
A Comparison of Approaches to Handling
Complex Local Problems in DCOP

David A. Burke and Kenneth N. Brown
Centre for Telecommunications Value-chain Research

and Cork Constraint Computation Centre,
Department of Computer Science,
University College Cork, Ireland

Abstract. Many distributed constraint optimisation algo-
rithms require each agent to have a single variable. For agents
with multiple variables, there are two standard approaches:
decomposition – for each variable in each local problem, cre-
ate a unique agent to manage it; and compilation – compile
the local problem down to a new variable whose domain is the
set of all local solutions. We compare these two approaches
with each other and with a modified compilation approach
that uses dominance and interchangeabilities to reduce prob-
lem size and speed up search. Our preliminary results show:
(i) the basic compilation is almost never competitive; (ii) the
modified compilation gives significant improvements over the
other methods as the size and complexity of each agent’s in-
ternal problem grows, as long as the number of inter-agent
constraints and the domain size of the variables remains small;
(iii) the decomposition approach is more appropriate to use
as the number of inter-agent constraints and the domain size
of the variables increase, as long as the overall problem size
is small.

1 INTRODUCTION

Many combinatorial problems are naturally distributed over
a set of agents: e.g. coordinating activities in a sensor net-
work [2], coordinating vehicle schedules in a transport logis-
tics problem [6], or scheduling meetings among a number of
participants [21]. Distributed Constraint Reasoning (DCR)
considers algorithms explicitly designed to handle such prob-
lems, searching for globally acceptable solutions while min-
imising communication between agents. Most of the algo-
rithms, however, assume that each agent controls only a single
variable. This assumption is justified by two standard refor-
mulations [23] by which any DCR problem with complex local
problems (i.e. multiple variables in each agent) can be trans-
formed to give exactly one variable per agent:

(i) Compilation: for each agent, define a variable whose do-
main is the set of solutions to the original local problem;

(ii) Decomposition: for each variable in each local prob-
lem, create a unique agent to manage it.

In distributed constraint satisfaction (DCSP), it is known
that neither of these methods scales up well as the size of the

local problems increase, because of the space and time require-
ments of the reformulation (compilation), or the extra com-
munication overhead (decomposition). To address these is-
sues, algorithms for handling multiple local variables in DCSP
have been proposed [1, 22, 11, 14]. These algorithms are spe-
cific to DCSP, since they reason about violated constraints,
and cannot be applied directly to distributed constraint opti-
misation problems (DCOP), which are concerned with costs.
For DCOP, the two original reformulations remain the stan-
dard way of handling complex local problems [17].

In this paper we investigate both of these techniques applied
to DCOP, together with a modified version of the compila-
tion method that makes use of dominance and interchange-
abilities to reduce search [4, 5]. We evaluate the different ap-
proaches using the ADOPT [17] algorithm applied to distrib-
uted graph-colouring problems of various sizes. We believe
this is the first experimental comparison of these techniques
for DCOP, and we present preliminary results from tests ex-
ecuted in a simulated distributed environment. Our findings
show that the decomposition and improved compilation meth-
ods are useful for problems with different characteristics while
the basic compilation approach performs poorly on all but the
smallest of problems. We show that the modified compilation
approach can significantly outperform the other techniques
when the agents’ internal problems are large and dense. How-
ever, it requires the number of inter-agent constraints and
the domain size of variables to be small. On the other hand,
we show that the decomposition approach is more suited to
problems where the number of inter-agent constraints and the
domain size of variables is increasing but performs badly when
agents’ internal problems grow.

In Section 2 we give descriptions for DCOP and the
ADOPT algorithm. The techniques for handling complex lo-
cal problems that we will evaluate are described in Section 3.
We then present the experiments we performed and their re-
sults in Section 4. This is followed by a discussion, analysing
the merits of the different techniques in Section 5. Finally, in
Section 6, we briefly summarise our work.

2 BACKGROUND

A Distributed Constraint Optimisation Problem consists of
a set of agents, A={a1, a2, ..., an}, and for each agent ai, a



set Xi={xi1, xi2, . . . , ximi} of variables it controls, such that
∀i 6=j Xi∩Xj = φ. Each variable xij has a corresponding do-
main Dij . X =

⋃
Xi is the set of all variables in the problem.

C ={c1, c2, . . . , ct} is a set of constraints. Each ck has a scope
s(ck) ⊆ X, and is a function ck :

∏
ij:xij∈s(ck)

Dij → IN . The

agent scope, a(ck), of ck is the set of agents that ck acts upon:
a(ck) = {ai : Xi∩ s(ck) 6= φ}. An agent ai is a neighbour of
an agent aj if ∃ck : ai, aj ∈ a(ck). A global assignment, g, is
the selection of one value for each variable in the problem:
g ∈

∏
ij

Dij . A local assignment, li, to an agent ai, is an el-

ement of
∏

j
Dij . Let t be any assignment, and let Y be a

set of variables, then t↓Y is the projection of t over the vari-
ables in Y . The global objective function, F , assigns a cost to
each global assignment: F :

∏
ij

Dij→ IN :: g 7→
∑

k
ck(g↓s(ck)).

An optimal solution is one which minimises F . The solution
process, however, is restricted: each agent is responsible for
the assignment of its own variables, and thus agents must
communicate with each other, describing assignments and
costs, in order to find a globally optimal solution.

Most research has focused on DisCSP [23, 20, 10, 3, 24]. Re-
cently, several algorithms for DCOP have been proposed [15,
18, 9], including ADOPT [17] – a complete algorithm that
allows agents to work asynchronously. Agents are prioritised
into a tree. During search, each agent repeatedly and asyn-
chronously performs the following tasks:

1. receive incoming values from higher priority agents and add
to CurrentContext, which is a record of higher priority
neighbours’ current variable assignments;

2. receive costs from children and store if they are valid for
CurrentContext (the agent maintains separate costs for
each child/subtree for each of its possible values);

3. calculate the cost of each of its possible values, summing
the cost of subtrees and costs of constraints with agents of
higher priority (i.e. calculate the cost of the subtree rooted
at this particular agent);

4. choose the value that minimises the lower bound on the
costs and send this value to all neighbours of lower priority;

5. send the minimum lower and minimum upper bounds of
the costs calculated in (3) to parent agent including the
context to which they apply.

As the search progresses, the bounds are tightened in each
agent until the lower bound of the minimum cost solution is
equal to its upper bound. If an agent detects this condition,
and its parent has terminated, then an optimal solution is
found and it may terminate also.

3 HANDLING COMPLEX LOCAL
PROBLEMS

3.1 Decomposition

To apply the decomposition method: for each variable xij in
each agent ai, create a new virtual agent axij to manage that
variable. Thus, the problem is reduced to having a single vari-
able per virtual agent. Agent ai is then required to manage the
activies of a set of virtual agents AXi={axi1, axi2, . . . , aximi}.
Implemented in ADOPT [16], the communication between in-
ternal variables is done synchronously while the external com-
munication is asynchronous.

3.2 Basic compilation

To apply the basic compilation method: (i) for each agent
ai, create a new variable zi, whose domain Di =

∏
j
Dij is

the set of local assignments to the agent’s internal problem;
(ii) for each agent ai, add a unary constraint function fi,
where ∀l ∈Di, fi(l) =

∑
j:s(cj)⊆Xi

cj(l↓s(cj)) (i.e. the cost is

the sum of the costs from all constraints which act on ai

only); (iii) for each set of agents Aj = {aj1, aj2, ..., ajpj}, let
Rj = {c : a(c) = Aj} be the set of constraints whose agent
scope is Aj , and for each Rj 6=φ, define a new constraint Cj :
Dj1×Dj2×. . .×Djpj→IN :: l 7→

∑
c∈Rj

c(l↓s(c)), equal to the sum

of the constraints in Rj (i.e. construct constraints between
the agents’ new variables, that are defined by referring back
to the original variables in the problem). Once compiled, we
can run the ADOPT algorithm using the new variables. It is
worth noting that a significant advantage that the compilation
approach has over decomposition, is that it allows each agents
local problem to be solved using existing efficient centralised
solvers.

3.3 Improved compilation

An improved compilation method is presented in [5]. It pro-
poses two advances on the basic compilation method.

First, the size of the compiled domain is reduced by find-
ing only one optimal local solution for each combination of
external variables (i.e. those variables of an agent that are
connected to another agent). Only external variables can
have a direct impact on other agents, therefore, dominated
or fully interchangeable solutions in the local problems can
be discarded. Formally, for each agent ai, let pi = {xij :
∀c xij ∈ s(c) → s(c) ⊆ Xi} be its private variables – the
subset of its variables which are not directly constrained by
other agents’ variables – and let ei = Xi \ pi be its exter-
nal variables – the variables that do have direct constraints
with other agents. For each ai, create a new variable z′i with
domain D′

i =
∏

j:xij∈ei
Dij , and add a function f ′i , where

∀l ∈D′
i, f ′i(l) =min{fi(t) : t ∈Di, t↓ei = l}. That is, D′

i con-
tains all assignments to the external variables, and their cost
is the minimum cost obtained when they are extended to
a full local assignment for ai. The new constraints are de-
fined exactly as in the basic compilation (for each Rj 6= φ,
C′

j : D′
j1×D′

j2×. . .×D′
jpj
→ IN :: l 7→

∑
c∈Rj

c(l↓s(c))), but will

act on smaller sets of tuples.
Second, the concept of Sub-neighbourhood interchangeabil-

ity is introduced and applied to distributed search using com-
piled values. For each agent ai and for a set of agents S,
let hs

i = {xij : ∃c : xij ∈ s(c) ∧ a(c) ∩ S 6= φ} be the set
of original variables of ai that are adjacent to original vari-
ables of the agents in S. Two compiled values, la, lb ∈Di are
sub-neighbourhood interchangeable (SNI) with respect to the
agents in S (la ≡s

i lb), if both values represent identical as-
signments to the variables of hs

i : la≡s
i lb ↔ la↓hs

i
= lb↓hs

i

1. In
ADOPT, agents send their values to all neighbours lower in
the priority tree, and receive costs only from direct children.
Considering each subtree separately, let S be the set of lower

1 SNI works by exploiting symmetries that are introduced by the
compilation technique - note that these symmetries will occur
regardless of the problem domain.



priority neighbours of ai, lying in the subtree rooted by as.
For each subtree, partition ai’s values into SNI sets, such that
Φs

i (x) is a function returning the SNI set to which x belongs:
∀la, lb ∈ Di, la≡s

i lb ↔ Φs
i (la) = Φs

i (lb). Then, ADOPT can be
modified such that if ai receives a cost ε from as with a com-
patible context, the costs of all values interchangeable with
the current value x are updated: ∀l ∈ Φs

i (x), cost(l, as)← ε.

4 EXPERIMENTS

4.1 Experimental setup

We compare the decomposition, basic compilation and the
improved compilation method (with and without SNI sets)
on random binary graph colouring problems of varying com-
plexity. The experiments are run in a simulated distributed
environment: we use one machine but each agent runs asyn-
chronously on its own thread. Both the basic and improved
compilation are generated using Ilog JSolver [12]. This use of a
‘black box’ solver during compilation makes comparisons with
the decomposition approach difficult. JSolver does not report
constraint checks which means we are unable to use the pre-
ferred Concurrent Constraint Checks metric [13]. Instead, we
compare both the number of messages communicated by the
agents and the time taken to solve the problems to optimal-
ity (including compilation time for compilation approaches)
2. A time limit of 3,600 seconds is used for each trial and the
algorithm is terminated if this is exceeded. In such a case,
we treat the finishing time as being 3,600 seconds and the
number of messages as being 100,000 – a default ‘high’ value,
which is used as we do not know how many messages would
be required for the algorithm to terminate, and the number
of messages passed at the point of reaching the cutoff may be
inaccurate. All results are averaged over 20 test instances.

The problems are characterised according to the 5-tuple
〈a, e, v, i, d〉, where a is the number of agents, e is the ex-
ternal link density (# inter-agent constraints = ea), v is the
number of variables per agent, i is the internal link density (#
intra-agent constraints = iv) and d is the domain size of each
variable. Each agent’s local problem is generated separately,
and then external links are added by randomly choosing vari-
ables from different agents to connect. We break down our ex-
periments into three categories: the small problems in test set
1 allow us to compare all approaches; the more difficult prob-
lems in test set 2 are used to provide a deeper investigation
into the decomposition and improved compilation techniques;
and finally, in test set 3, selected tests are performed using
the decomposition and improved compilation approaches on
problems that are suited to these techniques.

4.2 Test set 1

Our first test cases consider small graph-colouring problems,
where the basic setting is 〈5, 1, 6, 1, 2〉. We then compare
each of the approaches varying v, i, a, d and e in turn. We

2 We are interested in the longest execution sequence in wall-clock
time, the balance of cpu time across all agents, and the total
cpu time, but the simulation framework we use doesn’t give us a
simple way of reporting the first two. Therefore, we record here
only the total cpu time as an indicative measure, and we are
currently investigating how to adapt the framework to extract
the necessary information.

chose these settings specifically to allow the basic compila-
tion method to complete in reasonable time. Figures 1 and 2
show the results in log scale. DECOMP is the decomposition
approach, COMP is the basic compilation, IMP1 uses the
improved compilation without SNI sets and IMP2 uses the
improved compilation with SNI sets. Points in the graph that
reach the cutoff are filled in in black.

Figure 1 shows the number of messages that are passed
during execution. For the smallest problems we can see that
the basic compilation sometimes has fewer messages than the
decomposition approach. However, as the number of inter-
nal variables v, internal link density i and domain size d in-
crease, we see that the number of messages of COMP increases
rapidly. The improved compilation approaches pass less mes-
sages in all tests, although as the domain size and external
link densities are increased this advantage lessens.

An alternative view of the results can be gained by exam-
ining the total cpu time (Figure 2). Here we can see that the
basic compilation performs poorly compared to the other ap-
proaches under all settings, even in cases where the number
of messages is fewer. This would indicate that it is the inter-
nal computation of the agent that is the cause for the poor
times in these cases. We see that the improved compilation
approaches outperform the decomposition approach across all
tests except for when the domain size increases. In particular,
as the number of internal variables and internal link density
increase (Figure 2 (a) and (b)) centralised optimization tech-
niques can efficiently handle extra complexity in each agents
local problem, leaving the external phase of the search un-
impacted. This results in signifigant performance gains for
both of the improved compilation methods. IMP1 and IMP2
also prove efficient as the number of agents increases. IMP1
and IMP2 also tend to be faster than DECOMP as external
link density increases, although at the maximum (e = 2) DE-
COMP has become faster than IMP1. Finally, increasing the
domain size increases the number of local solutions required
for each agent resulting in a slow down in performance for the
compilation approaches. For the decomposition approach in
a graph colouring problem, increasing the domain size only
makes the problem easier.

4.3 Test set 2

In this section we extend our analysis of the decomposition
and improved compilation techniques to more difficult prob-
lems. We again study graph-coluring problems but this time
with a basic setting of domain size 3 and internal and exter-
nal densities of size 2 (〈5, 2, 6, 2, 3〉). In these experiments, we
again vary v, i, a, d and e in turn. The time limit remains
at 3,600 seconds but in this case if the time limit is exceeded
we set the number of messages to be 300,000. We do this
as for these problems the number of messages exchanged is
frequently higher than the previous limit of 100,000.

The patterns we saw in the smaller problems are visible
once again here, but with some differences. During these ex-
periments, the time cutoff was met much more frequently.
With a default internal density of 2, the decomposition ap-
proach struggles to solve many of the problems. We see that
it only performs well when the internal density was less than
2 (Figures 3, 4 (b)) and when the domain size was increased
(Figures 3, 4 (d)) - i.e. when the problems were quite loose.



Figure 1. Test Set 1: 〈5, 1, 6, 1, 2〉. Number of messages (cutoff
= 100,000).

IMP1 and, in particular, IMP2 cope better with these more
difficult problems except for when the domain size increases.
However, we notice that increased domain size does not re-
sult in a continuous worsening of performance. The increased
internal computation required by IMP1 and IMP2 due to do-
main size increases is less of a factor in the context of these
larger problems. Increasing the number of variables in each
agent is shown again to have minimal effect on the improved
compilation approaches. Increases in the other parameters in-

Figure 2. Test Set 1: 〈5, 1, 6, 1, 2〉. Time – seconds (cutoff =
3,600).

cluding, somewhat surprisingly, internal link density, all result
in decreasing performance, although still better than the de-
composition approach.

4.4 Test set 3

Having identified the strengths and weaknesses of both the
decomposition and improved compilation methods, we now
choose problem settings suited to each approach and inves-



Figure 3. Test Set 2: 〈5, 2, 6, 2, 3〉. Number of messages (cutoff
= 300,000).

tigate further both the limitations and solving power of the
techniques.

For the decomposition approach, we begin with settings of
〈5, 2, 6, 1, 3〉. We then test against combinations of external
link density, e, from 2 to 6, and internal link density, i, from 1
to 2.5. Figures 5 and 6 shows that the decomposition approach
can scale quite well as the external link density increases as
long as the internal link density remains small. However, even
a small increase in internal link density results in a rapid

Figure 4. Test Set 2: 〈5, 2, 6, 2, 3〉. Time – seconds (cutoff =
3,600).

degradation of performance.
For the improved compilation approach with SNI sets, we

use base settings of 〈5, 1, 10, 2, 3〉. We test against combina-
tions of external link density, e, from 1 to 3, and internal link
density, i, from 2 to 4. The results in Figures 7 and 8 demon-
strate clearly that increasing the external link density has a
negative effect while the internal link density has minimal ef-
fect, confirming our earlier findings. The effect of external link
density on the results can be put down to two factors: (i) in-



Figure 5. Number of messages for DECOMP varying the
internal and external link densities: 〈5, e, 6, i, 3〉.

Figure 6. Execution time for DECOMP varying the internal
and external link densities: 〈5, e, 6, i, 3〉.

creasing external link density increases the overall complexity
of the problem; and (ii) in random problems, increasing ex-
ternal link density increases the number of external variables
that are present in each agent. This second point is impor-
tant in that if all external links were concentrated on a small
subset of an agent’s variables, then the domain size of the
compiled variables will be smaller and it is likely that perfor-
mance would be better.

5 DISCUSSION

Both compilation and decomposition have their advantages
and disadvantages. It may often be both desirable and natural
for agents that have complex local problems to model these
problems using centralised Constraint Programming (CP) [8].
This will allow the local solving process to benefit from many
specialised techniques such as global constraints [19] and sym-
metry breaking [7]. The compilation method can use a cen-
tralised solver in this way to perform each agent’s internal
search, allowing problems where agents have large internal
problems to be tackled. The drawback of the basic compila-
tion method is that all local solutions have to be found before
the distributed search can begin. In an optimisation problem,
every set of assignments of values to variables is a valid solu-
tion. Therefore, for large internal problems, this process can
be expensive and can result in very large domains of compiled
values. The improved compilation technique tackles this prob-

Figure 7. Number of messages for IMP2 varying the internal
and external link densities: 〈5, e, 10, i, 3〉.

Figure 8. Execution time for IMP2 varying the internal and
external link densities: 〈5, e, 10, i, 3〉.

lem and increases the range of DCOP problems that can be
handled by just finding one solution for each combination of
external variable. Unfortunately, it too can become expensive
when the domain size and number of external variables of an
agent becomes large. In the worst case, if all the agents’ vari-
ables are external, the size of the problem using the improved
compilation is equivalent to that of the basic compilation.
Techniques for efficient handling of large domain sizes are re-
quired to offset this problem. Compilation also allows the use
of SNI sets applied to compiled values, which we have seen
can provide a significant speed up in the distributed search.

Using the decomposition approach agents’ variables are
kept in their original form and all the local solutions do
not have to be pre-determined, however the benefits to be
gained from using a centralised solver are lost. Our results
have shown that this restriction can result in poor perfor-
mance when the size and complexity of agents’ internal prob-
lems grow. On the other hand, we have also seen that the
decomposition approach can scale better as domain sizes and
number of external variables increase. However, these benefits
only remain if agents’ internal problems remain small.

As each approach has its limitations, the scope for further
research in this area is large. A number of approaches for han-
dling multiple variables have been proposed for DCSP algo-
rithms and, while these are not directly applicable to DCOP,
they contain some useful concepts. Techniques similar to com-
pilation have been used in [1, 11, 14] where centralised solvers



are used for solving each agents local problem, but local so-
lutions are searched for on-demand as opposed to being pre-
compiled. In [14], they also improve agent cooperation and
reduce communication by trying to preserve the values of
variables that are constrained with other agents – this is a
concept that could also be applicable to DCOP algorithms. A
decomposition based approach for handling multiple variables
in DCSP is proposed in [22]. However, it involves dynami-
cally re-prioritising variables which may be difficult to apply
to DCOP as optimisation algorithms keep track of costs and
bounds that are normally based on a static ordering of agents.

In this paper, we have evaluated agents with complex local
problems using the ADOPT algorithm on distributed graph-
colouring problems. As such, our findings are specific for this
algorithm and problem domain. While we cannot be sure that
these results can be generalised to other DCOP algorithms
without a proper investigation, we feel it is likely that the
core trends of the results are applicable.

6 CONCLUSION AND FUTURE WORK

DCOP algorithms generally require agents to have single vari-
ables. Two standard approaches to handling agents with com-
plex problems are to either compile the local problem down to
a single variable or to decompose the local problem by creat-
ing a virtual agent to represent each internal variable. We have
compared both of these approaches with each other and with
a third approach that improves on the compilation method by
identifying interchangeable values that reduce both the size
of the compiled problems and the search required to solve
the compiled problems. We have evaluated the methods using
the ADOPT algorithm on distributed graph colouring prob-
lems, and have identified the characteristics of problems that
are suited for solving using the different approaches. We have
shown that problems where agents have large, complex inter-
nal problems are best handled using the improved compila-
tion technique, which outperforms the basic compilation tech-
nique in all cases and the decomposition technique in most
cases. However, the usefulness of this technique decreases as
the domain size of variables and the number of inter-agent
constraints increases. The decomposition approach can suc-
cessfully handle larger domain sizes, but requires the overall
problem size to be reasonably small. We also show that the
basic compilation technique is impractical for use in DCOP.

All experiments were run in a simulated distributed envi-
ronment and it is future work to perform an experimental
analysis on a properly distributed environment. We also hope
to extend our analysis to consider different DCOP algorithms
and problem domains.

ACKNOWLEDGEMENTS

We would like to thank the authors of the ADOPT algo-
rithm, whose publicly available implementation [16] was used
as a base upon which to do our work. We would also like
to acknowledge the Boole Centre for Research in Informat-
ics (BCRI) at UCC, whose computing resources were used to
perform some of the experiments. This work is supported by
Science Foundation Ireland under Grant No. 03/CE3/I405 as
part of the Centre for Telecommunications Value-Chain Re-
search (CTVR).

REFERENCES
[1] A. Armstrong and E. Durfee, ‘Dynamic prioritization of com-

plex agents in distributed constraint satisfaction problems.’,
in Proc. IJCAI, pp. 620–625, (1997).

[2] R. Béjar, C. Domshlak, C. Fernàndez, C. Gomes, B. Krish-
namachari, B. Selman, and M. Valls, ‘Sensor networks and
distributed csp: communication, computation and complex-
ity.’, Artificial. Intelligence, 161(1-2), 117–147, (2005).

[3] C. Bessière, A. Maestre, I. Brito, and P. Meseguer, ‘Asyn-
chronous backtracking without adding links: a new member
in the ABT family’, Artificial Intelligence, 161, 7–24, (2005).

[4] D.A. Burke and K.N. Brown, ‘Applying interchangeability to
complex local problems in distributed constraint reasoning’,
in Proc. Workshop on Distributed Constraint Reasoning, AA-
MAS, (2006).

[5] D.A. Burke and K.N. Brown, ‘Efficient handling of com-
plex local problems in distributed constraint optimization.’,
in Proc. ECAI, (2006). To appear.

[6] M. Calisti and N. Neagu, ‘Constraint satisfaction techniques
and software agents’, in Proc. Agents and Constraints Work-
shop, AIIA, (2004).

[7] D. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B. M.
Smith, ‘Symmetry definitions for constraint satisfaction prob-
lems.’, in CP, pp. 17–31, (2005).

[8] R. Dechter, Constraint Processing, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2003.

[9] A. Gershman, A. Meisels, and R. Zivan, ‘Asynchronous
forward-bounding for distributed constraints optimization’,
in Proc. Workshop on Distributed and Speculative Constraint
Processing, CP, (2005).

[10] Y. Hamadi, ‘Interleaved backtracking in distributed con-
straint networks.’, International Journal on Artificial Intelli-
gence Tools, 11(2), 167–188, (2002).

[11] K. Hirayama and M. Yokoo, ‘Local search for distributed sat
with complex local problems’, in Proc. AAMAS, pp. 1199–
1206, (2002).

[12] ILOG. Jsolver, 2005. http://www.ilog.com/products/jsolver.
[13] A. Meisels I. Razgon E. Kaplansky and R. Zivan, ‘Comparing

performance of distributed constraints processing algorithms’,
in Proc. Workshop on Distributed Constraint Reasoning, AA-
MAS, pp. 86–93, (2002).

[14] A. Maestre and C. Bessière, ‘Improving asynchronous back-
tracking for dealing with complex local problems.’, in Proc.
ECAI, pp. 206–210, (2004).

[15] R. Mailler and V. Lesser, ‘Solving distributed constraint op-
timization problems using cooperative mediation’, in Proc.
AAMAS, pp. 438–445, (2004).

[16] P. Modi. Adopt algorithm homepage, 2005.
http://www.cs.cmu.edu/˜pmodi/adopt/.

[17] P. Modi, W. Shen, M. Tambe, and M. Yokoo, ‘Adopt:
Asynchronous distributed constraint optimization with qual-
ity guarantees’, Artificial Intelligence, 161(1–2), 149–180,
(2005).

[18] A. Petcu and B. Faltings, ‘A scalable method for multia-
gent constraint optimization.’, in Proc. IJCAI, pp. 266–271,
(2005).

[19] J-C. Regin, Constraints and Integer Programming Combined,
chapter Global Constraints and Filtering Algorithms, Kluwer,
2003.

[20] M. Silaghi, D. Sam-Haroud, and B. Faltings, ‘Asynchronous
search with aggregations’, in Proc. AAAI/IAAI, pp. 917–922,
(2000).

[21] R. Wallace and E. Freuder, ‘Constraint-based reasoning and
privacy/efficiency tradeoffs in multi-agent problem solving.’,
Artificial. Intelligence., 161(1-2), 209–227, (2005).

[22] M. Yokoo and K. Hirayama, ‘Distributed constraint satisfac-
tion algorithm for complex local problems’, in Proc. ICMAS,
p. 372, (1998).

[23] M. Yokoo and K. Hirayama, ‘Algorithms for distributed
constraint satisfaction: A review’, Autonomous Agents and
Multi-Agent Systems, 3(2), 185–207, (2000).

[24] R. Zivan and A. Meisels, ‘Dynamic ordering for asynchronous
backtracking on discsps.’, in Proc. CP, pp. 32–46, (2005).


