
Efficient Handling of Complex Local Problems in
Distributed Constraint Optimization 1

David A. Burke and Kenneth N. Brown2

1 INTRODUCTION

Many distributed constraint optimisation algorithms require
each agent to have a single variable. For agents with multiple
variables, a standard approach is to compile the local prob-
lem down to a new variable whose domain is the set of all
local solutions. We present two modifications to this method,
which (i) reduce problem size by removing interchangeable
and dominated local solutions, and (ii) speed up search by
identifying values that are interchangeable with respect to
specific agents. We show that the modifications give orders of
magnitude improvement over the basic compilation.

2 BACKGROUND

A Distributed Constraint Optimisation Problem consists of
a set of agents, A={a1, a2, ..., an}, and for each agent ai, a
set Xi={xi1, xi2, . . . , ximi} of variables it controls, such that
∀i 6=j Xi∩Xj = φ. Each variable xij has a corresponding do-
main Dij . X =

⋃
Xi is the set of all variables in the problem.

C ={c1, c2, . . . , ct} is a set of constraints. Each ck has a scope
s(ck) ⊆ X, and is a function ck :

∏
ij:xij∈s(ck)

Dij → IN . The

agent scope, a(ck), of ck is the set of agents that ck acts upon:
a(ck) = {ai : Xi∩ s(ck) 6= φ}. An agent ai is a neighbour of
an agent aj if ∃ck : ai, aj ∈ a(ck). A global assignment, g, is
the selection of one value for each variable in the problem:
g ∈

∏
ij

Dij . A local assignment, li, to an agent ai, is an el-

ement of
∏

j
Dij . Let t be any assignment, and let Y be a

set of variables, then t↓Y is the projection of t over the vari-
ables in Y . The global objective function, F , assigns a cost to
each global assignment: F :

∏
ij

Dij→ IN :: g 7→
∑

k
ck(g↓s(ck)).

An optimal solution is one which minimises F . The solution
process, however, is restricted: each agent is responsible for
the assignment of its own variables, and thus agents must
communicate with each other, describing assignments and
costs, in order to find a globally optimal solution.

Most DCOP algorithms assume that each agent controls
only a single variable. This assumption is justified by two
standard reformulations [2], by which any DCOP problem
with complex local problems (i.e. multiple variables in each
agent) can be transformed to give exactly one variable per
agent: (i) Compilation: for each agent, define a variable whose

1 This work is supported by SFI under Grant No. 03/CE3/I405. We
thank the developers of ADOPT for making their code available,
and BCRI at UCC for their computing resources.

2 Centre for Telecommunications Value-chain Research and Cork
Constraint Computation Centre, Dept. Comp. Sc., UCC, Ireland

domain is the set of solutions to the original local problem;
(ii) Decomposition: for each variable in each local problem,
create a unique agent to manage it.

3 IMPROVING COMPILATION

To apply the basic compilation method to a DCOP: (i)
for each agent ai, create a new variable zi, whose domain
Di =

∏
j
Dij is the set of all solutions to the agent’s internal

problem; (ii) for each agent ai, add a unary constraint func-
tion fi, where ∀l∈Di, fi(l) =

∑
j:s(cj)⊆Xi

cj(l↓s(cj)) (i.e. the

cost is the sum of the costs from all constraints which act on
ai only); (iii) for each set of agents Aj = {aj1, aj2, ..., ajpj},
let Rj = {c : a(c)=Aj} be the set of constraints whose agent
scope is Aj , and for each Rj 6= φ, define a new constraint
Cj : Dj1×Dj2×. . .×Djpj→ IN :: l 7→

∑
c∈Rj

c(l↓s(c)), equal to

the sum of the constraints in Rj (i.e. construct constraints be-
tween the agents’ new variables, that are defined by referring
back to the original variables in the problem). In an optimisa-
tion problem, every set of assignments of values to variables
is a valid solution giving a domain of size |Di|=

∏
j
|Dij | for

each agent ai. The solution space for the problem is
∏n

i=1
|Di|.

For an agent with a complex local problem, only external
variables (those that have constraints to other agents) can
have a direct impact on other agents. We produce an improved
compilation by recognising that any local solutions that have
identical assignments to those external variables are equiva-
lent with respect to the distributed problem. If there is more
than one optimal local solution with the same assignments
to external variables, the solutions are fully interchangeable,
and so only one is required. Also, solutions with identically
assigned external variables but with sub-optimally assigned
other variables are strictly dominated and can be ignored. We
refine the compilation so that we only find one optimal lo-
cal solution for each combination of external variables. For
each agent ai, let pi = {xij : ∀c xij ∈ s(c) → s(c) ⊆ Xi} be
its private variables – variables which are not directly con-
strained by other agents’ variables – and let ei = Xi \pi be
its external variables – variables that do have direct con-
straints with other agents. For each ai, create a new vari-
able z′i with domain D′

i =
∏

j:xij∈ei
Dij , and add a function

f ′i , where ∀l ∈ D′
i, f ′i(l) =min{fi(t) : t ∈ Di, t↓ei = l}. That

is, D′
i contains all assignments to the external variables, and

their cost is the minimum cost obtained when they are ex-
tended to a full local assignment for ai. The new constraints
are defined as in the basic compilation (for each Rj 6= φ,

Figure 1. Concurrent Constraint Checks (cutoff = 10,000,000).

C′
j :D′

j1×D′
j2×. . .×D′

jpj
→IN :: l 7→

∑
c∈Rj

c(l↓s(c))), but will

act on smaller sets of tuples. In our reduced compilation, the
size of a domain is |D′

i| =
∏

j:xij∈ei
|Dij |, which is a reduction

over the basic compilation by a factor of
∏

j:xij∈pi
|Dij |.

4 INTERCHANGEABILITY IN DCOP

We introduce the concept of sub-neighbourhood interchange-
ability and apply it to distributed search using compiled val-
ues. For each agent ai and for a set of agents S, let hs

i={xij :
∃c : xij∈s(c) ∧ a(c) ∩ S 6= φ} be the set of original variables
of ai that are adjacent to original variables of the agents in
S. Two compiled values, la, lb∈Di are sub-neighbourhood in-
terchangeable (SNI) with respect to the agents in S (la≡s

i lb),
if both values represent identical assignments to the variables
of hs

i : la≡s
i lb ↔ la↓hs

i
= lb↓hs

i
.

We apply SNI sets to the ADOPT algorithm [1]. In
ADOPT, agents are prioritised into a tree. Agents send their
values to all neighbours lower in the priority tree, and receive
costs only from direct children. Considering each subtree sep-
arately, let S be the set of lower priority neighbours of ai,
lying in the subtree rooted by as. For each subtree, partition
ai’s values into SNI sets, such that Φs

i (x) is a function return-
ing the SNI set to which x belongs: ∀la, lb ∈ Di, la ≡s

i lb ↔
Φs

i (la) = Φs
i (lb). Then, ADOPT can be modified such that if

ai receives a cost ε from as with a compatible context, the
costs of all values interchangeable with the current value x
are updated: ∀l ∈ Φs

i (x), cost(l, as)← ε.

5 EXPERIMENTS

We compare the effect of the two modifications to the basic
compilation on random binary graph colouring problems. The
problems are characterised by a 5-tuple 〈a, e, v, i, d〉: a is the
number of agents, e is the external link density (# inter-agent
constraints = ea), v is the number of variables per agent, i is
the internal link density (# intra-agent constraints = iv) and
d is the domain size of each variable. Our base problem setting
is 〈5, 1, 6, 1, 2〉. We then compare the algorithms varying v, i,
a, d and e in turn, averaging over 20 test instances. Both
the basic and reduced compilations are generated using Ilog
JSolver. We implement the SNI sets in ADOPT and run it in

a simulated distributed environment: we use one machine but
each agent runs asynchronously on its own thread.

The time required to compile agents into a single variable is
always faster in the improved compilation – up to 2 orders of
magnitude faster for some parameter settings. In the distrib-
uted search, we use the Concurrent Constraint Checks metric
to measure performance. In Figure 1, plotted on a log scale,
we compare the original compilation method BASIC, with our
improved method IMP1 and also IMP2, which uses both the
improved compilation and SNI sets. The reduced domains re-
sulting from our improved compilation, IMP1, give orders of
magnitude improvements over the basic compilation for most
parameter settings. In particular, as the number of variables
in the local problem increases, the impact on our improved re-
formulation is minimal, while the basic reformulation quickly
becomes very difficult to compute. Tests varying the internal
link density, number of agents and domain size all demon-
strate improvements of at least 2 orders of magnitude over
BASIC (runs of BASIC that exceeded 107 CCC were cut off,
and are shown shaded). IMP2 also outperforms IMP1 by on
average 45%: using the SNI sets that occur in the compilation
speeds up the distributed search.

6 CONCLUSION

A standard technique for handling complex local problems in
DCOP is to convert multiple local variables to a single vari-
able whose domain is the set of all local solutions. We have
presented two advances on this method: we represent only one
optimal local solution for each combination of external vari-
ables, discarding interchangeable and dominated solutions;
and we identify values that are interchangeable with respect
to neighbouring agents. We have evaluated the methods us-
ing the ADOPT algorithm, and they give orders of magnitude
improvements over the basic compilation.

REFERENCES
[1] P. Modi, W. Shen, M. Tambe, and M. Yokoo, ‘Adopt:

Asynchronous distributed constraint optimization with quality
guarantees’, Artificial Intelligence, 161(1–2), 149–180, (2005).

[2] M. Yokoo and K. Hirayama, ‘Algorithms for distributed con-
straint satisfaction: A review’, Autonomous Agents and Multi-
Agent Systems, 3(2), 185–207, (2000).

