
Adversarial Constraint Satisfaction by Game-tree Search
Kenneth N. Brown, James Little, Paidi J. Creed and Eugene C. Freuder 1

Abstract. Many decision problems can be modelled asadversarial
constraint satisfaction, which allows us to integrate methods from AI
game playing. In particular, by using the idea of opponents,we can
model both collaborative problem solving, where intelligent partici-
pants with different agendas must work together to solve a problem,
and multi-criteria optimisation, where one decision makermust bal-
ance different objectives. In this paper, we focus on the case where
two opponents take turns to instantiate constrained variables, each
trying to direct the solution towards their own objective. We repre-
sent the process as game-tree search. We develop variable and value
ordering heuristics based on game playing strategies. We examine the
performance of various algorithms on general-sum graph colouring
games, for both multi-participant and multi-criteria optimisation.

1 INTRODUCTION

Constraint satisfaction has been successfully applied to awide range
of practical decision problems, but usually assuming thereis a single
solver in complete control. Many decision problems can, however, be
modelled as an interaction between two or more adversaries,where
each one attempts to guide the solution towards their own end. Here,
we combine the two approaches in what we calladversarial con-
straint satisfaction. We consider what effect the notion of an adver-
sary has on the constraint solving process; in particular weintegrate
techniques from AI game playing into constraint solving methods.
We show that we can model problem solving in collaborative en-
vironments, where intelligent participants with different objectives
must work together to produce a solution that satisfies all the problem
constraints, and also that we can model multi-criteria optimisation,
where a single decision maker must find a solution which obtains a
balance between two or more objectives.

There are many protocols which the intelligent solvers could use
to collaborate on the problem. In this paper, for a situationwith two
adversaries, we focus on one approach: the participants take turns
to instantiate constrained variables, and thus effectively search over
a game-tree. The game, however, must end in a complete satisfy-
ing solution, so the players must backtrack out of situations which
lead to an inconsistency. As usual in game-tree search, the partici-
pants must reason about their own best moves in the context ofthe
likely moves of their opponent. They must also now reason about
the consistency of the constraints, and integrate this withthe move
selection. We draw an analogy between CSP variable and valueor-
dering heuristics and strategies from game-tree search. Weexamine
the performance of various algorithms on general-sum graphcolour-
ing games for both multi-participant and multi-criteria optimisation.

As a motivating example, consider planning university commit-
tee meetings. Each committee has possible meeting times, and each

1 Cork Constraint Computation Centre, Dept. of Computer Science, Univer-
sity College Cork, Ireland.http://4c.ucc.ie/

room on campus has limited availability. Researchers want to cluster
meetings together, to leave more time for research. Administrators
want to minimise travel time, preferring to locate the meetings close
to the administration block. How should the University produce a
schedule? The approach considered in this paper would appoint two
agents, one for each interest group, and have them take turnschoos-
ing rooms and times for individual meetings, in the hope thatthe
interplay between their choices would produce a fair settlement. The
agents would clearly bring their own objectives to the problem. If the
university prefers a particular balance, it could appoint agents with
appropriate negotiating skills.

Our research has two main objectives: (i) to provide assistance
for self-motivated decision makers in possibly adversarial situations,
and (ii) to provide a convenient framework for modelling andsolving
multi-criteria constrained optimisation problems. Within the context
of one particular game scenario, for (i) we propose configurations of
the constraint-based searcher for play against known opponents. For
(ii) we show how to configure both players to achieve desired results.

2 BACKGROUND

A binary constraint satisfaction problem consists of a set of vari-
ables{X1, . . . , Xn}, a set of domains of values for the variables
{D1, . . . Dn}, and a set of constraints restricting the values pairs of
variables can take simultaneously{C1, . . . , Cm}, where ifCij is a
constraint over(Xi, Xj) thenCij ⊆ Di ×Dj . A solution to a prob-
lem is an assignment to eachXi of a valuevi from its domainDi,
such that for each constraintCij , (vi, vj) ∈ Cij . Many algorithms
have been proposed for constraint solving, but the default has be-
comemaintaining arc consistency(MAC) [11], in which backtrack-
ing search is extended with constraint propagation. After each choice
of value assignment, unassigned variables have their domains made
arc consistent by deleting every value which does not have a support-
ing value in a domain with which it is constrained. Search time can
be improved by choosing the order in which variables are consid-
ered, and by choosing the order in which values are tried. Thestan-
dard variable ordering heuristic is to select the variable which has the
fewest remaining domain values. Possible value ordering heuristics
include selecting the value most likely to lead to a solution(i.e. the
least constraining choice), or, for maximisation problems, selecting
the value giving the biggest local increase in the objectivefunction.

Constraint satisfaction methods traditionally assume onesolver
with a well-defined objective operating on a static problem.Some
frameworks have been proposed where the solver is not in complete
control of the environment, and must cater for uncertainty caused by
probabilistic or random events - e.g.Mixed [1] and Stochastic CSP
[13] both assume a subset of the variables are uncontrolled.Both of
these frameworks can be considered to be sub-types of adversarial
constraint satisfaction, in which the external world acts as an ad-

versary making probabilistic assignments. The CSP has alsobeen
extended to distributed models, where agents have control over sub-
sets of the variables [5]. Agents are assumed to be cooperative, and
share a goal of reaching a final solution. For cases where all vari-
ables can be instantiated by any participant, [3] configuresteams of
self-motivated agents with individual interests, but focuses on com-
promise strategies rather than reasoning about opponents’moves.

A variety of ways of handling multi-criteria optimisation within
constraint problems have been proposed. [4] finds the complete non-
dominated Pareto frontier using Point Quad trees. [8] use a single
strategy to find one solution, and then switch strategies to find subse-
quent solutions. [2] introduce bounding constraints for each criterion,
and use an iterative approach to solve job shop scheduling problems.
For each of these approaches, to distinguish between the different
solutions, the user has to provide a ranking of the criteria.

Game playing is a significant application area for AI, although fo-
cused mainly on two-player zero-sum games. The basic algorithm is
minimax, in which each player chooses the move which minimises
the maximum score the opponent can achieve. For small games,it is
possible to evaluate all possible move sequences and determine the
optimal move. The analysis of such games is at the heart ofGame
Theory. For larger games, the evaluation must be cut off after some
limit. The states at the limit are then evaluated by estimating the
score liable to be achieved by the relevant player, and thesescores
are propagated back up the search tree to provide an estimateof the
value of each move. The cut-off and the evaluation need to take into
accountquiescence(is the state locally stable, or will the score fluc-
tuate wildly on subsequent moves?) and thehorizon effect(are there
unavoidable moves which will affect the score but are not being fac-
tored in because they have been pushed beyond the cut-off horizon?).
The best known algorithms use variants ofalpha-beta pruning[6], in
which moves which cannot improve on already discovered scores are
pruned from the tree.

There has been some limited research on applications of game-
tree search and game theory in constraint programming. [10]models
each variable in a CSP as an agent, and attempts to maximise the de-
gree of satisfaction of the CSP; solutions correspond to Nash equilib-
rium points. [7] shows how underlying consistency techniques used
in CSPs correspond to certain game mechanisms.

3 THE GAME SETUP

The problem we consider in this paper is graph colouring withfour
colours, with two adversaries, although the approach naturally ex-
tends to arbitrary constraint optimisation problems with many ad-
versaries. We will refer to the adversaries as agents or players. We
represent the problem as a binary CSP, where each variable isa node
with domain{r, b, g, y}, and a set of constraints requiring connected
nodes to take different colours. Each agent has access to thefull prob-
lem. The agents will take turns to select a variable and instantiate
it with a value. On discovering an inconsistency, both agents must
backtrack to the last decision point where a consistent choice was
available, and continue from that point. We assume: (a) agents are
correct and trustworthy - no agent will report an inconsistency if it
doesn’t exist; (b) both are committed to playing by the rulesof the
game - each agent will play in turn by instantiating a single unin-
stantiated variable with a value from its domain, and no agent will
choose a value which it knows will lead to an inconsistency; (c) the
agents are systematic complete searchers - a solution will be found
if one exists. The agents may be self-motivated or antagonistic - they
may make decisions which ignore or degrade the other agent’sob-

Figure 1. Simple graph colouring problem

jective. The individual agents have different objective functions. We
consider two main types: (1) maximise the number of nodes coloured
with a specific colour; and (2) maximise the sum of weights, where
each node has a unary function mapping colours to integer weights.
We assume that each player knows the other’s objective.

Consider the simple graph in Fig. 1. Player A wants to maximise
the number of nodes coloured red, while player B wants to maximise
the sum of the weights. The maximum score achievable by A is 3,
while the maximum achievable by B is 22 - the constraints eliminate
the naive estimates of 6 and 24 respectively. The minimum scores
are 0 for A and 6 for B. In one possible sequence of moves, player
A starts by selecting node 6 and colouring it red (a least constrain-
ing choice compatible with its objective). Player B selectsnode 5
and colours it blue (maximising weight). Player A colours node 2
red (again a least constraining choice, but this time also appearing
to favour B’s objective). Player B colours node 3 green (maximis-
ing the remaining weights). Player A now has no more nodes it can
colour red, so it selects node 1 and colours it yellow. Finally, B must
select node 4, and must colour it yellow. A has achieved an objec-
tive value of 2 (compared to a maximum of 3), while B has obtained
17 (of a possible 22), so both players have achieved a reasonable
score. However, better solutions for both players exist: for example
{(1, y), (2, r), (3, g), (4, b), (5, r), (6, r)} gives a score of 3 for A,
and 18 for B. Better reasoning by B early in the game might have
spotted that A would choose red for node 5 if given the chance,and
so B should have chosen to instantiate node 4 with blue instead. In the
next section, we examine algorithms, propagation methods,strate-
gies and heuristics aimed at emulating that type of reasoning, com-
bining techniques from constraint satisfaction with game-tree search.

4 PLAYING THE GAME

4.1 The Game Exectuion Algorithm

play(player i,pos p): pos
1 if (finished(p)) return p
2 soln = null
3 ng = {}
4 move = select(i, p, ng, 0)
5 while (soln == null && move != (0,0))
6 p = apply(move, p)
7 soln = play(next(i),p)
8 if (soln == null)
9 move = select(i,p,ng+{move},0)
10 return soln

We assume the game is managed by a game controller. The basic
algorithm is shown above. We start by passing the initial position to
the first player, and asking for a move (line 4). While no complete
solution has been found, and a valid move is returned, it applies the
move (6), and then switches to the next player (7). If focus switches
to a player on a final position, the position is returned (1). If no so-
lution is possible below this point, it returns to the previous player
and asks it to select a different move (9). For convenience, we record

here the nogoods for any particular position (lines 3 and 9).If no
more moves are possible, it returns to the previous position(10). This
algorithm is essentially the standard algorithm for executing games,
but with the addition of backtracking if a dead-end is reached. Note
that we do not specify here what constitutes a ‘position’ - this could
be simply the current variable assignments, or it could alsoinclude
the current state of the domains of uninstantiated variables. Similarly,
in line 6, the game controller may simply make the assignmentand
check it for consistency, or it could apply constraint propagation to
reduce the options needed to be considered by the participants.

4.2 The Player’s algorithm

For a constraint solving agent, the game consists of periodic requests
to select and instantiate a single variable in a dynamic CSP.How
should the player make those decisions? A complete search ofall
possible decisions and their possible continuations wouldprovide the
most information. In large games, this is likely to require excessive
time. Instead, as is common in game-tree search methods, we assume
each player has a limited depth to which it can look ahead whense-
lecting a move. The algorithm is shown below. The player consid-
ers each of its own possible decisions in turn (lines 3-5, making the
CSP explicit), and evaluates the resulting positions (7) byconsider-
ing each of the opponents possible decisions from that position (12).
Each of those moves are evaluated in the same way until the depth
limit is reached (11), where the nodes are evaluated by a static eval-
uation function. A value of 0 is returned for an inconsistentposition
(1). This is essentially a standard limited-depth game-tree search, but
with legal positions defined by a CSP, and with backtracking on in-
consistency. We can therefore use game-tree search techniques to im-
prove the solver’s constraint reasoning. Each individual player must
decide how deep to look ahead, how to order branches for searching,
how to evaluate partial solutions, how to account for the decisions of
the other players, and how to decide upon the best variable and value.
We consider each of these choices below.

select(player i, pos p, NG ng, depth d): move
1 eval = 0
2 best = (0,0)
3 for each var X in p
4 for each v in X’s domain not in ng
5 if (X,v) is consistent with p
6 np = apply((X,v),p)
7 if (better(eval(i,np,d),eval)
8 best = (X,v)
9 eval = evaluate(i,np,d)
10 return best

eval(player i, pos p, depth d): integer
11 if (depth == limit(i))
12 return evaluatePos(i, d, p)
13 else
14 move = select(next(i),pos,{},d+1)
15 return eval(next(i), move,d+1))

PropagationThe default case would be to do no propagation, but
to rely on backward checking of the constraints. In order to evaluate
the partial solutions, we will examine the domains of the uninstan-
tiated variables and reason about the remaining values. Thedefault
case does not change the domains of uninstantiated variables, so we
don’t consider it any further. Instead, our simplest propagation case

is forward checking. In line 5, each time we consider a pair (X,v),
we would examine each uninstantiated variable Y constrained by X,
and remove all values in Y’s domain inconsistent with (X,v).If we
assume each player maintains the domains between moves, then we
know that (X,v) is never inconsistent with previously assigned vari-
ables. Therefore the move (X,v) is inconsistent only if it empties the
domain of an uninstantiated variable. MAC is a higher level of propa-
gation than FC, extending it by establishing arc consistency after for-
ward checking - if any domains were reduced in size, all othercon-
strained (uninstantiated) domains are checked for inconsistent val-
ues, and the process repeats until all domains are stable, ora domain
empties. This constraint propagation directly addresses the problem
of the horizon effect. Reasoning about the consequences of decisions
identifies some of the future moves that are impossible, by removing
the values from the domains. Similarly, if a domain is reduced to a
single value, then the move is inevitable, and can be accounted for
even if it occurs beyond the horizon. In addition, since players will
be forced to backtrack if a deadend is reached, propagation helps to
identify inevitable dead-ends earlier in the search.

Evaluation FunctionsThe method of evaluating a partial solution
depends on the particular objective function maintained bythe rele-
vant player. In each case, we examine the domains of uninstantiated
variables, and estimate the chances of receiving a particular score
from that domain. For maximising the number of nodes with a given
colour, we score 1 for each domain reduced to the desired colour,
and 0.5 for each domain containing that colour among others.For
maximising weights, we score the given function for each domain
reduced to a single value, plus the mean of the maximum weights for
the other domains.

Game strategiesGiven the evaluation functions above, each player
still needs a strategy for selecting moves - first to predict which move
an opponent will make in any given state, and then to decide onan ap-
propriate move for itself. We have investigated four variations of the
basic minimax strategy from game-tree search, designed forgeneral
sum games.Minimax is a literal translation from zero-sum games,
in which a player selects the move which minimises the maximum
score its opponent may get. We do not expect this to perform well on
our general sum games.Maximin guards against an opponent min-
imising the current player’s score, and so selects the move which
maximises the minimum score it may achieve. This strategy issimi-
lar to the ‘paranoid’ one in [12].Maximaxassumes each player will
attempt to maximise its own objective; thus level 2 returns the max-
imising move for player 2, and level 1 returns the move which would
lead to the maximum for player 1. This strategy is similarMaxn for
multi-player games [9]. Finally,MaxWSis designed to handle inac-
curacies in the evaluation function. The evaluations can only estimate
the score from each position, since future moves and constraint prop-
agation may reduce the score obtainable. Also, since on subsequent
moves the opponent will be looking ahead to a deeper level, itwill
have more information on which to base the decision. Thus formoves
under the opponent’s control, we return the evaluations weighted by a
probability that the opponent will make that move, while forthe cur-
rent player’s moves, we choose the move that maximises a weighted
sum of the evaluation. The probability of an opponent’s moveis cal-
culated by dividing the payoff for that opponent by the sum ofthe
payoffs over all moves. For each of the above strategies, we break ties
lexicographically. In Fig. 2 we show the choices made for a looka-
head of 2 in a two player game under different strategies. Thecircled
choice indicates the move (A or B) chosen by player 1.

Depth of searchThe players may choose to look ahead as deep
into the tree as they are able. For the initial experiments, we limit our

Figure 2. Game Playing Strategies

search to a depth of 1 or 2 (for complexity reasons, discussedbelow).
That is, a player considers only its own moves, or considers both its
own moves and the moves of its opponent.

ComplexityHow expensive is the computation required to make a
decision at a node? We assume a player is using MAC in the looka-
head phase. Suppose there aret variables remaining, andb values
per variable. Suppose there aree constraints (worst caseO(t2)). The
best AC worst-case complexity iseb2. For a depth 1 lookahead, to
evaluate a single (variable,value) pair requiresO(eb2). There aretb
possible decisions to be considered, givingO(teb3). For a depth 2
lookahead, each single (variable,value) pair has another(t−1)b pairs
to consider at depth 2, and each of these takeseb2. That means we
requireO(teb3) to evaluate a single decision at the top level, and
there aretb possible decisions, givingO(t2eb4). For low levels of
lookahead, increasing the lookahead depth by 1 raises the worst-case
time required by a factoroftb.

Branch orderingDuring the lookahead procedure for an individual
decision, the ordering on the branches corresponds to an ordering on
the variables followed by an ordering on the values. For thispaper,
we simply select variables and values lexicographically.

CSP ordering heuristicsIn the overall search process, any com-
bination of the above options can be thought of as a combination of
variable and value ordering heuristics for standard constraint search.
At a decision point, the player evaluates all options, and selects its
best variable-value combination. We can thus consider the adversar-
ial game-tree search as a standard search algorithm, in which we al-
ternate between two (complex) heuristics for making decisions.

5 EXPERIMENTS

We have implemented the above search, propagation and strategies
using the Koalog Java constraint library. We have generated50 ran-
dom graph colouring problems, each with 4 colours and 15 nodes, at
a density of 50% (to ensure that each problem has a number of so-
lutions). We assume that the game controller establishes ACat each
step, passing the reduced domains to the next player. For each graph,
for each pair of objectives, we generate the Pareto frontier- the set
of solutions which are better than all others in at least one objective.

For the multi-participant games, assuming we know the oppo-
nent’s configuration, we ask four questions: what strategy should I
play if (a) I want to beat my opponent’s score in individual games;
(b) I want to achieve, on average, a higher score than my opponent;
(c) I want to get as close to my optimal score as possible; and (d) I
want to minimise the ‘Pareto regret’ i.e. I want to maximise my own
score given that my opponent has achieved a particular score. For
the multi-criteria problems, we ask how should we configure the two
players (e) to achieve a result close to being Pareto optimal, or (f) to
bias or balance the performance?

Game 1: Number of reds vs number of bluesIn Fig. 3, we show
the result of one game between two agents on one random graph.We
plot the first player’s achieved value on the x-axis, and the opponent’s

Figure 3. Result for one game, Red v Blue

Figure 4. Average results Red v Blues against Maximax 2

achieved value on the y-axis. We also plot the Pareto frontier, show-
ing the best results achievable, and the balance line. In Fig. 4, we
show the performance of five different player configurationsagainst
an opponent playing Maximax with a lookahed depth of 2, wherethe
opponent plays first. The results are averaged over the 50 graphs. For
each possible counter-strategy, we show (i) ‘score’ - the fraction of
games won by the opponent; (ii) ‘value/opt’ - the ratio of theplayer’s
achieved value to its maximum possible value; (iii) ‘value/pareto’ -
the ratio of the player’s achieved value to the corresponding Pareto
optimal value, or 1 - ‘Pareto regret’; (iv) (closeness to Pareto) a mea-
sure of how close the combined result was to the Pareto frontier, with
1 being on the frontier; and (v) (angle) a measure of the average win-
ning margin, where 0 is the optimal result for the player, and1 is the
optimum for the opponent. By a win for a player, we mean the player
achieved a higher fraction of its optimal value than the opponent. For
the multi-participant games, we look at (i), (ii), (iii) and(v), and for
the multi-criteria problems, (iv) and (v).

For the multi-participant games, we can see that the best configura-
tion for a player playing second against Maximax 2 varies depending
on which question we ask. For (a) and (b), Minimax 2 is clearlybest.
However, for (c) or (d), the Maximin or MaxWS strategies are best.
For the multi-criteria optimisation (e), all strategies except Minimax
produce results close to the Pareto frontier. Similarly, (f) most strate-
gies except Minimax are close to the balance line. For both types of
problem, similar results are obtained when the opponent plays sec-
ond, except that measures (i) and (v) are more heavily weighted to
the player than the opponent; there is an advantage to playing first.
For lack of space, we cannot show the full set of graphs comparing
all player configurations; instead, we summarise the results in Fig. 5.

Game 2: Preferences vs number of redsFig. 6 shows the same
set of players, but now playing an asymmetric game, where theop-
ponent, playing first, is maximising preferences. The main thing to
note is that the opponent always ‘wins’. Again, all strategies except
Minimax produce results close to the Pareto frontier. A summary is

Game: Reds v Blues Game: Preferences v Reds

Question Recommended Configuration Recommended Configuration

a Minimax Minimax

b Minimax Minimax

c Maximin or maxWS Maximin or MaxWS

d Maximin or maxWS Maximin or MaxWS

e Maximax(2ply) vs Maximax(1ply)

Maximax(1ply) vs Maximax(2ply)

MaxWS(2ply) vs Maximax(1ply)

Maximax(1ply) vs MaxWS(2ply)

Maximax vs Maximin

All Maximin (except with

Minimax), all Maximax (except

with itself and Minimax), all

MaxWS (except with Minimax)

f

balance

Maximax vs Maximax

maxWS vs Minimax

Maximax(1ply) vs Maximax(2ply)

bias red Maximin vs Minimax Maximax(1ply) vs Maximax(2ply)*

bias Pref Minimax vs (Maximax or Maximin)

* best possible for reds, although Preferences wins

Assume 2ply unless specified

Figure 5. Summary of two Game Types

Figure 6. Average results Preferences v Red against Maximax 2

also shown in Fig. 5.

6 DISCUSSION

Some strategies have clear performance implications, depending on
the goals of the adversarial solvers. Beating your opponentis differ-
ent from improving your own objective, and requires a different con-
figuration. Minimax pulls the balance towards itself, at theexpense
of its own value and of overall quality. It is a destructive strategy,
that ignores it own score. MaxWS and Maximin attempt to protect
their own objectives, making few assumptions about the opponent;
while they lose as many games as they win, they perform well in
achieving high individual scores and balanced scores. Maximax per-
forms well in the multi-criteria optimisation, but not so well from the
multi-participant view. It takes an optimistic view, but appears to be
confused by the evaluation functions. The type of game is important:
in the asymmetric game, the greater granularity of the preferences
objective seems to allow the players to get closer to the optimum.

The depth of lookahead is important - the deeper the lookahead,
the better the individual result. On the other hand, combining play-
ers with different lookaheads works well in multi-criteriaproblems,
when one player sacrifices some of its score for a better overall result.

For practical applications, a number of improvements need to be
made. We have largely ignored the time taken to make a decision,
arbitrarily cutting off look ahead at a depth of 2. The time taken for
two players using MAC to a depth of 2 to solve a graph to comple-
tion is approximately 5 seconds, but most of that time is taken up on
the first 2 or 3 moves. If more time is available, then either higher
levels of consistency could be used, or a greater depth of lookahead.
If less time is available, we could limit the lookahead to depth 1, or
reduce the propagation. Ultimately, we could introduce solvers with
no propagation, but using heuristics to select moves. For the multi-
criteria case, this would be a variation on standard constraint optimi-
sation search, switching the variable and value ordering heuristic at
each depth of the tree. Alternatively, we could change the structure of
the game, allowing multiple moves in succession for some players.

Further improvements need to be made to the evaluation functions.
Our estimate of the value of an intermediate state is fairly crude, and
more accurate evaluations may lead to better results. One possibility
would be to develop constraint-based variations of alpha-beta prun-
ing, reasoning about bounds on the values obtainable for each player.
Alternatively, soft consistency algorithms, which maintain counts of
minimum achievable total scores for each individual value may pro-
vide better estimates.

7 CONCLUSION

We have developed the notion of adversarial constraint satisfaction,
in which a solver has to cope with decisions made by an adver-
sary during the solution process. This notion encompasses anumber
of constraint frameworks that have been proposed to handle uncer-
tainty. We have looked in more detail at a narrow version, where
adversaries take turns to make assignments. This gives a formulation
similar to adversarial search in general AI, but with backtracking on
reaching a dead-end. We have developed strategies for general-sum
games, allowing the solver to reason about the adversary’s likely as-
signments. By propagating constraints at each move, we can reason
about the consequences of individual assignments made by the solver
or adversary. We have shown that the framework supports multi-
participant constraint games and multi-criteria constraint optimisa-
tion problems. For multi-participant games, different solver configu-
rations are advised, depending on the performance measure and the
adversary’s configuration, but greater lookahead producesbetter re-
sults. For multi-criteria problems, we have shown that goodqual-
ity solutions can be obtained using appropriately configured players.
Furthermore these solutions can also be balanced in their objectives.
Giving bias to the solution is also possible, given the available types
of game and strategies.

ACKNOWLEDGEMENTS

This work has received support from Science Foundation Ireland un-
der Grant No. 00/PI.1/C075.

REFERENCES
[1] H. Fargier, J. Lang, and T. Schiex, ‘Mixed constraint satisfaction: a

framework for decision problems under incomplete knowledge’, in
AAAI’96, (1996).

[2] F. Focacci and D. Godard, ‘A practical approach to multi-criteria opti-
mization problems in constraint programming’, inCPAIOR’02, (2002).

[3] E. Freuder and P. Eaton, ‘Compromise strategies for constraint agents’,
in AAAI’97 Workshop on Constraints and Agents, (1997).

[4] M. Gavanelli, ‘An algorithm for multi-criteria optimisation in csps’, in
ECAI’02, pp. 136–140, (2002).

[5] Y. Hamadi, C. Bessière, and J. Quinqueton, ‘Backtracking in distributed
constraint networks’, inECAI-98, pp. 219–223, (1998).

[6] D. Knuth and R. Moore, ‘An analysis of alpha-beta pruning’, Artificial
Intelligence, 6, 293–326, (1975).

[7] P. Kolaitis and M. Vardi, ‘A game-theoretic approach to constraint sat-
isfaction’, inAAAI, (2000).

[8] F. Le Huede, M. Grabisch, C. Labreuche, and P. Saveant, ‘Multi-criteria
search in constraint programming’, inCPAIOR’03, (2003).

[9] C. Luckhardt and K. Irani, ‘An algorithmic solution of n-person games’,
in AAAI, pp. 158–172, (1986).

[10] F. Ricci, ‘Equilibrium theory and constraint networks’, in Intl Conf on
Game Theory, (1991).

[11] D. Sabin and E. Freuder, ‘Contradicting conventional wisdom in con-
straint satisfaction’, inPPCP’94, (1994).

[12] N. Sturtevant and R. Korf, ‘On pruning techniques for multi-player
games’, inAAAI, pp. 201–207, (2000).

[13] T. Walsh, ‘Stochastic constraint programming’, inECAI, (2002).

