Adversarial Constraint Satisfaction by Game-tree Search

Kenneth N. Brown, James Little, Paidi J. Creed and Eugene C. Freuder !

Abstract. Many decision problems can be modellecadsersarial
constraint satisfaction, which allows us to integrate radghfrom Al

game playing. In particular, by using the idea of opponentscan
model both collaborative problem solving, where inteltigpartici-

pants with different agendas must work together to solveohlpm,

and multi-criteria optimisation, where one decision makeist bal-
ance different objectives. In this paper, we focus on the gdsere
two opponents take turns to instantiate constrained Vasaleach
trying to direct the solution towards their own objectivee \fépre-
sent the process as game-tree search. We develop variablelae
ordering heuristics based on game playing strategies. Araiewe the
performance of various algorithms on general-sum grapbucislg

games, for both multi-participant and multi-criteria opisation.

1 INTRODUCTION

Constraint satisfaction has been successfully appliediiol@ range
of practical decision problems, but usually assuming tieaesingle
solver in complete control. Many decision problems can,é@x, be
modelled as an interaction between two or more adversavigsie
each one attempts to guide the solution towards their ownléent,
we combine the two approaches in what we ealVersarial con-

room on campus has limited availability. Researchers wadluster
meetings together, to leave more time for research. Adinat@s
want to minimise travel time, preferring to locate the megsi close
to the administration block. How should the University prod a
schedule? The approach considered in this paper would ratpa

agents, one for each interest group, and have them takedhoos-
ing rooms and times for individual meetings, in the hope that
interplay between their choices would produce a fair settiet. The
agents would clearly bring their own objectives to the peotl If the
university prefers a particular balance, it could appomeras with
appropriate negotiating skills.

Our research has two main objectives: (i) to provide assista
for self-motivated decision makers in possibly adversaitaations,
and (i) to provide a convenient framework for modelling aadving
multi-criteria constrained optimisation problems. Withie context
of one particular game scenario, for (i) we propose confiipma of
the constraint-based searcher for play against known apenFor
(i) we show how to configure both players to achieve desiesdlts.

2 BACKGROUND

A binary constraint satisfaction problem consists of a detai-

straint satisfactionWe consider what effect the notion of an adver-
sary has on the constraint solving process; in particulaintegrate
technigues from Al game playing into constraint solving hnoels.
We show that we can model problem solving in collaborative en
vironments, where intelligent participants with diffetebjectives
must work together to produce a solution that satisfies alptbblem
constraints, and also that we can model multi-criteriarojsttion,
where a single decision maker must find a solution which obtai
balance between two or more objectives.

There are many protocols which the intelligent solvers daide
to collaborate on the problem. In this paper, for a situatidth two
adversaries, we focus on one approach: the participangsttaks
to instantiate constrained variables, and thus effegtiselrch over
a game-tree. The game, however, must end in a completeysatisf
ing solution, so the players must backtrack out of situatisich
lead to an inconsistency. As usual in game-tree search,atieip
pants must reason about their own best moves in the contekeof
likely moves of their opponent. They must also now reasorutibo
the consistency of the constraints, and integrate this thithmove
selection. We draw an analogy between CSP variable and ealue
dering heuristics and strategies from game-tree searctexXafine
the performance of various algorithms on general-sum geajgur-
ing games for both multi-participant and multi-criterigtiogisation.

As a motivating example, consider planning university catnm
tee meetings. Each committee has possible meeting timésaah

ables{X,...,X,}, a set of domains of values for the variables
{D1,... Dy}, and a set of constraints restricting the values pairs of
variables can take simultaneoudl;, . .., Ci. }, where ifC; is a
constraint ovef X;, X;) thenC;; C D; x D;. A solution to a prob-
lem is an assighment to eachy of a valuev; from its domainD;,
such that for each constraifit;;, (vs,v;) € Cji;. Many algorithms
have been proposed for constraint solving, but the defasthe-
comemaintaining arc consistendMAC) [11], in which backtrack-
ing search is extended with constraint propagation. Afiehechoice
of value assignment, unassigned variables have their csmaade
arc consistent by deleting every value which does not haupgost-
ing value in a domain with which it is constrained. Searchetican
be improved by choosing the order in which variables are idens
ered, and by choosing the order in which values are tried.stée
dard variable ordering heuristic is to select the varialiéctvhas the
fewest remaining domain values. Possible value orderingistees
include selecting the value most likely to lead to a solufioa the
least constraining choice), or, for maximisation problesedecting
the value giving the biggest local increase in the objedtivetion.
Constraint satisfaction methods traditionally assume swiger
with a well-defined objective operating on a static probl&ume
frameworks have been proposed where the solver is not inletenp
control of the environment, and must cater for uncertaiatysed by
probabilistic or random events - e ixed [1] and Stochastic CSP
[13] both assume a subset of the variables are uncontrd@ieth. of
these frameworks can be considered to be sub-types of adiedrs
constraint satisfaction, in which the external world acdsaa ad-

1 Cork Constraint Computation Centre, Dept. of Computer r&sie Univer-
sity College Cork, Irelandhttp://4c.ucc.ie/

versary making probabilistic assignments. The CSP hastssa
extended to distributed models, where agents have conteolsub-
sets of the variables [5]. Agents are assumed to be cooperatid
share a goal of reaching a final solution. For cases whereagH v
ables can be instantiated by any participant, [3] configteams of
self-motivated agents with individual interests, but feesion com-
promise strategies rather than reasoning about oppormantss.

A variety of ways of handling multi-criteria optimisationitiin
constraint problems have been proposed. [4] finds the caenpta-
dominated Pareto frontier using Point Quad trees. [8] usigles
strategy to find one solution, and then switch strategiesitbdubse-
guent solutions. [2] introduce bounding constraints faheziterion,
and use an iterative approach to solve job shop scheduloiggms.
For each of these approaches, to distinguish between tferenfif
solutions, the user has to provide a ranking of the criteria.

Game playing is a significant application area for Al, altlodo-
cused mainly on two-player zero-sum games. The basic ghgois

AU AW -

N W= W=
—_— N e e W
—_n W N o~
AN O WN W

(1)
o’o
O 00
Figurel. Simple graph colouring problem

jective. The individual agents have different objectivadiions. We
consider two main types: (1) maximise the number of nodesucet!
with a specific colour; and (2) maximise the sum of weightsergh
each node has a unary function mapping colours to integeghtsei
We assume that each player knows the other’s objective.

Consider the simple graph in Fig. 1. Player A wants to maxémis
the number of nodes coloured red, while player B wants to mepe
the sum of the weights. The maximum score achievable by A is 3,
while the maximum achievable by B is 22 - the constraints iglate

minimax in which each player chooses the move which minimisesthe naive estimates of 6 and 24 respectively. The minimumesco

the maximum score the opponent can achieve. For small gétniges,
possible to evaluate all possible move sequences and deðe
optimal move. The analysis of such games is at the hea@anfie

are 0 for A and 6 for B. In one possible sequence of moves, playe
A starts by selecting node 6 and colouring it red (a least tcaims
ing choice compatible with its objective). Player B seleatgle 5

Theory For larger games, the evaluation must be cut off after somend colours it blue (maximising weight). Player A colourgle®

limit. The states at the limit are then evaluated by estingathe
score liable to be achieved by the relevant player, and theses
are propagated back up the search tree to provide an estinue
value of each move. The cut-off and the evaluation need ®itatk
accountquiescencéis the state locally stable, or will the score fluc-
tuate wildly on subsequent moves?) andlbezon effec(are there
unavoidable moves which will affect the score but are nohdpéhc-
tored in because they have been pushed beyond the cut-@bhay.
The best known algorithms use variantatgha-beta pruning6], in
which moves which cannot improve on already discoveredescare
pruned from the tree.

red (again a least constraining choice, but this time algeapng

to favour B’s objective). Player B colours node 3 green (nmmasi
ing the remaining weights). Player A now has no more nodearit ¢
colour red, so it selects node 1 and colours it yellow. Fin&@imust
select node 4, and must colour it yellow. A has achieved aaombj
tive value of 2 (compared to a maximum of 3), while B has ol&din
17 (of a possible 22), so both players have achieved a relalgona
score. However, better solutions for both players existefample
{(1,9),(2,7),(3,9),(4,b),(5,7),(6,7)} gives a score of 3 for A,
and 18 for B. Better reasoning by B early in the game might have
spotted that A would choose red for node 5 if given the chaacd,

There has been some limited research on applications of-gameo B should have chosen to instantiate node 4 with blue idsbe¢he

tree search and game theory in constraint programmingnjib@lels
each variable in a CSP as an agent, and attempts to maxireiseth
gree of satisfaction of the CSP; solutions correspond tdegsilib-
rium points. [7] shows how underlying consistency techagused
in CSPs correspond to certain game mechanisms.

3 THE GAME SETUP

The problem we consider in this paper is graph colouring Watir
colours, with two adversaries, although the approach akyuex-
tends to arbitrary constraint optimisation problems witany ad-
versaries. We will refer to the adversaries as agents oemayVe
represent the problem as a binary CSP, where each variableoide

with domain{r, b, g, y}, and a set of constraints requiring connected g

nodes to take different colours. Each agent has accessfidltheob-
lem. The agents will take turns to select a variable and stz
it with a value. On discovering an inconsistency, both agentist
backtrack to the last decision point where a consistentcehnias
available, and continue from that point. We assume: (a) tagame
correct and trustworthy - no agent will report an incongisseif it
doesn't exist; (b) both are committed to playing by the rudéshe
game - each agent will play in turn by instantiating a singinu
stantiated variable with a value from its domain, and no tgeih
choose a value which it knows will lead to an inconsistencyle
agents are systematic complete searchers - a solution evithimd
if one exists. The agents may be self-motivated or antationithey
may make decisions which ignore or degrade the other agelnt’s

next section, we examine algorithms, propagation methstdate-
gies and heuristics aimed at emulating that type of reagoigiom-
bining techniques from constraint satisfaction with gamee-search.

4 PLAYING THE GAME
4.1 The Game Exectuion Algorithm

pl ay(pl ayer i,pos p): pos

1if (finished(p)) return p

2 soln = null

3 ng = {}

4 nmove = select(i, p, ng, 0)

5 while (soln == null && nove != (0,0))
p = apply(nove, p)

7 soln = play(next(i),p)
8 if (soln == null)
9 nmove = sel ect (i, p, ng+{nove}, 0)

10 return soln

We assume the game is managed by a game controller. The basic

algorithm is shown above. We start by passing the initialtfprsto

the first player, and asking for a move (line 4). While no coztgl
solution has been found, and a valid move is returned, iti@ppihe
move (6), and then switches to the next player (7). If focusches
to a player on a final position, the position is returned (fLhd so-

lution is possible below this point, it returns to the prasdalayer
and asks it to select a different move (9). For convenieneaesord

here the nogoods for any particular position (lines 3 andf9)o

more moves are possible, it returns to the previous pogitioh This
algorithm is essentially the standard algorithm for exagugames,
but with the addition of backtracking if a dead-end is reactote
that we do not specify here what constitutes a ‘positionis tould
be simply the current variable assignments, or it could adstude
the current state of the domains of uninstantiated varsalSenilarly,
in line 6, the game controller may simply make the assignraadt
check it for consistency, or it could apply constraint prggigon to
reduce the options needed to be considered by the partisipan

4.2 ThePlayer’'salgorithm

For a constraint solving agent, the game consists of perredjuests
to select and instantiate a single variable in a dynamic EBR
should the player make those decisions? A complete searali of
possible decisions and their possible continuations wprddide the
most information. In large games, this is likely to requikeessive
time. Instead, as is common in game-tree search methodssuma
each player has a limited depth to which it can look ahead vgleen
lecting a move. The algorithm is shown below. The player wbns
ers each of its own possible decisions in turn (lines 3-5,intathe
CSP explicit), and evaluates the resulting positions (7¢daysider-
ing each of the opponents possible decisions from thatipogit2).
Each of those moves are evaluated in the same way until thtéa dep
limit is reached (11), where the nodes are evaluated by ia stztl-
uation function. A value of 0 is returned for an inconsisteosition
(2). This is essentially a standard limited-depth game-gesarch, but
with legal positions defined by a CSP, and with backtrackingne
consistency. We can therefore use game-tree search teelsrimim-
prove the solver’s constraint reasoning. Each individlayer must
decide how deep to look ahead, how to order branches fortsegrc
how to evaluate partial solutions, how to account for thadies of
the other players, and how to decide upon the best variadlealne.
We consider each of these choices below.

sel ect (player i, pos p, NG ng, depth d): nove
1l eval =0
2 best = (0,0)

3 for each var Xin p
for each v in X' s domain not in ng
if (X, v) is consistent with p
np = apply((X v),p)
if (better(eval (i,np,d),eval)
best = (X, v)
eval = evaluate(i, np,d)

4
5
6
7
8
9
10 return best

eval (pl ayer i, pos p, depth d): integer
11 if (depth == 1limt(i))

12 return eval uatePos(i, d, p)

13 el se

14 nmove = sel ect(next(i), pos,{}, d+1)
15 return eval (next (i), nove,d+1))

PropagationThe default case would be to do no propagation, but

to rely on backward checking of the constraints. In ordenvaleate
the partial solutions, we will examine the domains of thenatan-
tiated variables and reason about the remaining valuesdéfaailt
case does not change the domains of uninstantiated vajaoeve
don’t consider it any further. Instead, our simplest pr@iam case

is forward checking. In line 5, each time we consider a paiv]X
we would examine each uninstantiated variable Y constddyeX,
and remove all values in Y’s domain inconsistent with (X}#)we
assume each player maintains the domains between movesy¢he
know that (X,v) is never inconsistent with previously assid vari-
ables. Therefore the move (X,v) is inconsistent only if ifei@s the
domain of an uninstantiated variable. MAC is a higher le¥gropa-
gation than FC, extending it by establishing arc consistafter for-
ward checking - if any domains were reduced in size, all otloer
strained (uninstantiated) domains are checked for inetersi val-
ues, and the process repeats until all domains are staldejamain
empties. This constraint propagation directly addredsegtoblem
of the horizon effect. Reasoning about the consequencescidns
identifies some of the future moves that are impossible, impung
the values from the domains. Similarly, if a domain is redutea
single value, then the move is inevitable, and can be aceduior
even if it occurs beyond the horizon. In addition, since ptaywill
be forced to backtrack if a deadend is reached, propagatims o
identify inevitable dead-ends earlier in the search.

Evaluation Function§ he method of evaluating a partial solution
depends on the particular objective function maintainethieyrele-
vant player. In each case, we examine the domains of uniresizth
variables, and estimate the chances of receiving a paaticaore
from that domain. For maximising the number of nodes withveyi
colour, we score 1 for each domain reduced to the desirediigolo
and 0.5 for each domain containing that colour among othegs.
maximising weights, we score the given function for each aiom
reduced to a single value, plus the mean of the maximum wsefght
the other domains.

Game strategie&iven the evaluation functions above, each player
still needs a strategy for selecting moves - first to predtattvmove
an opponent will make in any given state, and then to deciden@p-
propriate move for itself. We have investigated four vaoias of the
basic minimax strategy from game-tree search, designegefoeral
sum gamesMinimax is a literal translation from zero-sum games,
in which a player selects the move which minimises the marimu
score its opponent may get. We do not expect this to perforione
our general sum gameBlaximin guards against an opponent min-
imising the current player's score, and so selects the mdviehw
maximises the minimum score it may achieve. This strateginis
lar to the ‘paranoid’ one in [12Maximaxassumes each player will
attempt to maximise its own objective; thus level 2 retuhesmax-
imising move for player 2, and level 1 returns the move whictukg
lead to the maximum for player 1. This strategy is similaax™ for
multi-player games [9]. FinallyMaxWSis designed to handle inac-
curacies in the evaluation function. The evaluations cénestimate
the score from each position, since future moves and conisprap-
agation may reduce the score obtainable. Also, since orequbst
moves the opponent will be looking ahead to a deeper levelillit
have more information on which to base the decision. Thusfores
under the opponent’s control, we return the evaluationghted by a
probability that the opponent will make that move, while tioe cur-
rent player's moves, we choose the move that maximises éhteeig
sum of the evaluation. The probability of an opponent’s mieweal-
culated by dividing the payoff for that opponent by the sunthef
payoffs over all moves. For each of the above strategiesreakhies
lexicographically. In Fig. 2 we show the choices made forakén
head of 2 in a two player game under different strategies ciroted
choice indicates the move (A or B) chosen by player 1.

Depth of searchThe players may choose to look ahead as deep
into the tree as they are able. For the initial experimengsljmit our

playerl A B

player2

payoffs

(@1 first) [3:21 [L1] [90] [27] [2.8] [4,5]
maximin 1 2
maximax 3 2
minimax 2 8
maxW$s 3

(3213 + 1¥1/3+ 9%0/3) (2%7/20 + 2%6/20 + 4%5/20)
Figure2. Game Playing Strategies

search to a depth of 1 or 2 (for complexity reasons, discusskev).
That is, a player considers only its own moves, or considetis ibs
own moves and the moves of its opponent.

ComplexityHow expensive is the computation required to make a

10 ¢ Maximin_2vs
9 Maximin_2

8 1 s Maximin_2vs
7L ‘ MaxWs_2

6 - - A Maximin_2vs
54 5 Mnimax_2
44 s X Maximin_2vs
3 1 : Maximax_2
21 X e Frontier

1 I

0 ¥ Balance

012345672891

Figure3. Result for one game, Red v Blue

decision at a node? We assume a player is using MAC in the {ooka

head phase. Suppose there arariables remaining, antl values
per variable. Suppose there areonstraints (worst cagg(t*)). The
best AC worst-case complexity i$*. For a depth 1 lookahead, to
evaluate a single (variable,value) pair requifs@b?). There aretb
possible decisions to be considered, givid¢teb*). For a depth 2
lookahead, each single (variable,value) pair has an¢thet)b pairs
to consider at depth 2, and each of these takésThat means we

require O(teb®) to evaluate a single decision at the top level, and

there aretb possible decisions, giving(teb*). For low levels of
lookahead, increasing the lookahead depth by 1 raises ttw-case
time required by a factorah.

Branch orderingDuring the lookahead procedure for an individual
decision, the ordering on the branches corresponds to @nilogdon
the variables followed by an ordering on the values. For paiger,
we simply select variables and values lexicographically.

CSP ordering heuristicén the overall search process, any com-

bination of the above options can be thought of as a combimati
variable and value ordering heuristics for standard cairgtsearch.
At a decision point, the player evaluates all options, anecte its
best variable-value combination. We can thus considerdkieraar-
ial game-tree search as a standard search algorithm, imw@al-
ternate between two (complex) heuristics for making densi

5 EXPERIMENTS

We have implemented the above search, propagation andgiést
using the Koalog Java constraint library. We have generafedn-
dom graph colouring problems, each with 4 colours and 15s\ate

Red vs Blue, Maximax2 vs opponent
1

W score
£ value/opt

05 @ value/pareto
B close to frontier
Dangle

0
NG N4 e s o
ey X
@(8"‘(\ ‘3\0"‘& \}{8"« \"\(\\«\a “\#“\a

Figure4. Average results Red v Blues against Maximax 2

achieved value on the y-axis. We also plot the Pareto frorstieow-
ing the best results achievable, and the balance line. In&igre
show the performance of five different player configuratiagainst
an opponent playing Maximax with a lookahed depth of 2, whieee
opponent plays first. The results are averaged over the phgraor
each possible counter-strategy, we show (i) ‘score’ - thetfon of
games won by the opponent; (ii) ‘value/opt’ - the ratio of fieyer’s
achieved value to its maximum possible value; (iii) ‘vaphegeto’ -
the ratio of the player's achieved value to the correspanéiareto
optimal value, or 1 - ‘Pareto regret’; (iv) (closeness todfaya mea-
sure of how close the combined result was to the Pareto &gmtith
1 being on the frontier; and (v) (angle) a measure of the geanan-
ning margin, where 0 is the optimal result for the player, &rsithe
optimum for the opponent. By a win for a player, we mean thgera
achieved a higher fraction of its optimal value than the o, For
the multi-participant games, we look at (i), (ii), (i) arfd), and for

a density of 50% (to ensure that each problem has a number of sthe multi-criteria problems, (iv) and (v).

lutions). We assume that the game controller establisheatAach
step, passing the reduced domains to the next player. Forgeaph,
for each pair of objectives, we generate the Pareto frontilee set
of solutions which are better than all others in at least djeative.

For the multi-participant games, we can see that the befigcoa-
tion for a player playing second against Maximax 2 varieedejng
on which question we ask. For (a) and (b), Minimax 2 is clebdgt.
However, for (c) or (d), the Maximin or MaxWS strategies aesth

For the multi-participant games, assuming we know the oppo+or the multi-criteria optimisation (e), all strategiesegt Minimax

nent’s configuration, we ask four questions: what stratégukl |
play if (&) | want to beat my opponent’s score in individuahgss;
(b) I want to achieve, on average, a higher score than my aypn
(c) I want to get as close to my optimal score as possible; dhd (
want to minimise the ‘Pareto regret’ i.e. | want to maximisg own
score given that my opponent has achieved a particular .sEore
the multi-criteria problems, we ask how should we configheetivo
players (e) to achieve a result close to being Pareto optonéf) to
bias or balance the performance?

Game 1: Number of reds vs number of bllled=ig. 3, we show
the result of one game between two agents on one random ¢héph.
plot the first player’s achieved value on the x-axis, and thoent’s

produce results close to the Pareto frontier. Similar)ym@st strate-
gies except Minimax are close to the balance line. For bqiegyof
problem, similar results are obtained when the opponenyspiac-
ond, except that measures (i) and (v) are more heavily weigtd
the player than the opponent; there is an advantage to pldiyst.
For lack of space, we cannot show the full set of graphs coimgar
all player configurations; instead, we summarise the resuFig. 5.
Game 2: Preferences vs number of rdelg. 6 shows the same
set of players, but now playing an asymmetric game, wherephe
ponent, playing first, is maximising preferences. The mhing to
note is that the opponent always ‘wins’. Again, all stradsgexcept
Minimax produce results close to the Pareto frontier. A samynis

Game: Reds v Blues Game: Preferences v Reds
Question | R ded Configuration R ded Configuration
a Minimax Minimax
b Minimax Minimax
c Maximin or maxWs Maximin or MaxWs
d Maximin or maxWs Maximin or MaxWs
e Maximax(2ply) vs Maximax(1ply) | All Maximin (except with
Maximax(Iply) vs Maximax(2ply) Minimax), all Maximax (except
MaxWS(2ply) vs Maximax(1ply) with itself and Minimax), all
Maximax(1ply) vs MaxWS(2ply) MaxWS (except with Minimax)
Maximax vs Maximin
f Maximax vs Maximax Maximax(1ply) vs Maximax(2ply)
balance | maxWS vs Minimax
bias red | Maximin vs Minimax Maximax(1ply) vs Maximax(2ply)*
bias Pref Minimax vs (Maximax or Maximin)

* best possible for reds, although Preferences wins
Assume 2ply unless specified

Figure5. Summary of two Game Types

Preferences vs Reds, Maximax2 vs opponent

W score
£ value/opt
@ value/pareto

0.5 B close to frontier

Oangle

04
yo e ot

Figure6. Average results Preferences v Red against Maximax 2

also shown in Fig. 5.

6 DISCUSSION

Some strategies have clear performance implications,ndipg on
the goals of the adversarial solvers. Beating your oppoisetiffer-

ent from improving your own objective, and requires a défercon-
figuration. Minimax pulls the balance towards itself, at ¢xpense
of its own value and of overall quality. It is a destructiveastgy,

that ignores it own score. MaxWS and Maximin attempt to prbte

their own objectives, making few assumptions about the nppt

Furtherimprovements need to be made to the evaluationifunsct
Our estimate of the value of an intermediate state is faige, and
more accurate evaluations may lead to better results. Osmdlity
would be to develop constraint-based variations of alpta-prun-
ing, reasoning about bounds on the values obtainable for@ager.
Alternatively, soft consistency algorithms, which mainteounts of
minimum achievable total scores for each individual valwey mpro-
vide better estimates.

7 CONCLUSION

We have developed the notion of adversarial constraingfaation,
in which a solver has to cope with decisions made by an adver-
sary during the solution process. This notion encompassemaer
of constraint frameworks that have been proposed to hamleru
tainty. We have looked in more detail at a narrow version, rehe
adversaries take turns to make assignments. This givesalfftion
similar to adversarial search in general Al, but with baagking on
reaching a dead-end. We have developed strategies forajesumn
games, allowing the solver to reason about the adversakgly las-
signments. By propagating constraints at each move, weezson
about the consequences of individual assignments madelspiver
or adversary. We have shown that the framework supportsi-mult
participant constraint games and multi-criteria conatraptimisa-
tion problems. For multi-participant games, differenteolconfigu-
rations are advised, depending on the performance measdrina
adversary’s configuration, but greater lookahead prodbetsr re-
sults. For multi-criteria problems, we have shown that gqodl-
ity solutions can be obtained using appropriately confidyrayers.
Furthermore these solutions can also be balanced in theictokes.
Giving bias to the solution is also possible, given the add types
of game and strategies.

ACKNOWLEDGEMENTS

This work has received support from Science Foundatioarln-
der Grant No. 00/P1.1/C075.

while they lose as many games as they win, they perform well in

achieving high individual scores and balanced scores. iMaxiper-
forms well in the multi-criteria optimisation, but not so Ieom the

multi-participant view. It takes an optimistic view, butggars to be

confused by the evaluation functions. The type of game i®napt:
in the asymmetric game, the greater granularity of the peefmes
objective seems to allow the players to get closer to themapti.

REFERENCES

[1] H. Fargier, J. Lang, and T. Schiex, ‘Mixed constraintigfaction: a
framework for decision problems under incomplete knowédin
AAAI'96, (1996).

[2] F. Focacci and D. Godard, ‘A practical approach to matiieria opti-
mization problems in constraint programming’ GPAIOR’'02 (2002).

The depth of lookahead is important - the deeper the loolkhhea [3] E. Freuder and P. Eaton, ‘Compromise strategies fortcains agents’,

the better the individual result. On the other hand, connigiplay-
ers with different lookaheads works well in multi-critepeoblems,
when one player sacrifices some of its score for a better ibvesalt.

For practical applications, a number of improvements nedakt

in AAAI'97 Workshop on Constraints and Ager{997).

[4] M. Gavanelli, ‘An algorithm for multi-criteria optimestion in csps’, in
ECAI'02, pp. 136-140, (2002).

[5] Y.Hamadi, C. Bessiére, and J. Quinqueton, ‘Backtnaghn distributed
constraint networks’, ilECAI-98 pp. 219-223, (1998).

made. We have largely ignored the time taken to make a decisio [6] D.Knuth and R. Moore, ‘An analysis of alpha-beta prunjmrtificial

arbitrarily cutting off look ahead at a depth of 2. The timketa for

two players using MAC to a depth of 2 to solve a graph to comple- 7]

tion is approximately 5 seconds, but most of that time isriake on
the first 2 or 3 moves. If more time is available, then eithghbr
levels of consistency could be used, or a greater depth &étwead.
If less time is available, we could limit the lookahead tofttiep, or
reduce the propagation. Ultimately, we could introduceesd with
no propagation, but using heuristics to select moves. Fonthlti-
criteria case, this would be a variation on standard coimstoatimi-
sation search, switching the variable and value orderingistc at
each depth of the tree. Alternatively, we could change thestre of
the game, allowing multiple moves in succession for somgepta

Intelligence 6, 293-326, (1975).
P. Kolaitis and M. Vardi, ‘A game-theoretic approach tnetraint sat-
isfaction’, in AAAI, (2000).
[8] F.LeHuede, M. Grabisch, C. Labreuche, and P. Saveaniiiidriteria
search in constraint programming’, ZPAIOR’'03 (2003).
[9] C.Luckhardtand K. Irani, ‘An algorithmic solution of person games’,
in AAAI pp. 158-172, (1986).
[10] F. Ricci, ‘Equilibrium theory and constraint networks Intl Conf on
Game Theory(1991).
[11] D. Sabin and E. Freuder, ‘Contradicting convention&@dem in con-
straint satisfaction’, iPPCP’94 (1994).
[12] N. Sturtevant and R. Korf, ‘On pruning techniques for ltinplayer
games’, inAAA|, pp. 201-207, (2000).
[13] T. Walsh, ‘Stochastic constraint programming’ HCAI, (2002).

