class of integer linear programs. In in: Combinatorial
structures and their applications (eds Gordon and Breach,
pages 89–92, 1970.

[7] Masabumi Furuhata, Maged Dessouky, Fernando Ordóñez,
Marc-Etienne Brunet, Xiaoqing Wang, and Sven Koenig.
Ridesharing: The state-of-the-art and future directions. Trans-
portation Research Part B: Methodological, 57(C):28–46,
2013.

[8] Ece Kamar and Eric Horvitz. Collaboration and shared plans in
the open world: Studies of ridesharing. In Proceedings of the
21st International Jont Conference on Artifical Intelligence,
IJCAI’09, pages 187–194, San Francisco, CA, USA, 2009.
Morgan Kaufmann Publishers Inc.

[9] Alexander Kleiner, Bernhard Nebel, and Vittorio Amos Ziparo.
A mechanism for dynamic ride sharing based on parallel
auctions. In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence - Volume Volume
One, IJCAI’11, pages 266–272. AAAI Press, 2011.

576576576576576576576576575

