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Abstract. Hypergraphical games provides a compact model of a
network of self-interested agents, each involved in simultaneous sub-
games with its neighbors. The overall aim is for the agents in the net-
work to reach a Nash Equilibrium, in which no agent has an incentive
to change their response, but without revealing all their private infor-
mation. Asymmetric Distributed constraint satisfaction (ADisCSP)
has been proposed as a solution to this search problem. In this paper,
we propose a new model of hypergraphical games as an ADisCSP
based on a new global constraint, and a new asynchronous algorithm
for solving ADisCSP that is able to find a Nash Equilibrium. We
show empirically that we significantly reduce both message passing
and computation time, achieving an order of magnitude improvement
in messaging and in non-concurrent computation time on dense prob-
lems compared to state-of-the art algorithms.

1 Introduction

In many multi-agent problems, agents must interact with each other
to achieve a global goal while maximising their own individual pref-
erences. The hypergraphical games model [13] provides a compact
representation of the problem, in which agent interactions are rep-
resented as normal-form strategic subgames, and the relationship
topology between the agents is represented as a hypergraph. Each
agent has a set of strategies, and a utility function specifying the
agent’s payoff under each possible combination of its own and neigh-
boring agents’ strategies in each subgame. A solution to a hyper-
graphical game is the selection of a strategy for each agent, such
that the network is in equilibrium. Typically, the aim is to find a
Nash Equilibrium (NE), in which no agent can improve its pay-
off by changing its strategy. To model more realistic problems, ε-
approximate Nash Equilibria (ε-NE) are considered, in which no
agent can improve its payoff by more than some minimum thresh-
old ε.

Given the multi-agent setting, algorithms to compute solutions
should be distributed, to avoid the need for agents to reveal po-
tentially private information. Early work focused on identifying
graph topologies which allowed polynomial-time solutions, based
on algorithms for Bayesian Network inference. More recent ap-
proaches focus on arbitrary graphs with cyclic dependencies, and
represent the problem as asymmetric distributed constraint satis-
faction (ADisCSP), maintaining the individual utility functions as
extensional table constraints [5]. ADisCSP allows agents to keep
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their strategic information private while optimizing their local util-
ity, and allows the system to stabilize at an equilibrium by coordinat-
ing agents’ decisions. However, for dense graphical games with large
strategy sets, the encoding of the table constraints ([5]) becomes ex-
pensive in the number or size of messages that need to be exchanged.

Our contributions in this paper are as follows. We develop new ap-
proaches to finding approximate Nash Equilibria for hypergraphical
games using the distributed constraint satisfaction framework. We
develop a new model of a hypergraphical game as ADisCSP using
a new global constraint, ε-BRConstraint, to represent an agent’s
requirement to find an approximate best strategy given the other de-
cisions in its neighborhood. We introduce asymmetric asynchronous
backtracking, AABT, a new algorithm for solving ADisCSP with
global constraints using intelligent backtracking to avoid thrashing.
AABT is then used to solve the problem of finding an ε-NE in hyper-
graphical games formulated as an ADisCSP. We compare the new
model and algorithm empirically to previous state-of-the-art algo-
rithms, and we show that we achieve significant reductions in non-
concurrent computation time and an order of magnitude improve-
ment in message passing.

The paper is organized as follows. Section 2 gives a brief overview
of related works on game theory and distributed CSP. Section 3 in-
troduces the necessary background, basic notation and terminology.
We present our model of the problem of finding ε-NE in hypergraph-
ical games as ADisCSP in Section 4. Section 5 introduces our new
algorithm, AABT, for solving ADisCSP with global constraints, and
we show our empirical results in Section 6.

2 Related Work

[8] introduced graphical games, a compact representation of
n-player normal-form games and proposed NashTree, a dynamic
programming algorithm for computing Nash equilibria in graphical
games for which the underlying graph is a tree. NashTree consists
of two phases: a table passing phase from the leaves to the root and
an assignment passing phase from the root to the leaves. [15] pro-
posed a constraint satisfaction generalization of NashTree for gen-
eral graphical games using variable elimination. They transform the
graphical game into a tree via triangulation, and then subsequently
run NashTree algorithm on the resulting junction tree.

[12] introduced the NashProp algorithm, another generalization of
NashTree for general graphical games based on belief propagation
requiring no triangulation. In the table passing phase, NashProp pro-
ceeds in a series of rounds to maintain (generalized) arc consistency
in the constraints network. In each round, every node will send a dif-
ferent binary-valued table to each of its neighbors in the graph. Each
table represents the value combination of the sender and the receiver
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that the sender believes could be in an ε-NE. In the assignment pass-
ing phase, NashProp performs a synchronous search to find ε-NE [5,
Section 5.1].

The pioneering algorithm for symmetric DisCSP was asyn-
chronous backtracking (ABT) [18, 2]. ABT is an asynchronous al-
gorithm executed autonomously by each agent, and is guaranteed to
converge to a global consistent solution (or detect inconsistency) in
finite time. [3] proposed two varieties of ABT for solving ADisCSP,
namely ABT-2ph and ABT-1ph. ABT-2ph alternates the execution of
ABT considering constraints in one direction following a total order-
ing on agents until the problem is solved or inconsistency is proved.
ABT-1ph checks constraints asynchronously in both directions, by
agents sending their proposed assignments to all their neighbors. In
ABT-1ph, an agent only changes its assignment when it is inconsis-
tent with a higher neighbor assignment. When it is inconsistent with
a lower neighbor assignment, the conflict is reported to the lower
neighbor to change its assignment. However, both algorithms were
restricted to solving problems with binary constraints.

Grubshtein and Meisels proposed in [5] a model of graphical
games as an ADisCSP with a unique private (global) table constraint
for each agent. The table constraint contains all tuples (joint strate-
gies) of the neighbors that satisfy the ε-NE condition. They also
proposed asynchronous Nash backtracking (ANT), the first asyn-
chronous algorithm for solving ADisCSP with global constraints ca-
pable of finding ε-NE. ANT is an extension of ABT-1ph that han-
dles asymmetric global (non-binary) constraints. ANT achieves or-
ders of magnitude improvements over NashProp. However, ANT
only uses the global constraints as checkers. In addition its handling
of global constraints produces chronological backtracks (thrashing),
as all value assignments for agents in the constraint are considered,
even if they are not the cause of the conflict. Recent developments in
DisCSP have shown how to make more effective use of global con-
straints, exploiting their pruning power, and backjumping closer to
the point of conflict [1, 16].

3 Preliminaries

In this section, we introduce some basic notation and terminology for
game theory, and describe the framework of hypergraphical games
before presenting the distributed constraint satisfaction formalism.

3.1 Game Theory

An n-player game in normal-form is a tuple (P, {Si, Ui}pi∈P})
where P = {p1, . . . , pn} is a set of n players (agents). For each
agent pi ∈ P , Si is a finite set of actions or pure strategies,

and Ui : S → R where S=
n×

i=1
Si, is a local utility hyperma-

trix/function that specifies the payoff for player pi under each strat-
egy profile s ∈ S. The joint strategic choice of all agents other than
agent pi is denoted by s−i, and s=(si, s−i). Ui(s) is the utility that
player pi receives when, for all players pj ∈ P , pj plays sj ∈ s. The
neighbors of agent pi are all other agents in the normal-form game,
i. e., Ni =P \ pi. In the rest of the paper, we assume all agents have
the same number of strategies, i. e., ∀pi∈P, |Si|= d. The representa-
tion size of each local utility hypermatrix is exponential in the num-
ber of players, i. e., O(dn). Motivated by scenarios where an agent’s
utility is directly dependent on only a subset of the total number of
agents, researchers devoted a considerable effort to develop compact
representations following the graphical game model [8].

A hypergraph is a pair (V,E) where V is a set of vertices, and E
is a set of non-empty subsets of V called hyperedges. [13] introduced
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Figure 1. An example of a hypergraphical game.

hypergraphical games, in which each agent pi is involved in simulta-
neous (local) normal-form subgames, Gi. A hypergraphical game is
described by a hypergraph (P, E) where each hyperedge h ∈E rep-
resents an explicit subgame involving the players in h⊆P . The strat-
egy set of each agent pi is the same in all subgames in Gi. The payoff
function of pi is the sum of all pi’s payoffs in all Gi. The neighbors of
agent pi, Ni, is the union of its neighbors in all subgames in Gi. The
degree of agent pi is denoted by κi = |Ni|. The utility of an agent is
directly dependent on its neighbors, i. e., Ui : Si ×

pj∈Ni

Sj →R. From

now on, s−i is the joint strategy of Ni.
Hypergraphical games is a generalization of graphical games [8]

where each agent is involved in exactly one subgame. In a graphi-
cal game, the representation size of pi’ utility is exponential in the
degree of the agent O(dκi). Hypergraphical games is also a general-
ization of graphical polymatrix games where each agent is involved
in simultaneous 2-player games [6]. The representation size of pi’s
utilities is O(κi ·d2).

In graphical polymatrix games, we can represent the utility func-
tion of agent pi, Ui, by a set of (binary) utility functions uij for each
pj ∈ Ni. The utility function uij(si, sj) represents the gain in utility
of agent pi when playing strategy si ∈ Si and agent pj plays strategy
sj ∈ Sj , and pi’s overall utility function becomes:

Ui(s)=Ui(s−i, si)=
∑

pj∈Ni,sj∈s
uij(si, sj) (1)

For a strategy profile s, the regret δi(s) of an agent pi is the high-
est additional reward pi could have gained by changing its strategy,
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assuming its neighbors’ strategy choices remain the same:

δi(s)= max
s′i∈Si

{Ui(s−i, s
′
i)− Ui(s)} (2)

In strategic games, each rational agent would ideally play its best
strategy given a fixed joint strategy of other agents. A configuration
in which all agents selected a best strategy is called a Nash Equi-
librium (NE) . Specifically, a NE is a strategy profile s where each
player’s regret is 0 (i. e., ∀pi ∈ P, δi(s)= 0). Given a joint strat-
egy of other players s−i, the best response of agent pi, BRi(s−i),
is the strategies which produces the maximal gain for agent pi (i. e.,
BRi(s−i)= {si|δi(s−i, si)= 0}).

An approximate Nash Equilibrium (ε-NE) represents scenarios
where agents are satisfied with choices whose payoff is sufficiently
close to the maximum. Formally, a strategy profile s is an ε-NE if
each player’s regret is at most ε, i. e., ∀pi ∈ P, δi(s) ≤ ε. Given a
joint strategy of other players s−i, the approximate best response set
of agent pi is defined as: ε-BRi(s−i)= {si|δi(s−i, si) ≤ ε}.

Figure 1 shows a simple hypergraphical game with 4 agents: p1,
p2, p3 and p4 having the following strategy sets S1 = {a, b},
S2 = {c, d}, S3 = {e, f} and S4 = {g, h, i}. Figure 1(a)
shows the original representation in graphical polymatrix games
and Figure 1(b) shows a representation of the same instance in
graphical games. Agent p1 is involved in three 2-player subgames
with p2, p3 and p4 represented respectively by the utilities u12,
u13, and u14. Agent p2 is involved in two subgames with p1
(u21) and p3 (u23). Agent p3 is involved in two subgames with
p1 (u31) and p2 (u32). Agent p4 is involved in one 2-player sub-
game with p1 represented by utility u41. This problem has one NE
[p1 = a, p2 = c, p3 = e, p4 = i] and one ε-NE in addition to the NE
where ε=3, that is, [p1 = a, p2 = d, p3 = f, p4 = i].

3.2 CSP & Asymmetric Distributed CSP

The constraint satisfaction problem (CSP) is a triple
(X ,D, C), where X = {x1, . . . , xn} is a set of n variables,
D= {D(x1), . . . , D(xn)} is a set of domains, where D(xi) is
a finite set of values from which one value must be assigned to
variable xi, and C is a set of constraints. A constraint ck(X) ∈ C,
on the ordered subset of variables X =(xj1 , . . . , xjk ) ⊆ X , is
ck(X) ⊆ D(xj1)× · · · ×D(xjk ), and specifies the tuples of values
which may be assigned simultaneously to the variables in X . ck(X)
can be represented extensionally or intensionally. |X| is the arity of
ck(X), and X is its scope. A global constraint is defined on a set of
variables and thus an instance of the constraint may have arbitrary
arity. A solution is an assignment to each variable of a value from its
domain, satisfying all the constraints.

Asymmetric distributed CSP (ADisCSP) [3] models problems
where variables and constraints are held by distinct agents. ADisCSP
is a 4-tuple (A,X ,D, C), where X ,D and C are as above, and
A= {a1, . . . , am} is a set of m agents. Each variable xi ∈ X is
controlled by a single agent in A. During a solution process, only the
agent which controls a variable can assign a value to this variable.
In an ADisCSP, constraints are private and only the agent, ai, that
holds a constraint knows it while other agents involved in that con-
straint are only aware that ai constrains their variable without know-
ing the nature of that constraint or its scope. We denote by Ci ⊆ C
all constraints held by ai. As in CSP, a solution to an ADisCSP is an
assignment to each variable of a value from its domain, satisfying all
the constraints. For simplicity and without loss of generality, we as-
sume each agent controls exactly one variable and use the two terms
interchangeably (i. e., m=n).

4 Hypergraphical Games as ADisCSP

We now present a model of the problem of finding ε-NE in hyper-
graphical games as ADisCSP, where agents can control a local CSP
that allows them to maintain the approximate best responses.

The straightforward modeling of a hypergraphical game
(P, {Si, Ui}pi∈P}) into an ADisCSP is to represent each player
pi ∈ P by an agent ai ∈ A having a single local variable xi that
can take its value from the strategy set of player pi, i. e., D(xi)=Si.
In the following we use the terms agent, player and variable inter-
changeably, (i. e., ak = pk =xk). In addition, we consider a generic
agent ai. Xi = {xi, xj |xj ∈ Ni} denotes the variables (or copies)
maintained by ai. Agent ai encodes the problem of finding an ε-NE
(finding an ε-approximate best strategy) by a single constraint ci(Xi)
requiring that the regret, Eq. (2), is less than or equals ε, i. e., ci(Xi) :
δi(s) ≤ ε where s=(si, s−i) is a joint strategy (the assignments)
of agents in Xi. Thus, C= {C1, . . . , Cn} where Ci = {ci(Xi)}. The
agent ai that holds the constraint ci(Xi) is the only agent that knows
it, and must ensure it is satisfied, given the joint assignment of all
its neighbors. To evaluate this constraint agent ai needs to main-
tain local copies of its neighbors’ variables in Xi. Finding ε-NE dis-
tributively in a hypergraphical game is then equivalent to solving the
ADisCSP model above.

Proposition 1. Let M be an ADisCSP model of a hypergraphical
game H. A solution of M is an ε-NE of H.

Proof. (Sketch) A solution to M is an assignment to each variable
of a value from its domain, satisfying all the constraints. Thus, each
player is assigned a strategy and every agent ai’s private constraint,
ci(Xi), is satisfied. Satisfying each constraint ci(Xi) means that each
agent regret is less than ε (δi(s) ≤ ε). Thus, each agent assignment
is an approximate best response to its neighbors assignments. Hence,
a solution of M is an ε-NE of H.

If agents are allowed mixed strategies (i.e. a probability distri-
bution over deterministic strategies), then the discretization scheme
proposed in [8] guarantees that an ε-NE always exists. Thus, the
ADisCSP model of the hypergraphical game is always satisfiable.
For more details about mixed strategies and the existence of an ε-NE,
we refer the reader to [8, 12, 11, 5]. If the agents are restricted to
pure strategies, it is possible that no ε-NE exists. In such circum-
stances, the ADisCSP model would have no solution, and any algo-
rithm should report failure.

In the following we propose ε-BRConstraint, a new incremental
global constraint to ensure an agent’s value is an approximate best re-
sponse, that is efficient in memory and allows efficient propagation.
The ε-BRConstraint enforces δi(s) ≤ ε for each agent ai (i. e., it
is an implementation of ci(Xi)). For simplicity, we restrict our atten-
tion to graphical polymatrix games. However, our constraint and al-
gorithm will represent any hypergraphical game including graphical
games and graphical polymatrix games. Our experiments are against
the state-of-the-art distributed algorithm for graphical games, and we
experiment with the same class of problems that that algorithm was
tested on. These problems happen to be graphical polymatrix games.

The Constraint ε-BRConstraint

When the system is at an ε-NE, each agent has assigned to its vari-
able an approximate best strategy with respect to its neighbors as-
signments. Thus, at each step in the distributed algorithm, an agent
ai should prune all strategies that are dominated by others. In agent
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ai, ε-BRConstraint filters the domain of xi to prune dominated
strategies with respect to the (subset of) decisions of other agents
in Ni. ε-BRConstraint(ε, xi, {xj}xj∈Ni , {uij}xj∈Ni) takes as
parameters all variables in Xi and utility functions uij in addition
to ε.3 Before presenting the constraint behavior we first consider
the auxiliary variables used inside ε-BRConstraint to filter dom-
inated strategies. In addition to xi and copies of neighbors’ variables
xj ∈ Ni, ai has in Xi the following integer variables:

• vj [si] for each strategy si ∈ D(xi), and each utility uij . The vari-
able vj [si] represents the gain in utility of agent ai when playing
strategy si with respect to xj possible strategies. This variable
ranges over the possible utilities in uij when ai plays si, i. e.,
D(vj [si]) = {uij(si, sj)|sj ∈ D(xj)}.

• y[si] for each strategy si ∈ D(xi). The variable y[si] is used
to maintain the minimum reward gained when ai chooses to play
strategy si.

y[si] =
∑

xj∈Ni

min{D(vj [si])} (3)

• z[si] for each strategy si ∈ D(xi). The variable z[si] is used to
maintain the maximum reward gained when ai chooses to play
strategy si.

z[si] =
∑

xj∈Ni

max{D(vj [si])} (4)

For each si ∈ D(xi), we need to represent the relation be-
tween the values of the variables xi, xj and vj [si], and maintain
vj [si] =uij(si, sj). As soon as utility vj [si] is updated, some now
inconsistent values of xj can be removed from consideration. Simi-
larly, when D(xj) is updated (e. g., a value is removed from D(xj)),
the utility variable vj [si] can be updated correspondingly. Each time
a domain of xj or vj [si] is changed, the domain of the other vari-
able is updated to keep only values having a support on other vari-
ables, i. e., we need to ensure that ∃ sj ∈ D(xj) ∧ r ∈ D(vj [si]),
r=uij(si, sj).4

We need also to make the correspondence between the values of
vj [si] and those of y[si] and z[si] for each si ∈ D(xi) by ensuring
Eq. (3) and Eq. (4). We maintain a support for y[si] (resp. z[si]) on
variable vj [si] and we only update that support and its corresponding
reward on y[si] (resp. z[si]) when the lower bound (resp. the upper
bound) of the domain of vj [si] has changed.

By maintaining the above variables and properties on their do-
main changes, ε-BRConstraint is able to detect and remove from
D(xi) the dominated strategies using the y[si] and z[si] variables.
We say that a strategy si ∈ D(xi) is dominated if the largest utility
that ai can gain when choosing strategy si (i. e., z[si]) is lower than
the minimal reward that ai can gain by choosing another strategy
s′i where s′i = arg max

si∈D(xi)
{y[si]} taking ε in consideration. Specif-

ically, a strategy si ∈ D(xi) is dominated iff:

z[si] < max
s′i∈D(xi)

{y[s′i]} − ε (5)

Removing dominated strategies si from D(xi) is safe because ai

will never play si, Eq. (5). Filtering in ε-BRConstraint is based
on pruning all dominated strategies each time they are detected with
changes on domains of variables in Xi without needing their full joint
strategy (assignments).
3 In the general hypergraphical games, uij will be replaced by payoffs matrix

of each subgame.
4 Maintaining vj [si] values follows the same scheme as the element con-

straint [14]. However, in the general case the index variable is a combina-
tion of indexes of all neighborhood values in the subgame.
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(a) Table constraint encoding
c1(X1) used in [5].

D(v2[a]) = {2, 7}
D(v2[b]) = {4, 6}
D(v3[a]) = {1, 8}
D(v3[b]) = {2, 4}
D(v4[a]) = {1, 7, 9}
D(v4[b]) = {1, 2, 3}

D(y[a]) = {4..24}
D(y[b]) = {7..13}
D(z[a]) = {4..24}
D(z[b]) = {7..13}

v2[a] =u12(a, s2) = [2, 7]

v2[b] =u12(b, s2) = [4, 6]

v3[a] =u13(a, s3) = [8, 1]

v3[b] =u13(b, s3) = [4, 2]

v4[a] =u14(a, s4) = [9, 7, 1]

v4[b] =u14(b, s4) = [3, 1, 2]

(b) ε-BRConstraint for c1(X1).

Figure 2. The encoding of ANT and AABT in a1 of the constraint c1(X1)

in the problem shown in Figure 1.

4.1 Memory requirements

In a hypergraphical game, in [5], ci(Xi) is represented in extensional
form using a table constraint containing all tuples (joint strategy) s ∈
D(xi) ×

xj∈Ni

D(xj) that satisfies ci(Xi). A tuple s satisfies ci(Xi) if

it yields a maximal gain to agent ai, i. e., δi(s) ≤ ε. Thus, the utility
functions of all subgames of ai are encoded and represented by a
large table constraint requiring a memory size of O(dκi+1). The table
constraint encoding the constraint c1(X1) of agent ai of the example
presented in Figure 1 is shown in Figure 2(a). All tuples satisfying
c1(X1) are represented in that table.

In our new model, ε-BRConstraint maintains ai’s utility in each
subgame in Gi. Thus, the representation size in ε-BRConstraint is
similar to that required by the hypergraphical game in each agent,
i. e., O(|Gi| ·dγ+1) where γ is largest neighborhood in subgames Gi

and |Gi| is the number of subgames in Gi. In polymatrix games, this
representation is polyspace O(κi·d2). The encoding of the constraint
c1(X1) of agent ai of the example presented in Figure 1 is shown in
Figure 2(b).

In ANT the handling of the global constraint does not exploit its
filtering power. In addition, when a dead-end occurs, a no-good is
produced from all neighbors’ assignments and then sent to the low-
est neighbor in the ordering. This produces chronological backtracks
(thrashing). In the following, we propose a new algorithm for solving
ADisCSP with global constraints, that exploits the pruning power of
global constraints and produces no-goods closer to the (real) point of
conflict.

5 Asymmetric Asynchronous BackTracking

Asymmetric asynchronous backtracking (AABT) is an asynchronous
algorithm for solving ADisCSP that allows agents to keep their con-
straints private. In AABT agents operate asynchronously, but are sub-
ject to a known total priority order. AABT combines a distributed
search procedure with a failure learning mechanism to perform intel-
ligent backtracking. Intelligent backtracking techniques usually store
an explanation for each value removal. Such explanations are com-
puted on-the-fly on each domain reduction.

In AABT, each agent ai tries to solve its local CSPi defined by
Xi, their domains, and Ci. Solving a CSPi is achieved by interleav-
ing search with propagation. The search can be regarded as the dy-
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Algorithm 1: AABT algorithm running by agent ai.

procedure AABT()

1. E+
i ← {aj | ai ∈ Nj}; end ← false; xi ← nil ;

2. assignVariable() ;
3. while ( ¬end ) do

4. msg ← getMsg();
5. switch ( msg.type ) do

6. ok? : processOk(msg.var, msg.tag);
7. ngd : processNogood(msg.sender,msg.ngd);
8. adl : processAddLink(msg.sender);
9. stp : end ← true;

procedure assignVariable()
10. while ( xi =nil ∧ ¬end ) do

11. propagate(xi =D(xi).peek());
12. if ( ∃ xk ∈ Xi | D(xk) = ∅ ) then

13. repair() ; // An empty domain has been found
14. else

15. ti ← ti+1 ;
16. sendMsg: ok?〈xi = si, ti〉 to E+

i ;

procedure propagate(xk = s′k)
17. remove(expl(xl 
=sl)) s.t. xk = sk ∈ expl(xl 
=sl) ;
18. D(xk) ← {s′k} s.t. expl(xk 
=sk) ← xk = s′k;
19. Ci.propagate();

procedure processOk(x′j , t
′
j)

20. if ( t′j ≥ tj ) then

21. propagate(xj = x′j);
22. if ( ∃ xk ∈ Xi | D(xk) = ∅ ) then repair();
23. assignVariable() ;

procedure processNogood(aj , ng)
24. if ( ∀xl ∈ {ng ∩ Xi}, ng[xl] =Xi[xl] ) then

25. Links ← {ng ∪ Xi} \ Xi ;
26. Xi ← Xi ∪ Links ;
27. sendMsg: adl〈〉 to Links ;
28. learn(ng);
29. else if ( ng[xi] =xi ) then

30. sendMsg: ok?〈xi = si, ti〉 to aj ;

procedure repair()
31. ng ← ∧

sk∈D(xk)

expl(xk 
=sk) ; /* D(xk)= ∅ */

32. if ( ng= ∅ ) then

33. sendMsg: stp〈〉 to A \ ai ;
34. end ← true;
35. else learn(ng) ;

procedure learn(ng)
36. Let xt be the lowest variable in ng ;
37. if ( xt 
= xi ) then sendMsg: ngd〈ng〉 to at ;
38. expl(xt 
=st) ← {ng \ xt = st} ;
39. remove(expl(xl 
=sl)) s.t. xt = st ∈ expl(xl 
=sl) ;
40. Ci.propagate();
41. if ( ∃ xk ∈ Xi | D(xk) = ∅ ) then repair();
42. assignVariable() ;

procedure processAddLink(aj)

43. E+
i ← E+

i ∪ aj ;
44. sendMsg: ok?〈xi = si, ti〉 to aj ;

namic addition of constraints (decision constraints) to Ci and retrac-
tions (backtracks) [7]. For simplicity, we restrict ourselves to deci-
sion constraints that are of the form xk = sk, i. e., assignments of
values to variables.5 Each assignment is followed by the propagation
of Ci with respect to Xi’s domains. This propagation may result in a
value removal (xk 
=sk) for a variable xk ∈ Xi. We define an expla-
nation, expl(xk 
=sk), of that value removal (i. e., xk 
=sk) by the set
of decision constraints xj = sj , . . . , xl = sl (assignments), such that
(xj = sj ∧ . . . ∧ xl = sl ∧ xk = sk) is globally inconsistent. During
search, a failure (a domain wipeout) may occur leading to no-goods
computations. A no-good can be regarded as a subset of the assign-
ments made so far that caused a failure (i. e.,

∧
sk∈D(xk)

expl(xk 
=sk)

where D(xk)= ∅).
AABT agents exchange the following message types:

ok?: used to notify its recipients of a new assignment associated with
the current counter ti of agent ai, used to discard obsolete assign-
ments.
ngd: used to report a no-good to another agent, requesting the re-
moval of its value.
adl: used to request the additional of a link to the receiver.

The pseudo-code of AABT executed by each agent ai is presented
in Algorithm 1. In the following, si will represent the current value
assigned to xi and ti the counter tagging si used for the timestamp
mechanism. “xi = nil” means that xi is unassigned. After initial-
ization, each agent assigns a value and informs all agents in E+

i

of its decision (assignVariable call, line 2) by sending them ok?

messages. E+
i are agents having a constraint involving ai’s variable

(line 1). Then, a loop considers the reception of the possible message
types. If no message is traveling through the network, the state of
quiescence is reached meaning that a global solution is found. The
solution is given by the current variables’ assignments. The quies-
cence state can be detected by a specialized algorithm [4].

When an agent ai receives an ok? message from aj it calls pro-
cedure processOk (line 6). If the received assignment has a larger
counter than that received beforehand, it is accepted, otherwise it is
discarded (line 20). If the assignment is accepted, ai calls procedure
propagate to propagate Ci after adding the newly received assign-
ment as a decision constraint xj = s′j , line 21. If the propagation re-
sults in a domain wipeout procedure repair is called to resolve the
conflict, line 22. Finally, assignVariable is called (line 23) to as-
sign a new consistent value to xi if its value has been pruned by the
propagation of Ci.

When calling procedure propagate(xk = s′k), the value of xk

is set to s′k. Next, all explanations not relevant to this new assign-
ment, i. e., expl(xk 
=sk) containing xk = sk where s′k 
=sk, are re-
moved (line 17).6 Then, the domain of xk is reduced to a single-
ton D(xk) = {s′k} with xk = s′k as explanation, line 18. Finally,
the constraints in Ci that might be affected by the domains’ changes
above are propagated, line 19.

When every value (sk) of a variable xk ∈ Xi is ruled out by an
explanation expl(xk 
=sk), the procedure repair is called to resolve
the conflict (lines 13, 22 and 41). The conflict is resolved by comput-
ing a new no-good ng from the conjunction of these explanations,
i. e., expl(xk 
=sk), line 31. If the new no-good ng is empty, ai ter-
minates execution after sending a stp message to all agents in the
system meaning that the problem is unsolvable (line 32). Otherwise,

5 Agent ai can not take decision for other agents variables xj , i. e., i �=j.
6 The removal of some explanations expl(xk �=sk) does not imply the

restoration of sk to D(xk) unless the propagation of constraints involv-
ing xk allows that.
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it calls procedure learn(ng), line 35. Let xt be the variable hav-
ing the lowest priority in ng. If xt is different than xi, ng is re-
ported to at through a ngd message, lines 36 and 37. In AABT, the
backtracking target xt is always that having the lowest priority in
ng. Agent xt can be a higher (as in ABT) but also a lower prior-
ity agent. Thus, we guarantee that the conflict is always reported to
the agent with lowest priority in the conflict. Next, a new explana-
tion from ng is used to justify the removal of the value of xt, i. e.,
expl(xt 
=st) ← {ng \ xt = st}, line 38. All explanations contain-
ing the assignment of xt (xt = st) are removed because they are not
valid anymore, line 39. The constraints in Ci are then propagated to
check the new changes and if a failure occurs again repair is called,
line 41. Finally, assignVariable is called to check if xi needs to
be assigned (line 42).

When a ngd message is received (line 7), ai checks the validity
of the received no-good (procedure processNogood call). If the as-
signments of the received no-good are consistent with those stored
locally, this no-good is valid (line 24). Then, agent ai sends a link
request to non linked agents having variables in ng (lines 25 to 27).
Next, ai calls procedure learn(ng), line 28. If the ng is not valid
but is consistent with the current assignment of xi, ai sends an ok?

message to the generator of ng, lines 29 and 30.
When receiving an adl message (lines 43 and 44) ai adds a new

link to the request sender (aj) and sends an ok? message to inform
aj of its assignment.

5.1 Privacy

In AABT, to use the power of the filtering algorithms of global con-
straints, each agent maintains a copy of its neighborhood domains.
However, agents in AABT only require to know the initial domain
of their neighbors and do not need their actual domain. For the case
of the hypergraphical game as ADisCSP, an agent can construct the
domain of a neighbor based on the payoff matrices of local sub-
games. At each stage of AABT, the privacy of agents’ current do-
mains is preserved. In AABT, agents exchange their values with their
neighbors. Thus, in AABT there is no privacy of assignments. In
AABT, agents do not have to share their constraints/scopes to solve
the problem. Thus, AABT preserves privacy of constraints and pri-
vacy of agents topologies. However, during the solving process some
information is exchanged (value assignments and no-goods) between
agents, thus leaking information about agents’ constraints.

A method to evaluate the constraint privacy using entropy as a
quantitative measure for privacy loss has been proposed in [10, 3].
This method measures the percentage of the conflicts in a table con-
straint held by an agent that are revealed to another agent involved
in a conflict induced from ok? and ngd messages. However, this
method only applies to ADisCSP with binary table constraints. Thus,
this method can not be used to evaluate the privacy loss in AABT.
We believe that studying the privacy loss in distributed algorithms
for solving DisCSP with global constraints (e. g., ANT and AABT)
is an open research area that needs to be investigated.

5.2 Theoretical Analysis

Here we prove that AABT is sound, complete and terminates.

Theorem 1. AABT terminates.

Proof. AABT stops its execution in two cases: when an empty no-
good has been generated meaning that the problem is unsolvable or
when the network reaches a quiescent state reporting a solution. To

prove that AABT terminates, we need to prove that AABT reaches
one of these two cases in finite time, i. e., agents can never fall into
an infinite loop cycling among their possible values. In the following,
we prove by induction on the agent ordering that agents can never fall
into an infinite loop. Let assume a lexicographic ordering on agents.
The base case for induction (i = 1) is obvious. Unlike ABT, a1 can
receive ok? messages from its neighbors (having a lower priority).
When receiving these ok? messages a1 may generate new no-goods
as results of propagating its constraints. Agent a1 may generate three
categories of no-goods. The first are empty no-goods. This category
stops the algorithm execution. The second are no-goods containing a
lower neighbor. Those no-goods are transmitted to the lowest agent
involved in. The third category are singleton no-goods containing a
value of a1. Agent a1 may also receive ngd messages from lower
priority agents. Now, all no-goods contained in ngd messages a1

receives are singleton because in AABT the generated no-good is
always sent to the agent having the lowest priority in it (lines 36
and 37). Hence, when agent a1 proposes a possible value, it will not
change it unless it receives or itself produces singleton no-goods rul-
ing out this value. Values in singleton no-goods are removed once
and for all from the domain of a1. Because its domain is finite, a1

cannot fall into an infinite loop.
Now, assume that agents higher that agent ai (i > 2), i. e., a1

to ai−1 (i > 2), are in a stable state, i. e., they are all assigned val-
ues to their variables and do not change their values. In the follow-
ing, we show that agent ai never falls into an infinite loop. After
processing ok? and ngd messages it receives, agent ai may gener-
ate contradictions (no-goods) as results of propagating its local con-
straints. The categories of no-goods agent ai may generate are: (i)
empty no-goods, (ii) no-goods containing lower neighbors, (iii) no-
goods containing the agents a1 to ai−1, and (iv) no-goods containing
the agents a1 to ai. No-goods of (i) causes the algorithm to stop,
those of (ii) are forwarded to a lower agent and can not cause ai to
fall in infinite loop. No-goods of (iii) breaks our assumption because
they are forwarded to a higher agent that we assumed to be in a sta-
ble state, causing it to change its value. Thus, only (iv) may affect
the termination of ai. Agent ai may also receive ngd messages from
other agents (higher or lower). However, all no-goods contained in
ngd messages ai receives contain only the agents a1 to ai, i. e., cat-
egory (iv), because in AABT no-goods are always sent to the lowest
agent involved in. Since agents a1 to ai−1 are in a stable state, these
no-goods are valid for ai (the assignments on these no-goods are
consistent with those stored locally).7 Thus, ai will remove its value
and will not assign it again while at least one of agents a1 to ai−1
does not change its value. Because its domain is finite, ai will either
eventually change its assignment with a different value or exhaust
the possible values and send a no-good to a higher agent, i. e., one
of a1 . . . ai−1. This no-good will cause an agent that we assumed to
be in a stable state, not to be in a stable state. Hence, agent ai can
never fall into an infinite loop for a given stable state of a1 to ai−1.
By induction we have that agents can never fall into an infinite loop
and AABT is thus guaranteed to terminate.

A global solution is reported when the network has reached quies-
cence, meaning that all agents are idle and no message is transmitting
through the network. To prove that AABT is sound, we should first
establish the two following lemmas about when the network reaches
the quiescent state σ.

7 Note here that we discuss only no-goods consistent with a1 to ai, because
inconsistent ones are discarded.
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Figure 3. The #msg and #ncccs for solving random regular graphical polymatrix games when varying the number of agents in logarithmic scale.

Lemma 1. When reaching a quiescent state σ, every agent is as-
signed, and its assignment is known by all its neighbors.

Proof. (Sketch) Assume the system reaches a quiescent state σ. Ac-
cording to Algorithm 1, each time an agent ai is unassigned, it im-
mediately calls procedure assignVariable (lines 23 and 42). Be-
fore exiting its loop and being idle allowing the system to reach σ,
assignVariable guarantees that either (i) an empty domain has
been found when calling repair (line 13) meaning that the prob-
lem is unsolvable or (ii) a value is assigned to xi. (i) contradicts our
assumption. Thus, when reaching σ every agent ai is assigned. Now,
let vi be the value assigned to xi when reaching σ. Each neighbor of
ai, say aj , should receive an ok? message from ai containing its de-
cision, i. e., xi = vi (line 16). The only case where agent aj removes
xi = vi is when it sends a no-good message to ai. We can easily see
that this message is either not obsolete, in which case ai will change
its value vi and breaks our assumption, or obsolete, which means
that an ok? message has not yet reached aj which breaks our qui-
escence assumption. Hence, when reaching σ all agents know the
assignments of all their neighbors and no two agents store different
assignments for the same variable.

Lemma 2. When reaching σ, all constraints are satisfied.

Proof. In AABT, each time a new value is assigned or a new mes-
sage is received by an agent ai, it immediately propagates its con-
straints Ci. When generating an empty domain, ai calls procedure
repair to repair inconsistent assignments. Hence, after processing
each message all assignments stored locally satisfy all constraints of
the agent.

Theorem 2. AABT is sound.

Proof. Direct from Lemmas 1 and 2.

Theorem 3. AABT is complete.

Proof. In AABT, agents only store valid explanations and no-goods.
In addition, all explanations and no-goods are generated by logical
inferences from existing constraints. Thus, the empty no-good cannot
be inferred if the network is satisfiable.

Corollary 1. AABT is a correct and complete solver for hypergraph-
ical games.

Proof. From Proposition 1 and Theorems 1 to 3.

6 Empirical Study

In this section we experimentally compare AABT to ANT [5],
AABT+AC and ANT+AC [5]. In AABT+AC and ANT+AC arc con-
sistency (AC) is performed in a preprocessing phase before running
AABT and ANT. This processing phase is the table passing phase
of NashProp [12]. We do not compare the algorithms to NashProp
because in [5] it has been shown that ANT achieves orders of mag-
nitude improvements over NashProp. All the problems used for eval-
uating both algorithms were generated randomly and then modified
to ensure that at least one pure strategy Nash equilibrium exists. All
experiments were performed on the DisChoco 2.0 platform [17], in
which agents are simulated by Java threads that communicate only
through message passing. We evaluate the performance of the algo-
rithms by communication load and computation effort. Communica-
tion load is measured by the total number of exchanged messages
among agents during algorithm execution (#msg) [9]. Computation
effort is measured by the number of non-concurrent constraint checks
(#ncccs) [19]. #ncccs is the metric used in distributed constraint
solving to simulate the computation time. Algorithms are evaluated
on two random benchmarks: random regular graphical polymatrix
games, and random graphical polymatrix games.
Random regular graphical polymatrix games: are characterized
by 〈n, d, κ〉, where n is the number of players/agents, d is the num-
ber of strategies per agent, and κ represents the degree of each
agent. For each value combination a utility was uniformly selected
in {0, . . . , 9}. We solved and report the average over 25 instances of
four settings. The first and the fourth settings cover the experiments
presented in [5]. In the three first settings, we fixed the number of
strategies and the degree of each agent and varied the number of
agents in the range 6..16 by a step of 2 to guarantee the graphs are
κ-regular. In the first setting we generated 3 random connections for
each agent (κ=3) and fixed the number of strategies of each agent
at d=3. We then increase the number of strategies to d=5 in the
second setting and increase the degree of each agent to κ=4 in the
third setting.

Results are presented in Figure 3. Regarding the number of re-
quired messages to solve the problem (#msg), AABT improves
ANT by an order of magnitude in almost all instances of Figure 3.
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Figure 4. The #msg and #ncccs for solving random regular graphical
polymatrix games when varying the number of strategies in logarithmic scale.

In the first setting (Figure 3(a)), the improvement factor ranges be-
tween 3 for small problems and 15 on larger ones. In the second
setting (Figure 3(b)), the factor of improvement ranges between 5
for small problems and 29 on larger ones. In the third setting (Fig-
ure 3(c)), the factor of improvement ranges between 3 for small
problems and 35 on larger ones. For #ncccs, AABT outperforms
ANT, although the improvement is less significant than in #msg.
In small problems the two algorithms perform similarly. However,
in larger problems, the factor of improvement ranges from 4 in the
first setting (d=3, κ = 3) to 9 in the second (d=5, κ = 3) and
15 in the third (d=5, κ = 4). Regarding the AC, ANT+AC (resp.
AABT+AC) always improves ANT (resp. AABT) in #msg. For
#ncccs, AABT+AC always improves AABT, however, ANT+AC
only improves ANT on problems with larger number of agents (n >
10). AABT always improves ANT+AC and the improvement is more
significant (an order of magnitude improvement) in larger problems
of the second and the third setting when increasing the number of
strategies or the agents degrees. AABT+AC is clearly the best algo-
rithm for solving all instances in the three settings.

In the fourth setting (Figure 4) we generated random 3-regular
graphical polymatrix games (κ=3) where we fixed the number of
agents at n=10 and varied the number of strategies of all agents
in the range 4..10. Again, the results show that AABT outperforms
ANT and ANT+AC in all instances. Regarding #ncccs, the im-
provement factor ranges between 3 to 7. For #msg, in instances with
larger number of strategies the AABT improvement over ANT and
ANT+AC is again an order of magnitude. AABT and AABT+AC al-
gorithms perform almost similarly in all instances. ANT+AC shows
small improvement over ANT on #msg for problems with smaller
number of strategies.
Random graphical polymatrix games: are characterized by
〈n, d, ρ〉, where n is the number of players/agents, d is the num-
ber of strategies per player, ρ is the network connectivity defined
as the ratio of existing binary utility functions. For each value com-
bination a utility was uniformly selected from the set {0, . . . , 9}.
For each ρ ∈ {0.4, . . . , 0.9}, we generated 25 instances in the class
〈n=10, d=5, ρ〉. We report the average over these instances in Fig-
ure 5. The results demonstrate that AABT improves ANT algorithm
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Figure 5. The #ncccs performed and #msg exchanged for solving prob-
lems where 〈n = 10, d = 5, ρ〉 in logarithmic scale.

in both #msg and #ncccs. This improvement is over an order of
magnitude on dense problems, ρ ≥ 6. In contrast to κ-regular games,
the improvement on #ncccs is more significant than on #msg.
Specifically, the improvement factor on #ncccs when ρ= .8 is 30
while it is 22 regarding the #msg. Regarding AC, our results con-
firm those of [5] that if pruning is limited, AC can create a significant
overhead.
Summary: In all our experimentation, AABT always improves ANT
and ANT+AC in both metrics #msg and #ncccs. This improve-
ment is more significant on harder problems (when increasing the
number of players/agents and/or the number of strategies of each
player and/or the degree of each agent). In sparse problems of κ-
regular graph κ=3, AABT improves the #ncccs slightly compared
to ANT.8 However, this improvement is more significant on dense
graphical polymatrix games. AABT+AC only improves AABT on
sparse problems. AC is harmful for hard problems because it does
not lead to domain filtering when problems are dense and/or large
with a large number of strategies.

7 Conclusion

We studied the problem of finding an approximate Nash Equilibrium
in hypergraphical games, an elegant framework for modeling col-
laboration in multi-agent systems within strategic environments. Our
study is based on asymmetric distributed constraint satisfaction, an
efficient tool for distributed problem solving allowing agents to keep
their utilities private. We proposed a new model of hypergraphical
games as an asymmetric DisCSP based on ε-BRConstraint, a new
global constraint modeling hypergraphical games using the original
compact representation of the subgames with a filtering algorithm
of dominated strategies. Finally we introduced a new asynchronous
algorithm for solving (asymmetric) DisCSP, in order to find Nash
Equilibria for hypergraphical games. This achieves an order of mag-
nitude improvement in messaging and in non-concurrent computa-
tion time on dense problems compared to state-of-the art algorithms.

8 In our implementation, table constraints are presented in lexicographic
ordering of tuples and we use a dichotomic search (log(κi + 1)) to check
the consistency of each tuple.
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