
Handbook of Constraint Programming 731

Edited by F. Rossi, P. van Beek and T. Walsh

c© 2006 Elsevier All rights reserved

Chapter 21

Uncertainty and Change

Kenneth N. Brown and Ian Miguel

Constraint Programming (CP) has proven to be a very successful technique for reasoning

about assignment problems, as evidenced by the many applications described elsewhere in

this book. Much of its success is due to the simple and elegant underlying formulation:

describe the world in terms of decision variables that must be assigned values, place clear

and explicit restrictions on the values that may be assigned simultaneously, and then find

a set of assignments to all the variables that obeys those restrictions. Thus, CP makes two

assumptions about the problems it tackles:

1. There is no uncertainty in the problem definition: each problem has a crisp and

complete description.

2. Problems are not dynamic: they do not change between the initial description and

the final execution of the solution.

Unfortunately, these two assumptions do not hold for many practical and important ap-

plications. For example, scheduling production in a factory is, in practice, fundamentally

dynamic and uncertain: the full set of jobs to be scheduled is not known in advance, and

continues to grow as existing jobs are being completed; machines break down; raw mate-

rial is delivered late; employees become ill; jobs take longer than expected; or processes

have inherently random aspects, and so some jobs may have to be repeated. Alternatively,

in engineering or architectural design, the constraints themselves are not known with cer-

tainty — this may be because the designer is not aware of the detail of the constraints, or

because the constraints are inherently vague — or may be changing because the designer

is exploring the problem space, reformulating the problem as the consequences of each

modelling decision become clearer.

Current constraint solving tools provide very little support for explicit reasoning about

uncertain and dynamic problems. In many cases, an approximated deterministic and static

model may suffice, and provides the user with enough information about the structure of

the problem to make good enough decisions. In other cases, though, the user is required

to re-formulate the problem repeatedly, in response to each change or to each discovery of

732 21. Uncertainty and Change

more detail of the problem. What support should CP tools offer in those situations? For

many problems, all that may be required is a sufficiently fast solver, reacting to the changes

with new solutions, or producing many initial solutions to different formulations in the case

of uncertainty. At other times, for dynamic problems, the new solutions should be as close

as possible to the previous ones, to minimise the cost of change. More advanced methods

should generate solutions that are robust to the likely changes, or that are sufficiently flex-

ible to allow the changes to be accommodated. Particular attention should also be paid to

time limits, since the dynamic changes may occur too quickly to allow exhaustive analysis

— in that case, time-bounded or anytime reasoning is required.

In this chapter, we consider the uses and extensions of constraint programming for

handling problems subject to change and uncertainty. We classify the research into two

broad categories based on the problem type:

(i) uncertain problems, which require a single solution; and

(ii) Dynamically changing problems, which require multiple solution stages.

Within (ii), we consider three further sub-categories:

(ii-a) problems where the solver simply reacts each time the problems change;

(ii-b) problems where the solving process is adapted to record information about the prob-

lem structure, which can be used during the reaction phase; and

(ii-c) problems where the solver proactively searches for solutions that anticipate the ex-

pected changes.

We will begin by briefly reviewing the definitions of constraint satisfaction and optimi-

sation problems, and presenting a small example problem which we will use throughout the

chapter. We will then consider each of the categories and sub-categories in turn. Finally,

we will conclude with a discussion of challenges for future research.

21.1 Background and Definitions

The finite-domain constraint satisfaction problem (CSP) consists of a triple 〈X,D,C〉,
where X is a set of variables, D is a set of domains, and C is a set of constraints. Each

xi ∈ X is associated with a finite domain Di ∈ D of potential values. An assignment

to a variable xi is the selection of a value vi from its domain Di. A constraint c ∈ C,

constraining variables xi, . . . , xj , specifies a subset of the Cartesian productDi× . . .×Dj

indicating mutually-compatible variable assignments. A tuple of values v = (vi, . . . , vj)
satisfies a constraint c over xi, . . . , xj if v ∈ c. A partial assignment to a problem is

a collection of assignments to a subset of the variables in the problem, and a complete

assignment is an assignment for every variable. A solution is a complete assignment that

satisfies all constraints. A constrained optimisation problem is a CSP with some objective

function, which is to be optimised.

21.2 Example: Course Scheduling

To illustrate the various problems and techniques, we will use as a basis the following sim-

ple example (adapted from [22]) throughout the chapter. Consider the task of scheduling

K. N. Brown, I. Miguel 733

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

x11 x12 x13

x21 x22 x23

x31 x23 x33

j
i

∀i
3
∑

j=1

xij ≥ 2 sessions per day (21.1)

∀j
3
∑

i=1

xij ∈ {1, 2, . . . , 5} no. of session type (21.2)

3
∑

i=1

3
∑

j=1

xij ∈ {10, 11, 12} total sessions (21.3)

Figure 21.1: Course Scheduling Problem

a short course over three days consisting of a number of lectures, practical sessions, and

tutorial sessions. The constraints are that there must be at least two sessions a day and,

over the three days, there must be between 1 and 5 of each type of session and between 10

and 12 sessions in total. This problem can be cast as a CSP by using 9 variables, xij with

i and j in {1, 2, 3}, where i denotes the day and j the session type with 1 = lecture, 2 =

practical, 3 = tutorial. Each variable has domain {0, 1, 2, 3, 4, 5} denoting the number of

sessions of the corresponding type on a particular day. The constraints are expressed on

these variables as presented in Figure 21.1. Figure 21.2 presents one possible solution to

this problem in which there are two lectures, three practical and five tutorial sessions over

the three days.

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

1 1 0

0 2 4

Figure 21.2: A Solution to Course Scheduling Problem

21.3 Uncertain Problems

First we consider problems where a complete crisp description of the problem will not be

revealed at all, and so we must produce a single initial solution that cannot be changed.

In order to produce the solutions, we have to consider how the imprecision in the problem

description is expressed. We consider three cases: (i) the problem itself is intrinsically im-

precise — for example, where the price of a configuration must be ‘cheap’, where ‘cheap’

734 21. Uncertainty and Change

∀i
3
∑

j=1

xij ≥ 2 sessions per day

3
∑

i=1

3
∑

j=1

xij ∈ {10, 11, 12} total sessions

Sums of Assignment Tuples

1 2 3 4 5 Otherwise

lectures
∑3
i=1 xi1 0.4 0.6 0.8 1.0 0.8 0

practicals
∑3
i=1 xi2 0.6 0.8 1.0 0.8 0.6 0

tutorials
∑3
i=1 xi3 0.6 0.8 1.0 0.8 0.6 0

Figure 21.3: The Fuzzy Course Scheduling Problem. Fuzzy constraints show satisfaction

degrees for different possible assignment tuples.

is defined by a fuzzy membership function, (ii) we have a set of possible realisations of the

problem, one of which will be the final version of the problem, and (iii) we have proba-

bility distributions over the full realisations — for example, a distribution over the values

that might be available to us, or over the legal tuples in the constraints. Secondly, for (ii)

and (iii), we also consider problems where the description will eventually be revealed, but

requires an instant response. In such cases, we can extend the techniques to include contin-

gencies — families of solutions, one of which will be selected depending on the revealed

problem.

21.3.1 Fuzzy Problems

Fuzzy constraint satisfaction [22] (see also Chapter 9) captures imprecision in the defini-

tion of a constraint by allowing constraints to be partially satisfied, as well as completely

satisfied or completely unsatisfied. To continue the above example, a constraint specifying

that an expression in certain cost variables must be “cheap”, rather than being satisfied or

violated, can be satisfied to a greater or lesser extent according to the assignments to the

cost variables. This allows us to capture notions such as “fairly cheap” and “relatively

expensive”.

In a fuzzy constraint satisfaction problem, a constraint c(xi, . . . , xj) is represented by

a fuzzy relation, which is in turn defined by a membership function that associates a degree

of satisfaction in a totally ordered scale (usually [0, 1], with 0 and 1 representing complete

violation and complete satisfaction respectively) with each tuple in Di × . . . × Dj . The

conjunction of two fuzzy relations is usually interpreted as the minimum membership value

assigned by either relation. To produce a satisfaction degree for a given partial or complete

assignment, the conjunction operator is used to aggregate the satisfaction degrees of all

constraints on the assigned variables. This allows us to rank different assignments and

therefore search for optimal solutions to a fuzzy CSP.

To illustrate, we consider a fuzzy version of the course scheduling problem given in

Figure 21.1. Professor A is to give the lectures in the course. She prefers to give four

K. N. Brown, I. Miguel 735

Constraint Assignment Sum Sat Degree

Sessions per Day 2, 4, 4 1.0

Total Sessions 10 1.0

Lectures 3 0.8

Practicals 3 1.0

Tutorials 4 0.8

Overall Satisfaction Degree: 0.8

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

1 1 0

0 2 4

Constraint Assignment Sum Sat Degree

Sessions per Day 2, 4, 4 1.0

Total Sessions 10 1.0

Lectures 4 1.0

Practicals 3 1.0

Tutorials 3 1.0

Overall Satisfaction Degree: 1.0

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

2 1 1

1 2 1

Figure 21.4: Sub-optimal and Optimal Solutions to the Fuzzy Course Scheduling Problem

of these sessions. Dr B is organising the practical sessions, and he prefers to give about

three of these. Finally, Dr C is responsible for the tutorial sessions, and also prefers that

there should be about three of these. These preferences are captured in fuzzy constraints

on the lecture, practical and tutorial session variables, as presented in Figure 21.3. Note

that constraints on the number of sessions per day and the total number of sessions remain

as hard constraints. Hard constraints are simple to represent with fuzzy constraints: the

satisfaction degree of each assignment tuple is either 0 or 1.

Figure 21.4 presents two solutions to the fuzzy course scheduling problem. The first is

the same as the solution to the crisp course scheduling problem given in Figure 21.2. This

solution has satisfaction degree 0.8 because there are three lecture sessions (from Figure

21.2, the satisfaction degree of the constraint on the number of lectures is therefore 0.8)

and three tutorial sessions (also satisfaction degree 0.8). Hence, the fuzzy conjunction of

the satisfaction degrees of all the constraints is 0.8. The second solution has satisfaction

degree 1.0 and is therefore optimal. The reader will be able to confirm that the satisfaction

degree of each constraint is 1.0.

21.3.2 Problems with Possible Realisations

For problems with a set of possible realisations, we first need to consider the ways in

which the problem definition could be incomplete — i.e. what is missing from the original

description that will be revealed. Based on the definition in 21.1, this could be:

1. The complete set of variables is not known;

736 21. Uncertainty and Change

2. The domains of the variables are not completely specified; or

3. The constraints are not completely specified — either the full set of constraints is

not known, or the individual constraints are not fully described.

In fact, we could reformulate the definition of a CSP so that only the constraints need to

be specified explicitly (the domains would be unary constraints restricting values from a

universal set, and the variables are implicitly defined to be those appearing anywhere in

the constraint set), and thus formally we only need to consider uncertainty in the constraint

set. In practice, the different types of uncertainty are treated separately, to model spe-

cific features of different application domains, and give rise to different formalisms and

algorithms.

In Mixed CSPs [27], we model the case where some of the variables are not controlled

by the solver, but will be assigned by some external source (which may be a user, another

agent, later knowledge discovery, or a random process). Thus the variables of the problem

are divided into two classes: controlled decision variables and uncontrollable parameters.

The decision variables are normal CSP variables, but the parameters will be set by the

external source (and thus essentially fix the domains of those variables to a singleton set).

The possible realisations of the problem are then defined by the sets of possible values that

the parameters may take. Constraints restrict the assignments of values to variables in the

normal way. A pure decision is an assignment of values to all the decision variables, which

should be a solution to one or more of the possible realisations. If there are no constraints

on the realisations (i.e. the parameters are independent), then it is NP-complete to deter-

mine whether there exists a single pure decision which is a solution to all realisations in

a binary mixed CSP. For cases where the true realisation will be revealed, a conditional

decision associates different assignments of values to different realisations, and an optimal

conditional decision has a solution for each possible realisation. Fargier et al [27] give an

anytime algorithm for finding conditional decisions.

As an example, consider the course scheduling problem as before, but now we assume

that the number of tutorials on day 1 (x13) will be decided later (based on the availability of

tutors). That is, the variable x13 becomes an uncontrollable parameter. Suppose we know

that x13 can take one of two possible values, 0 or 1. Figure 21.5a shows a pure decision

for all the other variables that satisfies both possible realisations. Suppose now that the

number of lectures on day 2 (x21) will also be fixed at a later date, and that the value of x21

may be 0, 1 or 2, independently of the value of x13. There are now six possible realisations,

based on the possible values of (x13, x21): {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}. No

single pure decision is possible (since it will not be possible to satisfy the constraint on the

total number of sessions); however, figure 21.5b shows an optimal conditional decision, by

associating a decision with each possible realisation.

To cover problems with uncertain data, Yorke-Smith and Gervet define Uncertain CSPs

[77], in which the constraints are uncertain — specifically, they use an algebraic represen-

tation of the constraints, with uncertainty over the coefficients. Their goal is to define the

certainty closure, the set of all solutions to possible realisations of the constraints, and then

to search for specific types of closure, including a covering set, which contains at least one

solution for each realisation, or the most robust solution, which is a solution to the greatest

number of realisations. Their suggested solution method is to transform the UCSP into

a standard CSP, such that the set of all solutions to the CSP is equivalent to the desired

closure of the UCSP.

K. N. Brown, I. Miguel 737

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

2 0 x13

1 2 1

0 2 2

j
i

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

2 0 x13

x21 2 1

1 2 2

j
i

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

2 0 x13

x21 2 1

0 2 2

j
i

(x13,x21)

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(a) x13 {0,1} (b) x13 {0,1}, x21 {0,1,2}

Figure 21.5: mixed CSP: (a) a pure decision; (b) an optimal conditional decision.

Suppose in our course scheduling problem, the full workload requirements have not

been revealed to us; specifically, the total number of sessions may be required to be either

10 or 12, and the required length of a practical may be either 1 or 2 hours, but the constraints

on the hours per day, and the hours of each session type remain the same. The original

problem could then be represented as presented in Figure 21.6, wherew1 andw3 are known

to be 1, but the values of w2 and t are unknown, but taken from the sets {1, 2} and {10, 12}
respectively. Therefore, there are 4 possible realisations: {w2 = 1, t = 10}, {w2 = 1, t =
12}, {w2 = 2, t = 10} and {w2 = 2, t = 12}. A covering set is shown in Figure 21.7,

where the first solution is the most robust solution.

21.3.3 Probability-Based Problems

The next step on from problems with possible realisations is to consider problems where

there is a probability distribution over those realisations. Two different formalisms have

been proposed with the name probabilistic CSPs. The first [25] involves uncertainty over

the constraints that appear in the problem, associating a probability with each single con-

straint, representing the (independent) probability that that constraint is active. The aim

is to find an assignment of values to variables which has the highest probability of being

a solution to the true problem. For example (Fig. 21.8), suppose we have three possible

additional constraints on the practicals in our timetabling problem: the number of practi-

cals must be not less than the number of lectures, with a probability of 0.6; the number of

738 21. Uncertainty and Change

∀i
3
∑

j=1

wjxij > 2 (21.4)

∀j
3
∑

i=1

wjxij ∈ {1, . . . , 5} (21.5)

3
∑

i=1

3
∑

j=1

wjxij = t (21.6)

Figure 21.6: The Uncertain Course Scheduling Problem

practicals on day 3 must be greater than the number of practicals on day 1, with probability

0.5; and the total number of practicals must be no higher than 2, with a probability of 0.2.

There is no assignment with a probability of 1.0 of being a solution; an assignment with

maximal probability of being a solution is shown in figure 21.9. This first type of proba-

bilistic CSP could be thought of as the probabilistic equivalent of uncertain CSPs described

above, assigning a probability distribution to the values of coefficients in the constraints.

Probabilistic CSPs can be represented using the two general soft constraint frameworks

valued CSP [69] and semi-ring[12] CSP described in Chapter 9, “Soft Constraints”.

The second type of probabilistic CSPs [26] correspond to mixed CSPs, with the addi-

tion of a probability distribution over the possible assignments to the uncontrollable param-

eters. The aim here is to find a pure decision with maximal probability of being a solution

to the full problem. A branch and bound algorithm based on forward checking is described.

Again, we can also consider conditional decisions, and an algorithm is given for generating

them. Consider now the same problem as described in Figure 21.5, but with two probability

distributions over the values of x13 : {0 : 0.3, 1 : 0.7} and x21 : {0 : 0.5, 1 : 0.4, 2 : 0.1}.
Again, no decision can have a probability of 1.0 of being a solution to the full problem

(since the two realisations 〈x13 = 1, x21 = 2〉 and 〈x13 = 0, x21 = 0〉 cannot be satisfied

by the same assignment due to the total sessions constraint; figure 21.10 shows a maxi-

mal pure decision, with total probability of 0.93 of being a solution (failing only on the

realisation 〈x13 = 1, x21 = 2〉).
1-stage stochastic CSPs [76] are similar to (the second) probabilistic CSPs, but with

the difference that a problem is defined to be θ-satisfiable if there exists a (pure) decision

with a probability higher than θ of being a solution. The complexity of 1-stage stochastic

CSPs is shown to be NPPP -complete. Stochastic CSPs in general encompass multiple

stages and will be discussed further in Section 21.4.3.

21.4 Problems that Change

Now we consider problems that are subject to change over time, and where the opportunity

exists to respond to each change via a new solution step. The changes may be imposed by

a user, an external agent or the environment. Typically, this occurs during the execution of

K. N. Brown, I. Miguel 739

1 2 3

1

2

3

2 0 2

0 2 0

2 0 2

1 2 3

1

2

3

2 0 2

0 3 0

2 1 2

1 2 3

1

2

3

2 0 2

0 1 0

2 0 2

j
i

D

a

y

s

j

(1,10) (2,12)

i

Type

j
i

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

x11 x12 x13

x21 x22 x23

x31 x23 x33

wjx1j 2

wjx2j 2

wjx3j 2

1 w1xi1 5 … …

wjxij = t

j
i

w1 = w3 = 1

w2 {1,2}

t {10,12}

(1,12) (2,10)

Figure 21.7: uncertain CSP: a covering set.

a solution, but in certain cases change may be so rapid that it occurs even as a solution to

the original problem is being sought.

Dynamic CSPs ([17], see Figure 21.11) view a changing problem as a sequence of

CSPs linked by restrictions and relaxations (also known as retractions), where constraints

are respectively added to, and removed from, one problem in the sequence to obtain the

next. There are three key concerns in solving dynamic CSPs. The first is to minimise

3
∑

i=1

xi2 ≥
3
∑

i=1

xi1 (P = 0.6) (21.7)

x32 > x12 (P = 0.5) (21.8)

3
∑

i=1

xi2 ≤ 2 (P = 0.2) (21.9)

Figure 21.8: The Probabilistic Course Scheduling Problem

740 21. Uncertainty and Change

1 2 3

1

2

3

1 0 2

1 1 1

0 2 2

j
i

D

a

y

s

Type

Figure 21.9: probabilistic CSP1: a maximal solution.

the need for change, and thus to find robust1 solutions that are likely to remain solutions

even after the change has occurred, or to need only minor ‘repairs’. The second is to

minimise the cost of change, if a change to the solution is required. Hence, we seek stable

solutions following a change. This is a significant concern in many applications and can

stem, for example, from the cost of retooling or simply from the inconvenience to end

users. The third is to minimise the reaction time, obtaining a new solution as quickly

as possible. The three concerns are often opposed to each other, and thus the particular

solution technique implemented will depend on the application. We consider three cases,

based on the requirements of the problem and on the knowledge we have of the future

changes. Sub-section 21.4.1 assumes no knowledge of the future, and attempts to re-use

aspects of the old solution when computing the new solutions. Subsection 21.4.2 also

assumes no fore-knowledge of the changes, but attempts to re-use some of the previous

reasoning process when generating a new solution. Finally, sub-section 21.4.3 considers

problems where the modeller has some uncertain knowledge of the future changes, and

examines techniques which are robust to those likely changes. Typically, this involves

problems which grow over time, or where the problem structure is gradually revealed.

1The term ‘flexibility’ is also used to describe robustness. For consistency, we use ‘robust’ throughout.

1 2 3

1

2

3

2 0 x13

x21 1 1

0 2 2

j
i

D

a

y

s

Typex13 x21 Prob

0

1
2

0

1
2

0.15

0.12
0.03

0.35

0.28
0.07

0

1

Figure 21.10: probabilistic CSP2: a maximal solution.

K. N. Brown, I. Miguel 741

Restrictions: Constraints added

Relaxations/Retractions: Constraints removed

…
Initial

Problem

Evolving

Problem

= CSP Instance

Figure 21.11: Dynamically Changing Problem Represented as a Sequence of Static CSPs.

21.4.1 Pure Reaction

We will begin by assuming no knowledge of how the problem is likely to change. Naively,

each new problem can be solved from scratch. However, efficient solvers exploit the past

history of problems and solutions to guide them in solving the new problem, while attempt-

ing to minimise the cost of changeover. Local Repair methods maintain all assignments

from the solution to the previous problem to use as a starting point. The initial assign-

ment is then progressively modified until an acceptable solution to the current problem is

obtained.

Minton et al [52] describe a local repair method that searches through the space of pos-

sible repairs. This search is guided by the min-conflicts heuristic that seeks to minimise the

number of unsatisfied constraints after each step. The heuristic repair method can be used

naturally in a non-systematic (hill-climbing) or systematic (backtracking) search strategy.

In the following example, we will illustrate systematic heuristic repair. Reconsider the

solution to the Course Scheduling Problem given in Figure 21.2. This solution, although

satisfying the constraints given in Figure 21.1, does have a very busy final day. Therefore,

the next time the course is run, a new constraint is added that places a maximum on the

number of sessions per day. Figure 21.12 presents this variant of the problem, which we

will call the Balanced Course Scheduling Problem.

Heuristic repair performs a standard backtracking search, with a value ordering heuris-

tic that prefers the assignment that conflicts least with the values assigned by the solution to

the previous problem to future variables. Consider solving the Balanced Course Schedul-

ing Problem having obtained the solution to the original Course Scheduling Problem given

in Figure 21.2. We use a variable ordering scheme that assigns lecture, then practical then

tutorial variables in ascending day order. We also assume that ties are broken by preferring

an assignment that matches the previous solution. The current assignments to x11 and x21

do not conflict with any of the future variables, and so are left unchanged. Consider now

the assignment of x31. This variable cannot be assigned 4 or 5, since this would violate

constraint (21.2). The remaining values all conflict with the values assigned by the previ-

ous solution to x32 and x33 and constraint (21.10). Since the value 0 is closest to satisfying

742 21. Uncertainty and Change

∀i
3
∑

j=1

xij ≥ 2 sessions per day

∀j
3
∑

i=1

xij ∈ {1, 2, . . . , 5} no. of session type

3
∑

i=1

3
∑

j=1

xij ∈ {10, 11, 12} total sessions

∀i
3
∑

j=1

xij ≤ 4 max sessions per day (21.10)

Figure 21.12: The Balanced Course Scheduling Problem

the constraint2, it is assigned to x31. The search proceeds in this manner as presented in

Figure 21.13.

The Local Changes algorithm [73] is also a local repair method, but it uses a more

sophisticated search strategy than Minton et al’s heuristic repair to focus on resolving

the conflicts in a particular sub-problem. Local Changes partitions the variable set X

2As noted in [52], for non-binary constraints the measure of conflict depends on the nature of the constraint

itself.

x12

x22

x32

x33

x23

x13

0

1

2

1

0

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

1 1 2

0 2 2

1 2

1 20

Unsuccessful assignment

Successful assignment

Figure 21.13: Partial Search Tree for Balanced Course Scheduling Problem using Min-

conflicts Heuristic

K. N. Brown, I. Miguel 743

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32 x33

1 0 1

1 1 0

0 2 4

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32

1 0 1

1 1 0

0 2

x33

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32

1 0 1

1 1 0

0 2 2

Constraint (1.7)

unsatisfied.

Unassign x33

x33 = 2 Constraint (1.3)

unsatisfied.

Unassign x11

X1 X2 X3
x12 x13

x21 x22 x23
x31 x32

0 1

1 1 0

0 2 2

x33

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32

3 0 1

1 1 0

0 2 2

x33
x11

x11 = 1

Figure 21.14: Solving the Balanced Course Scheduling Problem using Local Changes

into three subsets, X1, X2 and X3: variables in X1 have fixed assignments (this is to

ensure termination, as will be shown); variables in X2 have assignments, but which may

be modified; variables in X3 are unassigned. When solving a new problem in a dynamic

sequence, all variables are in X2, with assignments taken from the solution to the previous

problem in the sequence. Hence, when solving the Balanced Course Scheduling Problem,

search begins with X2 containing all nine xij variables, assigned as shown in Figure 21.2.

If this assignment satisfies all constraints, then there is already a solution to the current

problem and Local Changes terminates. Otherwise, it unassigns at least one variable for

each unsatisfied constraint (placing each in X3) and attempts to repair their assignments in

order to resolve the conflict. Returning to the solution of the Balanced Course Scheduling

Problem, as depicted in Figure 21.14, the only constraint that is unsatisfied is the instance

of constraint (21.10) concerning day 3. The choice of which of the variables constrained

by constraint (21.10) is heuristic. Assume x33 is chosen, unassigned and therefore moved

into X3. Local Changes now recurses over X3, re-assigning the variables to repair the

conflicts.

In the example, X3 contains only x33, which is selected for re-assignment. We assume

a reasonably informed value heuristic, assigning x33 = 2. However, this assignment does

not satisfy Constraint (21.3). At this point, Local Changes fixes the assignment of x33,

moving it into X1 and attempts to repair the problem with respect to this choice. The fix-

ing step is to avoid an endless cycle of repairs. If the problem cannot be solved with respect

to this assignment, Local Changes will backtrack over it and try another assignment. In the

example, x11 is re-assigned to 3, producing a solution to the problem. We have demon-

strated the operation of Local Changes on a standard dynamic CSP. The algorithm has also

been extended to work with fuzzy dynamic CSPs [51] (see Section 21.3.1).

The use of a local repair technique promotes stability by tending to find a solution to the

744 21. Uncertainty and Change

new problem that is close to the solution of the previous problem, as demonstrated by the

Min-conflicts and Local Changes examples above. There is no guarantee, however, that the

solution will be optimally stable. The alternative is to make stability an explicit criterion

when solving each problem in a dynamic sequence, and insist that each new solution is

optimally stable. The algorithm RB-AC [66] follows exactly this approach, starting with

the solution to the previous problem in the sequence and iteratively testing whether re-

assigning one variable, two variables, three variables, and so on, is sufficient to solve the

current problem. Petcu and Faltings [59] also search explicitly for stable solutions, but

do not restrict stability to mean simply the number of assignments in common. Instead,

special stability constraints are added that must be satisfied in order for the solution to be

stable. Similarly, El Sakkout and Wallace [23] define linear minimal perturbation functions

for dynamic scheduling problems. Following a change the minimal perturbation function

is defined with respect to the solution to the previous problem and used as an objective

for the new problem. Bartak et al [2] extend this formulation to support over-constrained

problems.

21.4.2 Preparing to React by Recording Information

While maintaining our assumption that we have no information about how the problem is

likely to change, it is still possible to prepare for these changes by recording information

during the search for a solution that is likely to be useful when solving the changed prob-

lem, under the reasonable assumption that the latest problem in a dynamic sequence will

retain some structure in common with the previous problems.

For each problem in a dynamic sequence, the oracles approach [71] records the path

taken to the solution. For every new problem in the sequence, search begins from scratch,

but these oracles are used to guide the search and prune the search space. Consider first

constraint restriction. Figure 21.15 presents a partial search tree for the solution given in

Figure 21.2 to the Course Scheduling Problem.

Having solved the Course Scheduling Problem, to solve the Balanced Course Schedul-

ing Problem using the oracles approach, search begins from scratch, using the solution

path from Figure 21.15 as the oracle. The search branch down to x22 is identical to that

explored in finding the previous solution. However, when considering x32, it is possible

to prune the sub-tree rooted with x32 = 1 without exploring it (see Figure 21.15): since

there was no solution in this sub-tree for the less-constrained previous problem there can-

not be a solution in the sub-tree following constraint restriction. Search continues in this

way, as presented in Figure 21.15 following the oracle and pruning fruitless sub-trees un-

til the constraints added cause failure, at which point the search defaults to chronological

backtracking while recording a new oracle for future use.

When both restriction and relaxation/retraction are allowed, to retain soundness the or-

acle chosen must be associated with a previously-solved problem that is less constrained

(i.e. contains a subset of the constraints) than the current problem. Van Hentenryck and

Provost [71] show how to select an oracle that prunes maximally without sacrificing sound-

ness. Having identified such an oracle, it is used exactly as in the foregoing example.

A popular and powerful approach to preparing for change is to record explanations.

Jussien [42] defines explanations informally as ”subsets of constraints justifying solver

events”. Usually, the solver events are constraint additions, either unary (value removals)

or higher arity. Crucially, explanations support change to the problem structure during

K. N. Brown, I. Miguel 745

x12

x22

x32

x33

x23

x13

0

1

1 2

1

4321

0

0

0

No solutions

Type

L(1) P(2) T(3)

D

a

y

s

1

2

3

1 0 1

j
i

1 1 0

0 2 4

Unsuccessful assignment

Successful assignment

Figure 21.15: Partial Search Tree for Course Scheduling Problem

search, as well after a solution has been found and is being executed. Note, however, that

supporting changes during systematic search requires a more sophisticated search strategy

than simple chronological backtracking, such as Dynamic Backtracking [33, 44] or the

Local Changes algorithm discussed in the previous sub-section.

A significant amount of attention in the literature has been devoted to employing ex-

planations in maintaining arc consistency (the reader is directed to Chapter 3 for an expla-

nation of arc consistency) in the face of changes to the problem. Specifically, the problem

is assumed to be in an arc consistent state, a change to the problem structure occurs and the

goal is to restore arc consistency. Since it is common practice to maintain arc consistency

during search, following a change it is natural to restore arc consistency before proceeding.

We might also wish to maintain the problem in an arc consistent state, rather than solve

it immediately. For instance, Debruyne [15] describes how a bioinformatics problem is

configured through a process of interaction with a biologist. The biologist adds or removes

constraints from the problem until the current problem is acceptable to him/her. The prob-

lem is sufficiently difficult to make solving it following each change impractical, but if

enforcing arc consistency does not show that the current problem is unsolvable then this is

a good indicator that the problem has solutions. Boyd and Bowen also use explanations to

support a similar interactive process [13].

As has been pointed out by many authors, constraint restriction alone is simple to deal

with in this setting: a standard arc consistency algorithm can be run as normal following

the addition of new constraints. Constraint relaxation/retraction is, however, more difficult

to support. This is because value removals resulting from enforcing arc consistency before

constraint retraction may no longer be valid. Hence, following retraction, some values

typically must be reinstated. Explanations are used to support the identification of these

values.

746 21. Uncertainty and Change

x12

x22

x32

x33

x23

x13

0

1

2

1

0

4

Type

L(1) P(2) T(3)

D

a

y

s

1

2

3

1 0 1

j
i

1 1 2

0 2 2

1 2

1 25 0

Divergence

from oracle
Unsuccessful assignment

Successful assignment

Pruned branch

Figure 21.16: Partial Search Tree for Balanced Course Scheduling Problem using Oracles

One common explanation scheme for this purpose, as embodied by the algorithms

DnAC-4 [9], DnGAC4 [10], DnAC-6 [15] as well as the work of Prosser et al [64], is based

on recording justifications for value removals similar to those used in truth maintenance

schemes [21]. This is simply the constraint c whose revision caused the value v to be

removed from the domain of some variable x. If c is subsequently retracted, v is tentatively

restored to x’s domain (tentatively because there may be alternative justifications for its

removal). Of course the reinstatement of v calls into question all values v′ removed from

the domains of other variables, specifically where the removal is justified by a constraint

involving x. If a constraint check reveals that a v′ is supported by v, it is also tentatively

restored. This process propagates through the network, restoring values as appropriate.

The final step is to run a modified arc consistency algorithm, which removes all tentatively

restored values for which it can find an alternative justification.

One variant of this scheme, appearing in the AC|DC algorithm [56] and its descen-

dants [55, 70, 1] saves space by extracting explanations directly from the constraint graph.

Another, such as [16], strengthens the justifications recorded to the set of original prob-

lem constraints that imply a value removal. The tradeoff is the time and space required to

record explanations versus the time required to react to a change in the problem. Although

maintaining arc consistency was the original focus of much of this research, explanations

have also been used to support the re-use of nogoods discovered during search [68], and

have been generalised to arbitrary constraint propagators in, for example, the PaLM system

[16] and Constraint Logic Programming [32].

To illustrate, we present a simple example of the utility of explanations. Returning to

the original Course Scheduling problem from Figure 21.1, consider that the different ses-

sion types are indistinguishable — in any (non-)solution, the assignments to one column of

variables representing a session can be exchanged with another to produce a (non-)solution.

K. N. Brown, I. Miguel 747

This is a symmetry (see Chapter 10)3, which can be exploited by imposing an ordering on

the session types, for instance by insisting that the sum of the columns is non-decreasing:

3
∑

i=1

xi1 ≤
3
∑

i=1

xi2 ≤
3
∑

i=1

xi3 Order Constraints on Session Types (21.11)

From the total sessions constraint (21.3), one can reason that the session type with the

smallest number of assigned sessions can have at most 4 sessions assigned. The ordering

constraints (21.11) allow us to identify this session type as the lectures. Hence we can add

the implied constraint:

3
∑

i=1

xi1 ≤ 4 Lectures — Revised Maximum (21.12)

The explanation for constraint (21.12) is the pair of constraints (21.3) and (21.11).

Consider now the transition to the Balanced Course Scheduling Problem. Assuming that

the ordering constraints to exploit symmetry are retained, the explanation for constraint

(21.12), and therefore the constraint itself, remains valid. The saving made is that the

cost of deriving the implied constraint is incurred only once, but the benefit, in terms of

reducing search following changes to the problem, remains for as long as its explanation is

valid.

21.4.3 Predicting Changes

In many real-world problem domains, we have some uncertain knowledge of what the

changes might be. For example, in a scheduling problem, we may know the characteristics

of all jobs set for production, even if we don’t know when the work can begin; a dispatch

service may have extensive histories of previous work requests and thus can predict the

pattern of future request; or in a manufacturing environment, we may have knowledge

of the reliability of a process, and thus can compute the probability of errors. In all of

these cases, we can improve our initial solutions by reasoning about the likely changes. In

general, we wish to produce robust solutions that, when change occurs, are likely to remain

solutions or can be modified at little cost.

In recurrent CSP [75], changes to problems are assumed to be temporary and recurring

— for example, the occasional temporary loss of a resource due to reliability problems.

The authors assume that they have no a priori knowledge of the changes, and thus must

learn the distribution by monitoring changes while solutions are being executed. They

propose a min-conflicts [52] repair-based method, to recover solutions when the changes

happen, and as they learn the distribution of the changes, they penalise solutions which

use values that are frequently lost. In their supersolutions framework [37], Hebrard et al.

address a similar problem, in that values may be unavailable when the solution is executed.

Their aim is to find initial solutions that are robust to this loss, or that can be repaired with

a small number of changes. They define the concept of an (a, b)-super solution, which is a

solution to the original problem which, if any a value assignments are lost, can be repaired

by reassigning the relevant variables plus another b variables. In particular, a (1, 0)-super

3The reader will have noticed that the days are also indistinguishable, but we focus on the session types for

simplicity.

748 21. Uncertainty and Change

∀i Di = {yij : j = 1 . . . 6}, count(Di, φ) ≤ 4 (21.13)

S = {yij : i = 1 . . . 3, j = 1 . . . 6} (21.14)

count(S,L) ∈ {1, 2, . . . , 5} (21.15)

count(S, P) ∈ {1, 2, . . . , 5} (21.16)

count(S, T) ∈ {1, 2, . . . , 5} (21.17)

count(S, φ) ∈ {6, 7, 8} (21.18)

Figure 21.17: The Extended Course Scheduling Problem

solution is essentially robust to the loss of any single value — for each variable, there is a

backup value which could be assigned without violating any of the constraints.

As an example, consider a more detailed version of the course scheduling problem.

We now assume there are six possible time slots each day (giving 18 variables yij , where

i ∈ {1, 2, 3} and j ∈ {1, . . . , 6}), which we may fill will a lecture (L), a practical (P) or a

tutorial (T), or leave empty (φ). The new model is given in Figure 21.17, where we assume

a constraint count(S, v), which counts the number of times a variable from the set S takes

the value v.

We now assume that after we construct and advertise the timetable, we may be told

that certain time slots cannot be filled with sessions of a given type (for example, because

of room changes elsewhere). Can we find a (1, 0)-supersolution — that is, a solution that

can be adapted by reassigning only the affected variable? Figure 21.18a shows one such

supersolution — any class (L,P or T) can be replaced by another class, and any empty slot

can be filled by a class. Figure 21.18b shows a solution that is not a (1, 0)-supersolution,

since if we lose the value T from y14, then we cannot find another satisfying solution

reassigning only that time slot (since we cannot satisfy the constraint on the number of

tutorials).

Periods

L P P

L P T

L L T

1 2 3
D

a

y

s

1

2

3

j
i

T 0 0

0 0 0

0 0 0

4 5 6

(a)

L P P

L P P

L L P

1 2 3

1

2

3

j
i

T 0 0

0 0 0

0 0 0

4 5 6

(b)

Figure 21.18: supersolutions: (a) (1, 0)-supersolution; (b) not a (1, 0)-supersolution.

Finding an (a, b)-super solution is shown to be NP -complete for any fixed a. The

authors develop a MAC algorithm for finding (1, 0)-super solutions, and extend it to a

K. N. Brown, I. Miguel 749

branch-and-bound algorithm for finding the most robust solution when a (1, 0)-super so-

lution does not exist (the most robust solution is defined to be one in which a maximal

number of variables can be repaired without violating any constraints). This work has

been extended [38] to consider (1, b)-super solutions, with the ability to place restrictions

on the repairs that are considered — for example, to model scheduling problems, where

values represent the times at which activities start, the repairs are restricted to using higher

values representing later times, so that the repair can be carried out when the break arises

during execution. The supersolutions concept has then further extended [39] to include the

probability of a value assignment being lost, and the cost of making the repair: specifically,

a (α, β)-weighted supersolution is one in which any set of value assignments with a total

probability greater then α of being lost can be repaired by changing any variables at a total

cost of less then β. Weighted supersolutions have been defined to model combinatorial

auctions, where each winning bid has a probability of being withdrawn.

Stochastic CSPs [76] (introduced in subsection 21.3.3) allow us to model problems

with multiple phases: first the solver must assign a set of variables, then the environment

reveals the values of a set of parameters, the solver must then assign another set, and so on.

The values of the parameters are assumed to be described by probability distributions. The

solution to a multi-stage stochastic CSP is then a tree, in which the assignment of values to

the later decision variables are conditional on the previous decisions and the revealed val-

ues of the parameters. This allows us to model, for example, production planning, in which

the volume to be manufactured in the 2nd quarter depends on the volume manufactured in

the 1st quarter, on the realised demand for the 1st quarter, and on the uncertain demand in

the future. In the general case, multi-stage stochastic CSPs are PSPACE-complete. This

work is then extended to use scenario-based semantics [50], and allows chance constraints,

which must be satisfied over a proportion of the scenarios. The framework has been imple-

mented as Stochastic OPL, in which multiple futures are represented as separate scenarios

which are then reformulated as a single larger CSP.

Branching CSP [30] also considers multiple phases, but models problems which grow

by the uncertain addition of variables and their associated constraints — for example, on-

line scheduling, where new tasks arrive as the existing tasks are being executed. The model

of future arrivals is a probabilistic tree, in which the arrival of any variable is conditional

on the preceding arrival sequence. Each variable that arrives may be accepted and as-

signed a value which does not violate any constraint over the arrived variables, or rejected

and assigned no value; a specified utility is gained for each variable that is accepted. The

aim is then to assign values to nodes in the tree, such that no constraint is violated and

expected utility is maximised. The solution is thus a policy, specifying actions for each

possible arrival sequence. Branching CSP has similarities to Markov Decision Problems

[65], since the arrivals tree is essentially a finite horizon markov process; however, it is

complicated by the fact that choice available at each node is constrained by the previous

choices, and formulating the problem as an MDP may require exponentially many states.

The Branching CSP algorithms use backtrack search and constraint propagation to reduce

this combinatorial explosion [29].

Consider now a special case of the course scheduling problem, in which the resource

allocator must decide on initial room requests, but should also cater for new timetabling

requests. For simplicity, we consider a simpler problem (Figure 21.19), with one room

suitable for lectures, and one for practicals, and three time periods. We assume one initial

request: (A) a one hour lecture to be followed by a later one-hour practical. There are also

750 21. Uncertainty and Change

three other requests that we might receive: (B) a two-hour practical, (C) a one-hour lecture

followed immediately by a one-hour practical, or (D) another single one-hour lecture. Each

requests must be given a time slot immediately or rejected. Each request generates revenue,

if it is allocated a time slot; rejected requests generate no revenue. The constraints and the

probability tree are shown in the figure. Our immediate task is to decide whether to accept

or reject requests A and B, and to allocate times, but ultimately we want a policy for the

tree which maximises expected revenue. One example policy is also shown in the figure,

which maximises expected revenue by immediately rejecting the unprofitable A, allowing

the more profitable B or C, or both, to be accommodated if they arrive.

A

B C

C

Revenue

A B C D

33 6 9

D

0.6 0.4

0.3 0.70.2 0.8

(A): {(xLi,xPj): i < j}

(B): {xP1,xP2}

(C): {xL1,xL2}

(D): {xL1,xL2,xL3}

(A,B): {((xL1,xP3),xP1),((xL2,xP3),xP1)}

(A,C): {((xL1,xP2),xL2),((xL2,xP3),xL1)}

(A,D): {((xLi,xPj),xLk): k i}

(B,C): {(xP1,xL2)}

(C,D): {(xLi,xLj): i j}

Request

Constraints

Periods

1 2 3

L

P B1 B2

Periods

1 2 3

L

P C2

Periods

1 2 3

L

P

Periods

1 2 3

L

P

C1

B1 B2 C2

C1D

C2

C1

Pr=0.12, R=6 Pr=0.12, R=12 Pr=0.28, R=9Pr=0.48, R=15

Expected revenue = 11.88

A

B xP1 C xL2

C xL2 D xL1

0.6 0.4

0.3 0.7
0.2 0.8

Figure 21.19: A branching CSP problem and solution

Bent and van Hentenryck [6, 7] also consider problems which grow over time by the

addition of tasks. However, rather than have an explicit probability distribution over the

future states, they assume that they have a black-box generator which can generate samples

of the future. At each stage in the process, they generate a number of samples, and use the

results of optimisation on the samples to make a decision for the current time step. They

consider a number of approaches, including: expectation, in which each possible decision

is evaluated over all samples, and the one with the highest expected value is selected; con-

K. N. Brown, I. Miguel 751

sensus, in which each sample is solved to optimality, and from the solutions the immediate

decision which occurs most often is selected; and regret, in which each sample is again

solved to optimality, and then the possible decisions are evaluated with respect to how

much of the objective value would be lost compared to the other decisions. The expec-

tation method produces the best results, but is infeasible for real problems because of the

number of optimisations required. The regret method approaches the quality of expectation

when there is time to optimise, but is similar to consensus when only a small number of

samples are possible, and thus is particularly effective in real-time situations or where the

underlying optimisation problem is hard. In common with the approaches that use explicit

probability distributions, there is a question as to where the underlying distribution for the

black-box generator comes from; the authors have proposed an online learning method [8],

which gradually constructs the distribution as it receives requests. [5] also considers prob-

lems that grow, examining a number of different approaches to generating robust initial

solutions and regular updates

The most significant application area for constraint problems that change is schedul-

ing. Many practical scheduling problems can be expressed as Simple Temporal Problems

[20], in which constraints specify single intervals between two time points, and solved in

polynomial time. [74] considers an extension in which the durations of some tasks are un-

certain, and hence some timepoints are decision variables, while others are uncontrollable

(using the same terminology as for mixed CSP [27]). The aim is then to find a policy for

executing tasks: problems are defined to be strongly controllable if a single decision (i.e.

an assignment of a value to each decision variable) will produce an executable schedule re-

gardless of the eventual values of the uncontrollable timepoints; and weakly controllable if

there exists a decision for each possible realisation of the timepoints. The work was further

extended [54] to include dynamically controllable problems, for which there exists an on-

line policy: the values assigned to the decision variables need depend only on the observed

timepoints in order to get an executable schedule. Checking whether a problem is strongly

or dynamically controllable is in P , but weak controllability is in co−NP . This work has

recently been extended to include soft temporal constraints [78], and it is shown that this

does not increase the complexity class: in particular, a polynomial algorithm is presented

for generating online execution algorithms that optimise over the soft constraints.

Uncertainty in the duration of tasks is a significant issue in more general scheduling

problems. [14] examines the introduction of slack time to handle such uncertainty in job-

shop problems. They consider three variations: adding extra time to the duration of every

task, modifying the constraints to ensure that slack time exists between tasks, and modify-

ing the constraints dependent on the location of the task in the problem. For a given con-

straint Yst ≥ Xst + dur(x), the first would change the value of dur(x) to dur(x) + σ(x),
while the latter two would change the constraint by adding the term slack(x) to the right

hand side. The resultant problem can then be solved using existing scheduling algorithms.

Experimental evidence shows that the latter two consistently outperform a simple right-

shift reactive solution in terms of tardiness, while the former is significantly poorer, but

can give better predictions of execution time in problems with high levels of uncertainty.

More recent work [3, 4] considers the problem of producing schedules with a given prob-

ability of being executed inside a time limit, and with good probabilistic makespans. The

authors develop branch and bound algorithms with Monte Carlo simulation at each node,

and heuristic algorithms which generate deterministic problems from the means and vari-

ances of the task durations. The heuristic algorithms are shown to scale well with larger

752 21. Uncertainty and Change

problems.

For project scheduling problems, Policella et al [61] consider notions of robustness

based on initial solutions that are partial orders of tasks. They assume that some pairs of

tasks have minimum separation constraints, and that each task occupies a known amount

of resource. They consider dynamic changes to the problem in the form of partial resource

unavailability, or changes in task duration. Their aim is to produce a partial ordering of

the tasks such that any allocation of start times consistent with it also satisfies the time and

resource constraints. A partial order is then deemed to be robust if it can absorb changes

to the problem details during execution — that is, start times can still be assigned with

violating the partial order or the problem constraints. Their approach is first to generate

a single schedule with fixed start times, and then to “robustify” it by generating a partial

order from it. Previous research has shown that this approach can generate more robust

schedules than starting with a least commitment approach [62]. The partial orders are

based on chains of precedence constraints for individual units of the resource, and greater

robustness is obtained by generating independent chains.

Finally, we note some recent research integrating constraint programming techniques

with belief networks, for reasoning about a combination of probabilistic and deterministic

information. Belief networks have been studied in AI for many years, and represent the

probabilistic dependencies between random variables. They can be used to find the most

probable value of a variable, given a set of observations of other variables, and can be

used to update beliefs as observations are made incrementally. Constraints can be inte-

grated into the networks by representing them implicitly as conditional probability tables

on boolean random variables [58], mapping valid combinations to true with probability

1.0, and invalid combinations to false. However, this loses the benefits of constraint-based

search and propagation. [18] instead represent the constraints explicitly, and show how

variable elimination methods can be significantly faster on such representations for com-

puting the probability that a given tuple is a solution. That approach, however, requires

large amounts of space. Therefore [19] instead develop search algorithms, which combine

constraint propagation with search over AND/OR graphs, requiring only linear space.

21.5 Pseudo-dynamic Formalisms

In this section we describe extensions to classical CSP that, while closely related to dy-

namic CSPs by name or definition, have important differences that we should be careful to

recognise.

We begin by emphasising the difference between dynamic CSPs and what are now

known [67] as conditional CSPs [53]4. In a conditional CSP, the whole problem is known

statically, but parts of it are made active or inactive depending on the assignments of certain

variables. For example, in configuring a car it is only necessary to decide the details of a

sunroof if the decision has been made that a sunroof is to be fitted. Conditional CSPs are a

natural way to model both configuration [53] (see Chapter 24) and planning problems [45]

(see Chapter 22).

4The potential for confusion stems from the fact that this work was originally presented with the title ‘Dy-

namic Constraint Satisfaction Problems’, where ‘dynamic’ is refers to the fact that the structure of the problem

changed based on decisions made during search

K. N. Brown, I. Miguel 753

Open Constraint Satisfaction Problems (OCSPs [24]) assume a distributed environment

and an open-world setting, in which the set of variables and constraints is known statically

but the variable domains and tuples allowed by the constraints are incrementally discovered

by querying different information sources in a network. This is a natural representation for,

for example, many e-commerce problems where suppliers might be queried as necessary as

to the specifications and possible configurations of their products. Returning to our running

example of course scheduling, one might imagine scheduling a larger course, or multiple

courses, taught by several people. In this case, the people involved might be queried to

discover acceptable numbers of sessions they were willing to teach and constraints on their

timetabling. If the problem remained unsolvable, further queries could be made, and so

on.

Open CSP makes the further assumption that information-gathering queries are by far

the most expensive individual operation that the solver performs, hence the emphasis is

on producing a solution with a minimal number of queries. Faltings and Macho-Gonzalez

show that, since domains and allowed tuples increase monotonically with each new query,

it is unnecessary to know the entire problem structure in order to solve the problem —

a solution to a partially-discovered problem is guaranteed to be a solution to the whole

problem [24]. They give the o-search algorithm to solve OCSPs that improves over the

naive approach of simply gathering all domain values and constraint tuples before solving

the problem by interleaving querying and solving: new domain values and constraint tu-

ples are sought only if the currently known sub-problem has no solution. The fo-search

algorithm refines o-search by only gathering new domain values and constraint tuples for

the portion of the currently-known sub-problem identified as being responsible for the sub-

problem having no solution.

OCSP has also been extended to fuzzy CSPs (see Section 21.3.1) and to optimisation

problems [24]. In both cases to be able to find an optimal solution without knowing the

whole problem structure there is a monotonicity assumption: domain elements and tuples

are returned in non-increasing order of membership degree / non-decreasing order of cost.

This is a realistic assumption — the participants in the open course scheduling example

described above are likely to be happy to respond to queries with their most preferred

option first.

Open CSP is very closely related to Interactive CSP (ICSP [47]) in which again do-

main elements are acquired incrementally in solving a problem. The key difference is

that, since at least one of the solution algorithms presented (Interactive Forward Check-

ing) acquires all domain values for a particular variable that are consistent with respect

to the current assignment, there is an implicit assumption that variable domains are finite.

OCSP is also closely related to dynamic CSP, since the incremental addition of domain

elements and constraint tuples can be viewed as a sequence of problems linked by the

relaxation/retraction of unary constraints disallowing the acquired domain elements [49].

21.6 Challenges and Future Trends

As we have seen, there have been many attempts to extend constraint reasoning to han-

dle dynamic and uncertain problems. The attempts all appear to be isolated, with little

commonality between them; they define different problem types, and different types of

objectives. In particular, it is difficult to compare techniques, since each is typically ad-

754 21. Uncertainty and Change

dressing its own problem variation, and testing them requires generators of the uncertain

and dynamic aspects. There is a need for general purpose, parameterisable, problem gener-

ators and execution simulators. Such tools should allow the different types of uncertainty

and change to be expressed, and should allow the temporal nature of the changes to be

described. An initial scheme for a generator for scheduling problems has been proposed

[60]. Tools of this sort would be a start on the road to classifying techniques, and identify-

ing which methods are best suited to which problem types. A common library of problems

would be useful in itself, to give an indication of the range and frequency of the different

problem types in practical applications. For example, CSPLib5, an otherwise invaluable

repository of benchmark constraint problems, contained no problems with explicit uncer-

tainty or dynamism.

A related challenge is to bring all the different frameworks together. There are some

foundational approaches, like Dynamic CSP [17], but nothing as yet with a similar cov-

erage to semiring CSP [12] or valued CSP [69] for soft constraints. Can we find a single

framework that encompasses all the different features proposed so far? One such frame-

work has recently been proposed [63], and the question remains open as to whether such

a framework should have a rich language allowing the direct expression of many different

features, or a simpler more restricted language which would require the reformulation of

problems.

On an abstract level, there are three main solution techniques: extending the repre-

sentational power and reasoning methods to represent uncertain and dynamic problems

explicitly, and generate their solutions; reformulating problems into large deterministic

problems, and generating the solutions using existing techniques; or generating scenarios

or samples, and then solving each one using standard deterministic techniques. It is an

open question as to where the boundary lies, to allow us to decide which technique should

be applied to which class and size of problem. In particular, more tractability results are

required for the different formulations.

In general, constraint solving under change and uncertainty is in its infancy. Closer

links need to be established with the existing techniques in other areas of artificial intel-

ligence, mathematics and optimisation, including belief networks [40], MDPs [65] and

POMDPs [57], queuing theory [35], stochastic processes [41], stochastic programming

[11], Monte Carlo methods [28], stochastic satisfiability [48], decision theory [34] and

fuzzy logic [46]. See Halpern [36] for an overview of uncertainty reasoning in general.

Finally, the biggest challenge is to integrate dynamic and uncertain reasoning meth-

ods with industrial strength constraint programming tools — as has begun to be the case

with, for example, the PaLM system [43]. This would allow the approaches discussed

in this chapter and future techniques to be put into practice for real-world decision and

optimisation problems, without requiring users to write their own search and propagation

algorithms. Towards this goal, Fromherz and Conley [31] describe a general constraint

solver design to support a dynamic environment. Further progress is likely to be made by

integrating principled simulation and sampling techniques first — see for example [50] —

since they will allow existing CP tools to be used without modification.

5http://www.csplib.org, 29th September, 2005

K. N. Brown, I. Miguel 755

21.7 Summary

Many real and important problems involve change and uncertainty. Solutions are required

that take account of vagueness in the problem description, or that minimise the effect of the

uncertainty on the solution. Basic approaches to handling change include rapid reaction

through re-specifying the problems and re-solving when the changes occur, preparing to

change by maintaining explanations and data structures that will allow the solver to avoid

repeating work, or proactively generating solutions that are robust, by explicitly reasoning

about the possible changes. A number of different techniques have been developed, and

they have demonstrated that constraint programming methods can be extended to handle

many different forms of dynamism and uncertainty, and that many exemplar problems can

be solved efficiently. Constraint programming toolkits need to be extended with facilities

to handle such problems. Further work is required to establish which of the techniques and

frameworks are practical candidates, and to integrate this body of research with the many

other research fields which deal with change and uncertainty. Finally, for an alternative

viewpoint on the material in this chapter, the reader is directed to the survey by Verfaillie

and Jussien [72].

Acknowledgments

We thank the anonymous referee for useful comments on a draft of this chapter. Ken

Brown’s work was supported in part by grants 03/CE3/I405 (SFI Centre for Telecom-

munications Value-chain Research) and SC/2003/81 (Enterprise Ireland). Ian Miguel is

supported by a UK Royal Academy of Engineering/EPRSC Research Fellowship.

Bibliography

[1] R. Bartak and P. Surynek. An improved algorithm for maintaining arc consistency

in dynamic constraint satisfaction problems. In FLAIRS’05: Proceedings of the

Eighteenth International Florida Artificial Intelligence Research Society Conference,

pages 161–166. AAAI Press, 2005.

[2] R. Bartak, T. Muller, and H. Rudova. A new approach to modeling and solving

minimal perturbation problems. In Recent Advances in Constraints, volume 3010,

pages 223–249. Springer Lecture Notes in Artificial Intelligence, 2004.

[3] J. C. Beck and N. Wilson. Job shop scheduling with probabilistic durations. In

ECAI’04: Proceedings of the Sixteenth European Conference on Artificial Intelli-

gence, pages 652–656. IOS Press, 2004.

[4] J. C. Beck and N. Wilson. Proactive algorithms for scheduling with probabilistic

durations. In IJCAI’05: Proceedings of the Nineteenth International Joint Conference

on Artificial Intelligence, pages 1201–1206. Professional Book Center, 2005.

[5] T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic con-

straint programming: A study of online multichoice knapsack with deadlines. In

CP’01: Proceedings of the Seventh International Conference on Principles and Prac-

tice of Constraint Programming, volume 2239, pages 61–76. Springer Lecture Notes

in Computer Science, 2001.

756 21. Uncertainty and Change

[6] R. Bent and P. van Hentenryck. The value of consensus in online stochastic schedul-

ing. In ICAPS’04: Fourteenth International Conference on Automated Planning and

Scheduling, pages 219–226. AAAI Press, 2004.

[7] R. Bent and P. van Hentenryck. Regrets only! online stochastic optimization under

time constraints. In AAAI’04: Proceedings of the Nineteenth National Conference on

Artificial Intelligence, pages 501–506. AAAI Press, 2004.

[8] R. Bent and P. van Hentenryck. Online stochastic optimization without distribu-

tions. In ICAPS’05: Fifteenth International Conference on Automated Planning and

Scheduling, pages 171–180. AAAI Press, 2005.

[9] C. Bessiere. Arc-consistency in dynamic constraint satisfaction problems. In

AAAI’91: Proceedings of the Ninth National Conference on Artificial Intelligence,

pages 221–226. AAAI Press/MIT Press, 1991.

[10] C. Bessiere. Arc-consistency for non-binary dynamic CSPs. In ECAI’92: Proceed-

ings of the Tenth European Conference on Artificial Intelligence, pages 23–27. John

Wiley and Sons, 1992.

[11] J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer

Verlag, 1997.

[12] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semi-rings. In

IJCAI’95: Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence, pages 624–630. Morgan Kaufmann, 1995.

[13] D.B. Boyd and J. Bowen. Using dependency records to generate design coordina-

tion advice in a constraint-based approach to concurrent engineering. Computers in

Industry, 33(2):191–199, 1997.

[14] A. J. Davenport, C. Gefflot, and J. C. Beck. Slack-based techniques for robust sched-

ules. In ECP’01: Proceedings of the Sixth European Conference on Planning, pages

7–18, 2001.

[15] R. Debruyne. Arc-consistency in dynamic CSPs is no more prohibitive. In ICTAI’96:

Proceedings of the Eighth International Conference on Tools with Artificial Intelli-

gence, pages 299–307. IEEE Computer Society, 1996.

[16] R. Debruyne, G. Ferrand, N. Jussien, W. Lesaint, S. Ouis, and A. Tessier. Correctness

of constraint retraction algorithms. In FLAIRS’03: Proceedings of the Sixteenth Inter-

national Florida Artificial Intelligence Research Society Conference, pages 172–176.

AAAI Press, 2003.

[17] R. Dechter and A. Dechter. Belief maintenance in dynamic constraint networks. In

AAAI’88: Proceedings of the Ninth National Conference on Artificial Intelligence,

pages 37–42. AAAI Press/MIT Press, 1988.

[18] R. Dechter and D. Larkin. Hybrid processing of belief and constraints. In UAI’01:

Proceedings of the Seventeenth Annual Conference on Uncertainty in Artificial Intel-

ligence, pages 112–119. Morgan Kaufmann, 2001.

[19] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks and

their and/or search space. In UAI’04: Proceedings of the Twentieth Annual Confer-

ence on Uncertainty in Artificial Intelligence, 2004.

[20] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelli-

gence, 49:61–95, 1991.

[21] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.

[22] D. Dubois, H. Fargier, and H. Prade. Possibility theory in constraint satisfaction

problems. Applied Intelligence, 6:287–309, 1996.

K. N. Brown, I. Miguel 757

[23] H. El Sakkout and M. Wallace. Probe backtrack search for minimal perturbation in

dynamic scheduling. Constraints, 5(4):359–388, 2000.

[24] B. Faltings and S. Macho-Gonzalez. Open constraint programming. Artificial Intel-

ligence, 161, 2005.

[25] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a probalistic

approach. In ECSQARU’93: Proceedings of the Second European Conference on

Symbolic and Qualitative Approaches to Reasoning with Uncertainty, volume 747,

pages 97–104. Springer Lecture Notes in Computer Science, 1995.

[26] H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. A constraint satisfaction

framework for decision under uncertainty. In UAI’95: Proceedings of the Eleventh

Conference on Uncertainty in Artificial Intelligence, pages 167–174. Morgan Kauf-

mann, 1995.

[27] H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: a framework

for decision problems under incomplete knowledge. In AAAI’96: Proceedings of

the Thirteenth National Conference on Artificial Intelligence, pages 175–180. AAAI

Press/MIT Press, 1996.

[28] G. S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer

Verlag, 1996.

[29] D. Fowler and K. Brown. Branching constraint satisfaction problems and markov

decision problems compared. Annals of Operations Research, 118:85–110, 2003.

[30] D. W. Fowler and K. N. Brown. Branching constraint satisfaction problems for solu-

tions robust under likely changes. In CP2000: Proceedings of the Sixth International

Conference on Principles and Practice of Constraint Programming, volume 1894,

pages 500–504. Springer Lecture Notes in Computer Science, 2000.

[31] M. Fromherz and J. Conley. Issues in reactive constraint solving. In COTIC’97: Pro-

ceedings of the Workshop on Concurrent Constraint Programming for Time Critical

Applications, 1997.

[32] Y. Georget, P. Codognet, and F. Rossi. Constraint retraction in CLP(FD): Formal

framework and performance results. Constraints, 4(1):1–41, 1999.

[33] M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research, 1:

25–46, 1993.

[34] P. Goodwin and G. Wright. Decision Analysis for Management Judgment (3e). Wiley,

2004.

[35] D. Gross and C. M. Harris. Fundamentals of Queueing Theory (3e). Wiley, 1998.

[36] J. Halpern. Reasoning about Uncertainty. MIT Press, 2003.

[37] E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming.

In CPAIOR’04: Proceedings of the First International Conference on Integration of

AI and OR Techniques in Constraint Programming for Combinatorial Optimisation

Problems, volume 3011, pages 157–172. Springer Lecture Notes in Computer Sci-

ence, 2004.

[38] E. Hebrard, B. Hnich, and T. Walsh. Robust solutions for constraint satisfaction and

optimization. In ECAI’04: Proceedings of the Sixteenth European Conference on

Artificial Intelligence, pages 186–190. IOS Press, 2004.

[39] A. Holland and B. OŚullivan. Weighted super solutions for constraint programs.

In AAAI’05: Proceedings of the Twentieth National Conference on Artificial Intelli-

gence, pages 378–383. AAAI Press/MIT Press, 2005.

[40] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

758 21. Uncertainty and Change

[41] P. W. Jones and P. Smith. Stochastic Processes. Oxford University Press, 2001.

[42] N. Jussien. The versatility of using explanations within constraint programming.

Technical Report 03-04-INFO, Ecole des Mines de Nantes, 2003.

[43] N. Jussien and V. Barichard. The PaLM system: Explanation-based constraint pro-

gramming. In TRICS’00: Proceedings of the International Workshop on Techniques

for Implementing Constraint Programming Systems, pages 118–133, 2000.

[44] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency within

dynamic backtracking. In CP’2000: Proceedings of the Sixth International Confer-

ence on Principles and Practice of Constraint Programming, volume 1894, pages

249–261. Springer Lecture Notes in Computer Science, 2000.

[45] S. Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and

other CSP search techniques in graphlan. Journal of Artificial Intelligence Research,

12:1–34, 2000.

[46] G. Klir and Yuan B. Fuzzy sets and fuzzy logic: theory and applications. Prentice

Hall, 1995.

[47] E. Lamma, P. Mello, M. Milano, R. Cucchiara, M. Gavanelli, and M. Piccardi. Con-

straint propagation and value acquisition: Why we should do it interactively. In

IJCAI’99: Proceedings of the Sixteenth International Joint Conference on Artificial

Intelligence, pages 467–473. Morgan Kaufmann, 1999.

[48] M. Littman, S. Majercik, and T. Pitassi. Stochastic boolean satisfiability. Journal of

Automated Reasoning, 27(3):251–296, 2001.

[49] S. Macho-Gonzalez and P. Meseguer. Open, interactive and dynamic CSP. In Pro-

ceedings of the International Workshop on Constraint Solving under Change and

Uncertainty, pages 13–17, 2005.

[50] S. Manander, A. Tarim, and T. Walsh. Scenario-based stochastic constraint program-

ming. In IJCAI’03: Proceedings of the Eighteenth International Joint Conference on

Artificial Intelligence, pages 257–262. Morgan Kaufmann, 2003.

[51] I. Miguel and Q. Shen. Fuzzy rrDFCSP and planning. Artificial Intelligence, 148

(1–2):11–52, 2003.

[52] S. Minton, M.D. Johnston, A.B. Philps, and P. Laird. Minimizing conflicts: A heuris-

tic repair method for constraint satisfaction and scheduling problems. Artificial Intel-

ligence, 58:161–205, 1992.

[53] S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In AAAI’90:

Proceedings of the Eighth National Conference on Artificial Intelligence, pages 25–

32. AAAI Press/MIT Press, 1990.

[54] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal uncer-

tainty. In IJCAI’01: Proceedings of the Seventeenth International Joint Conference

on Artificial Intelligence, pages 494–502. Morgan Kaufmann, 2001.

[55] M. Mouhoub. Arc consistency for dynamic CSPs. In KES’03: Proceedings of the

Seventh International Conference on Knowledge-based Intelligent Information and

Engineering Systems, volume 2773, pages 393–400. Springer Lecture Notes in Com-

puter Science, 2003.

[56] B. Neveu and P. Berlandier. Maintaining arc consistency through constraint retrac-

tion. In ICTAI’94: Proceedings of the Sixth International Conference on Tools with

Artificial Intelligence, pages 426–431. IEEE Computer Society, 1994.

[57] L. Pack Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

K. N. Brown, I. Miguel 759

[58] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[59] A. Petcu and B. Faltings. Optimal solution stability in continuous-time optimiza-

tion. In DCR’05: Proceedings of the Sixth International Workshop on Distributed

Constraint Reasoning, pages 207–221, 2005.

[60] N. Policella and R. Rasconi. Looking for a common scheduling perturbations bench-

mark. In Changes’05: Proceedings of the International Workshop on Constraint

Solving under Change and Uncertainty, Sitges, pages 23–27, 2005.

[61] N. Policella, A. Oddi, S. F. Smith, and A. Cesta. Generating robust partial order

schedules. In CP’04: Proceedings of the Tenth International Conference on the

Principles and Practice of Constraint Programming, volume 3258, pages 406–511.

Springer Lecture Notes in Computer Science, 2004.

[62] N. Policella, S. F. Smith, and A. Cesta, A.and Oddi. Generating robust schedules

through temporal flexibility. In ICAPS’04: Fourteenth International Conference on

Automated Planning and Scheduling, pages 209–218. AAAI Press, 2004.

[63] C. Pralet, G. Verfaillie, and T. Schiex. Composite graphical models for reasoning

about uncertainties, feasibilities, and utilities. In Soft’05: Proceedings of the Seventh

International Workshop on Preferences and Soft Constraints, Sitges, pages 104–118,

2005.

[64] P. Prosser, C. Conway, and C. Muller. A constraint maintenance system for the dis-

tributed resource allocation problem. Intelligent Systems Engineering, 1(1), 1992.

[65] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley, 1994.

[66] N. Roos, Y. Ran, and J. van den Herik. Combining local search and constraint propa-

gation to find a minimal change solution for a dynamic CSP. In AIMSA’00: Proceed-

ings of the Ninth International Conference on Artificial Intelligence: Methodology,

Systems, and Applications, volume 1904, pages 272–282. Springer Lecture Notes in

Computer Science, 2000.

[67] M. Sabin and E. Freuder. Detecting and resolving inconsistency and redundancy in

conditional constraint satisfaction problems. In Proceedings of the CP’98 Workshop

on Constraint Problem Reformulation, 1998.

[68] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint

satisfaction problems. International Journal of Artificial Intelligence Tools, 3(2):

187–207, 1994.

[69] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: Hard

and easy problems. In IJCAI’95: Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence, pages 631–637. Morgan Kaufmann, 1995.

[70] P. Surynek and R. Bartak. A new algorithm for maintaining arc consistency after

constraint retraction. In CP’04: Proceedings of the Tenth International Conference

on Principles and Practice of Constraint Programming, volume 3258, pages 767–

771. Springer Lecture Notes in Computer Science, 2004.

[71] P. van Hentenryck and T. L. Provost. Incremental search in constraint logic program-

ming. New Generation Computing, 9:257–275, 1991.

[72] G. Verfaillie and N. Jussien. Constraint solving in uncertain and dynamic environ-

ments: A survey. Constraints, 10(3):253–281, 2005.

[73] G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction prob-

lems. In AAAI’94: Proceedings of the Twelfth National Conference on Artificial

Intelligence, pages 307–312. AAAI Press, 1994.

760 21. Uncertainty and Change

[74] T. Vidal and H. Fargier. Handling contingency in temporal constraint networks: From

consistency to controllabilities. Journal of Experimental and Theoretical Artificial

Intelligence, 11:23–45, 1999.

[75] R. J. Wallace and E. C. Freuder. Stable solutions for dynamic constraint satisfac-

tion problems. In CP’98: Proceedings of the Fourth International Conference on

Principles and Practice of Constraint Programming, volume 1520, pages 447–461.

Springer Lecture Notes in Computer Science, 1998.

[76] T. Walsh. Stochastic constraint programming. In ECAI’02: Proceedings of the Fif-

teenth European Conference on Artificial Intelligence, pages 111–115. IOS Press,

2002.

[77] N. Yorke-Smith and C. Gervet. Certainty closure: A framework for reliable con-

straint reasoning with uncertainty. In CP’03: Proceedings of the Ninth International

Conference on Principles and Practice of Constraint, volume 2833, pages 769–783.

Springer Lecture Notes in Computer Science, 2003.

[78] N. Yorke-Smith, K. B. Venable, and F. Rossi. Temporal reasoning with preferences

and uncertainty. In IJCAI’03: Proceedings of the Eighteenth International Joint Con-

ference on Artificial Intelligence, pages 1385–1386. Morgan Kaufmann, 2003.

