
Decision Network Semantics of Branching

Constraint Satisfaction Problems∗

Ken Brown1, Peter Lucas2, and David Fowler3

1Cork Constraint Computation Centre, Department of Computer Science

University College Cork, Cork, Ireland

Email: k.brown@cs.ucc.ie

2Institute for Computing and Information Sciences

University of Nijmegen, Toernooiveld 1

6525 ED Nijmegen, The Netherlands

Email: peterl@cs.kun.nl

3Department of Computing Science, University of Aberdeen

AB24 3EU, Aberdeen, UK

Email: dfowler@csd.abdn.ac.uk

Abstract

Branching Constraint Satisfaction Problems (BCSPs) have been introduced to model dy-
namic resource allocation subject to constraints and uncertainty. We give BCSPs a formal
probability semantics by showing how they can be mapped to a certain class of Bayesian
decision networks. This allows us to describe logical and probabilistic constraints in a
uniform fashion. We also discuss extensions to BCSPs and decision networks suggested
by the relationship between the two formalisms.

1 Introduction

Resource allocation is the problem of assigning resources to tasks subject to constraints,
and has been studied in operations research and computer science for many years [1, 2, 9].
Recently, the problem has been investigated using constraint satisfaction methods [17], which
allow arbitrary combinatorial constraints to be placed on the problem. In its simplest form,
tasks can be represented by variables, and resources by values to be assigned to the variables,
while constraints restrict the values that can be assigned simultaneously. A solution to a
problem is then an assignment of values such that all constraints are satisfied. Initially,
such approaches were restricted to deterministic, static problems; more recently it has been
extended to problems that change over time, and for which there is some uncertainty about
what the changes will be. Branching Constraint Satisfaction [6, 7] has been proposed to
model problems where new variables (or tasks) are added to the problem after some decisions
have been made. The uncertainty in the sequence of additions is modelled by a transition

∗Published in: Th.D. Nielsen and N.L. Zhang (eds.), Symbolic and Quantitative Approaches to Reasoning

with Uncertainty : Proc ECSQARU 2003, LNAI2711. Springer, Berlin, 2003, pp. 230–242.

1



tree with arcs labelled with probabilities. Branching CSPs are known to be NP hard [8].
Complete and incomplete optimising algorithms have been developed, using a combination of
constraint-based tree search and decision-theoretic computation, and the methods have been
compared to those used in Markov Decision Problems [8]. However, the probability semantics
of BCSPs were presented only informally.

Bayesian networks have been introduced as formalisms to represent and reason with joint
probability distributions, taking into account conditional independence statements [15]. Given
a Bayesian network and a (possibly empty) set of evidence concerning the variables included
in the network, the probability distribution on any subset of variables can be computed. For
this, efficient algorithms exist with fast, well-engineered computer implementations [10, 13],
even though the problem of probabilistic reasoning in Bayesian networks is known to be NP
hard in general [4]. However, reasoning with Bayesian networks for real-world problems is
normally feasible. Formally, Bayesian networks can only be used for probabilistic reasoning,
but recent work [14, 12] shows how some logical consistencies can be modelled and solved.
Finally, we can augment a network with decision theory, to obtain influence diagrams or
decision networks, which can be used for decision-making under uncertainty [10, 16].

In this paper, we study the relationship between branching CSPs, Bayesian networks and
decision networks. Our aim is to establish the probability semantics by mapping BCSPs to
decision networks, providing a uniform representation for probabilistic and logical constraints.
We introduce Branching CSPs, giving a precise, formal definition, and we summarise Bayesian
networks and decision networks. We then show how BCSPs can be mapped to decision
networks, and in particular we show how to represent combinatorial constraints. We prove
that optimal solutions to problems in the two different formalisms are equivalent. Finally
we consider how the techniques of decision networks may be used to generalise BCSPs, and,
similarly, how BCSP methods might allow us to make explicit use of constraints in decision
networks.

2 Branching constraint satisfaction problems

2.1 Preliminary definitions

In the following, we borrow the terminology for graphs from [18]; if S = (V,A) is a directed
tree with set of vertices V and set of directed arcs A ⊆ V × V , then the set of children of a
vertex v ∈ V is denoted by σ(v); the unique parent of a vertex v ∈ V is represented by π(v).
Furthermore, the level of a vertex v is defined as the length of the path from the root to v [11].
The set of all vertices in the tree at the same level n ∈ N is denoted by λ(n). The terminology
will be generalised for acyclic directed graphs. Sets of elements will be represented by bold
face letters, e.g. V, if confusion may arise otherwise.

2.2 A motivating example

We first present a simple motivating example. A company has three workers, x, y and z, and
five possible tasks, A, B, C, D and E that it may be asked to carry out. Each worker is
qualified to do some of the tasks, as shown in Fig. 1; each task is associated with a utility,
representing the profit resulting from completing the task successfully. No worker can do
more than one task. The company has some uncertain knowledge about the sequence of tasks
it will be asked to perform, sketched as a probabilistic state transition tree in Fig. 1. There

2



Tasks

Staff A B C D E

x
√ √ √ √ √

y
√ − − − √

z
√ − √ − −

Utilities 3 6 10 6 6

v0/A

v1/B

v2/C

v3/D

v4/E

v5/D

v6/B

0.6

0.4

0.5

0.5

0.5

0.5

Figure 1: An example BCSP. Left: table of staff skills and tasks, with associated utilities
for individual tasks;

√
means that the task is suitable for the worker, and ‘−’ that it is

unsuitable. Right: probabilistic state transition tree. An entry v/X indicates that variable
X arrives in vertex v; numeric labels on the arcs indicate transition probabilities.

will definitely be three tasks, and the first task to arrive will be A. Subsequently, either task
B or C will arrive, with probabilities 0.6 and 0.4 respectively. If the second task is B, then
the last task will be either D (with probability 0.5) or E (probability 0.5). If the second task
is C, then the last task will either be D (0.5) or B (0.5). Some sequences of tasks may not
be feasible for the company to do, and so it may choose to reject some tasks. The aim is
to assign workers to tasks as soon as the tasks arrive, maximising the expected utility, while
ensuring all constraints are satisfied.

2.3 Formal definition

We give the formal definition of branching CSPs below. ⊤, or null, is a special value used to
represent an explicit decision not to assign a value to a variable. An assignment of ⊤ to a
variable will mean that any constraint on that variable will be satisfied by default.

Definition 1 A binary branching CSP is a tuple BCSP = (X,D, δ,C,U, S, τ):

• X is a finite set of variables;

• D is a finite set of values, with function δ : X → ℘(D ∪ {⊤}) associating a domain of

possible values to each variable x ∈ X, such that ⊤ ∈ δ(x) for each x ∈ X;

• C is a finite set of binary constraints, where each c ∈ C is a set of triples (x, y,R),
x, y ∈ X, and R ⊆ δ(x)× δ(y) such that ∀a ∈ δ(x)∀b ∈ δ(y) : (⊤, b) ∈ R and (a,⊤) ∈ R;

• U : X × (D ∪ {⊤}) → R associates a utility to each value w ∈ D ∪ {⊤} assigned to a

variable x ∈ X, with U(x,⊤) = 0 for each x ∈ X;

• S = (V,A, γ) is a probabilistic state transition tree with vertices V and arcs A; there

is a distinguished vertex v0 ∈ V called the root, which has no parent; the function

γ : V × V → [1, 0] is defined such that γ(v, v′) = 0 if (v, v′) 6∈ A, and if σ(v) 6= ∅,
∑

v′∈σ(v) γ(v, v′) = 1, for each v ∈ V ; γ represents the conditional probability that

vertex v′ is the next to become active, given that the previous active vertex was v;

3



• τ : V → X is a surjective function such that for any two vertices v, v′ on the same path

p in S, v = v′ if τ(v) = τ(v′). τ assigns a variable to each vertex, ensuring that no

variable appears twice on a path from root to leaf.

The probabilistic transitions are defined in terms of the vertices of the tree, and not directly
in terms of the variables. Each vertex represents an event, and multiple different events may
cause the same variable to become active. The probability of an event depends only on its
immediate predecessor, and thus the problem obeys the Markov property.

Definition 2 An assignment to a BCSP is a function ϕ : V → D ∪ {⊤} which assigns to

each vertex either a value from the domain of its associated variable or the null value ⊤.

Definition 3 A solution to a BCSP is an assignment ϕ such that if v and w are vertices on

a path in S = (V,A, γ) and (τ(v), τ(w), R) ∈ C, then (ϕ(v), ϕ(w)) ∈ R, i.e. ϕ satisfies all

constraints appearing on a path.

Definition 4 The expected utility of a vertex v in a solution ϕ to a BCSP, denoted by Ûϕ(v),
is defined as

Ûϕ(v) = U(τ(v), ϕ(v)) +
∑

v′∈σ(v)

γ(v, v′)Ûϕ(v′)

The expected utility of a solution to a BCSP is the expected utility of the root vertex in the

solution, i.e. Ûϕ(v0).

Note that a solution ϕ is a contingent solution, specifying an assignment to a variable de-
pendent on the sequence of arrivals. In fact, the assignments are defined in terms of events
(i.e. vertices of the tree), and not directly in terms of the variables. Further, the solution
can be executed as the problem unfolds; the assignments are not dependent on subsequent
developments of the problem. Thus the solution is a policy.

Definition 5 Let vi be a vertex at level i in the tree S = (V,A, γ), and let h = {(v0, x0),
(v1, x1), . . . , (vi−1, xi−1)} be the history of assignments made at vertices in the path from v0

to vi, with vj+1 ∈ σ(vj), in some solution ϕ. We say that the pair (vi, xi) is consistent with

h, written (vi, xi) ∝ h, if it satisfies all constraints between vi and assignments in h.

Definition 6 The maximum expected utility at a vertex v given its history h is the maxi-

mum, over consistent assignments, of the utility of an assignment plus the weighted sum of

the maximum expected utility of the child vertices, given the history h extended with the new

assignment:

Û(v | h) = max
x∈δ(τ(v)):(v,x)∝h



U(τ(v), x) +
∑

v′∈σ(v)

γ(v, v′)Û (v′ | h ∪ {(v, x)})





The goal of a BCSP is to find a solution with maximal expected utility. The maximal
expected utility is thus Û(v0 | ∅). A BCSP is essentially a decision tree, but which separates
out the probabilities from the logical constraints on the decisions. It is possible to combine
the constraints into the tree, but at the cost of a (worst-case) exponential explosion in the
tree size [8].

4



Reconsider the example introduced above. Formulated as a branching CSP it holds that
X = {A,B,C,D,E}, D = {x, y, z}, δ(A) = · · · = δ(E) = {x, y, z,⊤}, U(x,⊤) = 0 for each
x ∈ X, and for each w ∈ D: U(A,w) = 3, U(B,w) = 6, U(C,w) = 10, U(D,w) = 6,
U(E,w) = 5, and the constraint set C consists of the following elements:

• 〈A,B, {(x,⊤), (y, x), (y,⊤), (z, x), (z,⊤), (⊤, x), (⊤,⊤)}〉

• 〈A,C, {(x, z), (x,⊤), (y, x), (y, z), (y,⊤), (z, x), (z,⊤), (⊤, x), (⊤, z), (⊤,⊤)}〉

• 〈A,D, {(x,⊤), (y, x), (y,⊤), (z, x), (z,⊤), (⊤, x), (⊤,⊤)}〉

• 〈A,E, {(x, y), (x,⊤), (y, x), (y,⊤), (z, x), (z, y), (z,⊤), (⊤, x), (⊤, y), (⊤,⊤)}〉

• 〈B,C, {(x, z), (x,⊤), (⊤, x), (⊤, z), (⊤,⊤)}〉

• 〈B,D, {(x,⊤), (⊤, x), (⊤,⊤)}〉

• 〈B,E, {(x, y), (x,⊤), (⊤, x), (⊤, y), (⊤,⊤)}〉

• 〈C,D, {(x,⊤), (z, x), (z,⊤), (⊤, x), (⊤,⊤)}〉

• 〈C,E, {(x, y), (x,⊤), (z, x), (z, y), (z,⊤), (⊤, x), (⊤, y), (⊤,⊤)}〉

• 〈D,E, {(x, y), (x,⊤), (⊤, x), (⊤, y), (⊤,⊤)}〉

The probabilistic state transition tree S = (V,A, γ) with the definition of the function τ is
according to Fig. 1. The optimal solution is ϕ(v0) = y, ϕ(v1) = x, ϕ(v2) = z, ϕ(v3) = ⊤,
ϕ(v4) = ⊤, ϕ(v5) = x, ϕ(v6) = x, with expected utility Ûϕ(v0) = 13. Note that the task D
is given a different allocation depending on the arrival sequence: it is rejected if it arrives in
event v3 (after B in v1), but it is allocated worker x if it arrives in event v5 (after C in v2).

The definition above is a slightly modified form of the one given in [7]. There it was
assumed that the the utility function U did not distinguish between different values for a
given variable (with the exception of ⊤); i.e. U(x, v) = U(x, v′) for each v′, v ∈ δ(x)\{⊤}.
Also, in the probabilistic state transition tree, the sum of the transition probabilities for the
children of a vertex was allowed to be less than 1. The missing probability represented the
case where the parent event had no successor. In the definition given here, we could represent
this by having a special variable whose domain is restricted to ⊤, and ensuring any vertex
which activates this variable has no children.

3 Bayesian networks and decision networks

A Bayesian network B is a pair B = (G,P ), where G = (N, A) is an acyclic directed graph
with set of chance nodes N, representing random variables, and set of arcs A ⊆ N × N,
representing statistical independence relationships among the variables [15]. Here we assume
all random variables to be discrete. A joint probability distribution P is defined on the set
of variables as follows:

P (N) =
∏

X∈N

P (X | π(X))

5



A Bayesian network allows for computing any a posteriori probability distribution of interest
after entering evidence e into the network. In Bayesian network software packages, a poste-
riori probability distributions are computed from the marginal probability distribution of an
updated probability distribution P e; for every (free) variable X ∈ N, it holds that

P e(X) = P (X | e)

A decision network D = (G,P,N,D,W,u), or influence diagram, is a Bayesian network
with the addition of decision nodes D and utility nodes W, standing for decision and utility
variables, respectively. There is always a unique directed path in a decision network, on
which every decision node D in D occurs, i.e. decision nodes are linearly ordered. Each
utility variable W ∈ W stands for a utility function uW : δ(Z) → R, where δ(Z) is the
Cartesian product of the domains of variables in Z, and Z = π(W ). The collection of utility
functions is indicated by u.

Initial proposals of decision networks only included a single utility node. In more recent
descriptions, such as in the book by Jensen [10], a decision network may incorporate more
than one utility node Wi, i = 1, . . . , n, and it is assumed that the resulting multi-attribute
utility function uW is additive, i.e. the resulting utility uW is defined as follows:

uW(Z) =

n
∑

i=1

uWi
(Zi)

where Zi = π(Wi), W =
⋃n

i=1{Wi}, Z =
⋃n

i=1 Zi = π(W). Clearly, defining a utility
function in this fashion reduces the amount of utility information that has to be specified;
the space-complexity reduction can be as drastic as from exponential to linear.

The aim of evaluating a decision network is to determine the optimal expected utility û for
each decision d at a given decision node D, given the available evidence e, which includes all
previously made decisions. We assume a topological order ≺ of the nodes in the network, in
which we have combined consecutive nodes of the same type, and we place the utility nodes
last. Thus we have Y0 ≺ D0 ≺ Y1 ≺ D1 ≺ · · · ≺ Dn−1 ≺ Yn ≺ W . We then define the
maximum expected utility at a decision node Di given some evidence e to be

ûDi
(e) = max

di∈Di

ûYi+1
(e ∪ {Di = di})

and at a chance node Yi the expected utility is

ûYi
(e) =

∑

yi∈Yi

P (Yi = yi | e)ûDi
(e ∪ {Yi = yi})

In particular, we have the expected utility over the whole network:

ûY0
(∅) =

∑

y0∈Y0

P (Y0 = y0)ûD0
({Y0 = y0})

and for the terminating case we have:

ûYn
(e) =

∑

yn∈Yn

P (Yn = yn | e)uW (e ∪ {Yn = yn})

In diagrams of Bayesian networks and decision networks, chance nodes are indicated by circles
or ellipses, decision nodes by boxes and utility nodes by diamonds.

6



4 Relationship of branching CSPs to decision networks

4.1 Mapping branching CSPs to decision networks

Let BCSP = (X,D, δ,C,U, S, τ). Below, we define the steps that make up the mapping from
this representation to a decision network D = (G,P,N,D,W,u).

• For each set of vertices λ(n) at level n ∈ N of the tree S, there is a chance node Yn. The
domain of the associated random variable Yn is δ(Yn) = {v | v ∈ λ(n)}. The associated
probability distribution P is defined by: P (Yn = u | Yn−1 = v) = γ(v, u) for n > 0, and
P (Y0 = v0) = 1. Note that for two vertices v ∈ λ(n − 1) and u ∈ λ(n) with (v, u) 6∈ AS

we have that P (Yn = u | Yn−1 = v) = 0, indicating that this transition cannot take
place.

• Corresponding to each random variable Yn with domain δ(Yn), there is a decision node
Dn, with domain equal to δ(Dn) = {v.x | v ∈ δ(Yn), x ∈ δ(τ(v))}. There exists an
incoming arc to each decision node from its associated chance node. In addition, the
decision nodes are linked in a chain in an order reflecting the order of their associated
chance nodes. The nodes will be used to assign values to their associated decision
variables, which corresponds to assigning values to variables in the BCSP.

• For each chance node Yn there is a corresponding utility node Un. The parents of Un

are Yn and the decision node Dn. If Yn takes value v, and the decision node Dn takes
any value v.x, x 6= ⊤, then the utility value is U(τ(v), x); otherwise it is 0. The utility
nodes give their reward if a vertex (and hence a variable) has become active, and we
have assigned a non-null value to that instance of the variable.

• For each pair of chance nodes (Yi, Yj) such that there are vertices v ∈ δ(Yi) and v′ ∈ δ(Yj)
with a constraint (τ(v), τ(v′), R) ∈ C, there exists a chance node Ci,j with domain {t, f}
to represent the constraints on the corresponding decisions. The parents of Ci,j are the
decision nodes Di and Dj . The probability distribution is defined as follows:

P (Ci,j = t | Di = v.x,Dj = w.y) =

{

0 if (τ(v), τ(w), R) ∈ C, (x, y) /∈ R
1 otherwise

• There is one distinguished utility node UC , whose parents are all the constraint chance
nodes, with utility value 0 if all parents have value t, and utility value equal to −M
otherwise, where M is a penalty value larger than the sum of all utilities in the BCSP.
This node ensures that the constraints are satisfied.

• Finally, for any given history in the execution of a BCSP solution, there is a correspond-
ing evidence set for the network, defined by the function β below. Let H be the set of
all possible history sets, and E be the set of all possible evidence sets. Then

β : H → E : h 7→ {Yi = v,Di = v.x : (v, x) ∈ h, v ∈ λ(i)}

Note that there are particular features of the mapping above, which can be exploited to
simplify the utility calculations:

(1) Each variable Yj is conditionally independent of each variable Yk, k = 0, . . . , j − 2, and
of each decision variable Dl given variable Yj−1.

7



(2) The utility function u defined above for the utility nodes Uj is additive:

u(τ(y0), d0, . . . , τ(ym), dm) =

m
∑

i=0

U(τ(yj), dj)

where yj is a possible value of random variable Yj and dj is a possible value of decision
variable Dj .

(3) We can create a topological order Y0 ≺ D0 ≺ Y1 ≺ D1 ≺ · · · ≺ Dn ≺ C ≺ W

where C represents the constraint chance nodes, and W represents the utility nodes.
The initial node Y0 has domain {v0}, so the maximum expected utility of the network
ûY0

(∅) = ûD0
(Y0 = v0), and the utility function uW (e) =

∑n
i=0 U(τ(yi), di) + uC(e).

We can now simplify the utility definitions as follows:

ûDi
(e) = max

di∈Di

[

U(τ(yi), di) + ûYi+1
(e ∪ {Di = di})

]

ûDn
(e) = max

dn∈Dn

[U(τ(yn), dn) + ûC(e ∪ {Dn = dn})]

The ûC term in the second equation is simply the maximum expected utility from the con-
straint nodes. If any of the constraints evaluate to false, then the utility is −M . Otherwise,
it is 0.

The highest expected utility at the first decision node is equal to the optimal expected
utility of the BCSP, and the optimal decisions of the decision nodes correspond to the optimal
plan of the BCSP. We prove this in the next section.

The result of mapping the example BCSP discussed in Section 2 is shown in Fig. 2. From
the mapping designed above, it follows that the domain of the variable Y0 is equal to {v0},
for Y1 it is equal to {v1, v2}; the domain of the decision variable D0 is {v0.x, v0.y, v0.z, v0.⊤},
and for D1 it is equal to {v1.x, v1.⊤, v2.x, v2.z, v2.⊤}.

4.2 Proof that the mapping is correct

We need to show that the optimal solution to the BCSP (i.e. the maximum expected utility
at the root node) has the same value as the maximum expected utility of the first decision
node in the network.

We will show that the maximum expected utility from any node in the tree given some
history is the same as the maximum expected utility from the corresponding decision node in
the decision network, given the corresponding evidence.

Theorem 1 Let D = (G,P,N,D,W,u) be the decision network corresponding to the BCSP =
(X,D, δ,C,U, S, τ) obtained by the mapping defined in Section 4.1, then for each node at level

k it holds that:

Û(vk | h) = ûD(β(h) ∪ {Yk = vk})

Proof: (By backwards induction on the level of the node in the tree.)
Basis Suppose v is a vertex in λ(n), with n maximal level. Then v must be a leaf vertex.

It holds that

Û(v | h) = max
x∈δ(τ(v)):(v,x)∝h

U(τ(v), x)

8



Figure 2: Decision network resulting from the mapping of the example BCSP.

and Yn and Dn are its corresponding chance and decision nodes. For the decision network, v
must be the value observed at chance node Yn, so we have:

ûDn
(β(h) ∪ {Yn = v}) = max

dn∈Dn

[U(τ(v), dn) + ûC(β(h) ∪ {Yn = v,Dn = dn}]

By the definition of the penalty value, we only need to consider those dn which do not violate
the constraints. There will always be at least one, namely v.⊤, and so the ûC term will be 0.
Thus we have as required

ûDn
(β(h) ∪ {Yn = v) = max

x∈δ(τ(v)):(v,x)∝h

U(τ(v), x)

Induction hypothesis Suppose that

Û(vj | h) = ûDj
(β(h) ∪ {Yj = vj})

holds for all vertices in the BCSP at levels j = n, n − 1, . . . , i + 1.
Induction step Now consider a vertex v in the BCSP at level i. If v is a leaf, then the result
is true by the basis argument. Now, suppose v is not a leaf, then it holds that:

Û(v | h) = max
x∈δ(τ(v)):(v,x)∝h



U(τ(v), x) +
∑

v′∈σ(v)

γ(v, v′)Û (v′ | h ∪ {(v, x)})





but v′ must be a node at level i + 1, so by the induction hypothesis

= max
x∈δ(τ(v)):(v,x)∝h



U(τ(v), x) +
∑

v′∈σ(v)

γ(v, v′)ûDi+1
(β(h) ∪ {Yi = v,Di = v.x, Yi+1 = v′})





but since all vi+1 ∈ Yi+1 with vi+1 /∈ σ(v) give a zero probability, and the decisions in Di

which give a non-negative utility are exactly those in δ(τ(v)) which satisfy the constraints in
h

= max
di∈Di



U(τ(v), di)+
∑

v′∈Yi+1

P (Yi+1 = v′ | Yi = v)ûDi+1
(β(h) ∪ {Yi = v,Di = di, Yi+1 = v′})





9



= max
di∈Di

[

U(τ(v), di) + ûYi+1
(β(h) ∪ {Yi = v,Di = di})

]

= ûDi
(β(h) ∪ {Yi = v})

and thus we have proved the result by induction. 2

As a corollary, we obtain that if the root node of the BCSP has an empty history, we can
write Û(v0) = ûD0

(Y0 = v0). Thus, we have proved the equivalence of the two representations
of the problem.

5 Future work: generalised branching CSPs

The mapping designed in Section 4.1 not only offers a decision-theoretic description of a
BCSP’s components, but also indicates how these components interact. The decision networks
that are produced are of a restricted form. Studying these restrictions suggests ways in which
BCSPs might be generalised to handle a wider range of problems.

The Bayesian network component of the resulting decision network is a linear chain Y0 →
Y1 → · · · → Yn with a completely certain initial event, whereas general Bayesian networks
are directed acyclic graphs. This restriction arises from the BCSP state transition tree, and
the fact that the root node of the tree is the known arrival of the first variable. The certain
initial event can easily be relaxed by having an empty root vertex with a number of possible
children, but relaxing the cause of the linear chain would require replacing the tree with a
directed acyclic graph more similar in style to a Bayesian network. This would allow us to
represent events which have multiple conditionally independent successors, while maintaining
a temporal interpretation of the arcs, instead of mutually exclusive children as at present.
Similarly, we could represent mutually independent parents of an event, instead of single
parents. We would also be able to make a distinction between temporal (state-transition)
and atemporal arcs, thus giving us a structure similar to a dynamic Bayesian network [5].

BCSPs currently assume that the arrival of variables is governed by uncertainty, but
actual decisions to assign a value to a variable do not influence the uncertainty. By adding
observation nodes to the uncertainty structure, linking these to explicit decision nodes, and
taking these observations into account when assessing utilities, we could model situations
where decisions may have an effect on the future distribution of tasks.

If we introduce both non-temporal arcs and explicit decision nodes, then we can represent
problems where instant decisions are not necessary. Solutions to the problem could wait
until more evidence had been received before making a decision (a restricted form of this was
proposed in [7]), or the solution method would be required to decide upon the best sequence
of decisions.

It should be noted that new algorithms would be required for the BCSP generalisations
discussed above, and that these algorithms might be neither easy to develop nor efficient.
Further study will be aimed at determining which of the generalisations still allow us to
solve BCSPs in reasonable time (in the average case). A different approach might be to add
explicit logical constraints into a decision network, and then attempt to produce BCSP-style
algorithms for these extended decision networks.

Finally, although we have presented a mapping from BCSPs to decision networks, we
have said nothing about the complexity of the mapping, or the ease of constructing repre-
sentations of problems. One of the advantages of Constraint Programming in general is the

10



ease of modelling, and the simplicity with which complex combinatorial constraints can be
expressed. Similarly, constraint algorithms are design to take advantage of the structure of
the constraints. We need to establish the complexity of the transformation in Section 4.1, and
determine what effect the extensional representation of the constraints has on the running
time of the decision network algorithms. Results here would help indicate which of our plans
for future work would be most profitable.

6 Conclusions

In this paper, we have given a decision-theoretic interpretation to a particular class of
constraint-satisfaction problems with uncertainty, viz. branching constraint satisfaction prob-
lems. We have done this using decision networks as a representation formalism to which
decision-theoretic, probabilistic and logical constraints were mapped, giving rise to a uniform
representation. The biggest advantage of this approach is that it allows us to study the in-
teractions between the various components of a BCSP more clearly. In addition, the insight
gained this way acted as a suitable foundation for the design of extensions to the original
BCSP formalism.

Acknowledgements

This work was carried out while Ken Brown was at the University of Aberdeen.

References

[1] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, 1957.

[2] R.W. Conway, W.L. Maxwell and L.W. Miller. Theory of Scheduling. Addison-Wesley,
Reading, Massachusetts, 1967.

[3] G.F. Cooper. A method for using belief networks as influence diagrams. In: Proceedings
of the 4th Workshop on Uncertainty in Artificial Intelligence 1988: 55–63.

[4] G.F. Cooper. The computational complexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence 1990; 42(2-3): 393–348.

[5] P. Dagum, A. Galper and E. Horvitz. Dynamic network models for forecasting. In: Pro-
ceedings of UAI92, 1992, pp. 41–48.

[6] D.W. Fowler and K.N. Brown. Branching constraint satisfaction problems for solutions
robust under likely changes. Proceedings CP2000, Springer Verlag, Berlin, 2000, pp.
500–504.

[7] D. W. Fowler. Branching Constraint Satisfaction Problems. PhD Thesis, Department of
Computing Science, University of Aberdeen, 2002.

[8] D.W. Fowler and K.N. Brown. Branching constraint satisfaction problems and Markov
decision problems compared. Annals of Operations Research 2003; 118: 85–100.

[9] E. Ignall and L. Schrage. Applications of the branch and bound technique to some flow-
shop scheduling problems. Operations Research 1965; 13(3): 400–412.

11



[10] F.V. Jensen. Bayesian Networks and Decision Graphs. Springer, New York, 2001.

[11] D.E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd
Ed. Addison-Wesley, Reading, MA, 1997.

[12] D. Larkin and R. Dechter. Bayesian inference in the presence of determinism. In: C.M.
Bishop and B.J. Frey (eds), Proceedings of the 9th International Workshop on Artificial
Intelligence and Statistics, Jan 3-6, 2003, Key West, FL.

[13] S.L. Lauritzen, D.J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society
(Series B) 1987; 50: 157–224.

[14] P.J.F. Lucas. Bayesian model-based diagnosis. International Journal of Approximate
Reasoning 2001; 27: 99–119.

[15] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo,
California, 1988.

[16] R.D. Shachter. Evaluating influence diagrams. Operation Research 1986; 34(6): 871–882.

[17] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.

[18] R.J. Wilson. Introduction to Graph Theory. Longman, Burnt Mill, 1979.

12


