Delegation in Tree-search for Distributed Constraint
Satisfaction

Muhammed Bashatt, Ken Brown', and Youssef Hamatli

! Cork Constraint Computation Centre, University College Cork, Ireland.
mb@4c.ucc.ie, k.brown@cs.ucc.ie
2 Microsoft Research, 7 J J Thomson Avenue, Cambridge, United kimgd
youssefh@microsoft.com

Abstract. We introduce the idea of delegation in distributed tree-search, as a
method to reduce the communication overhead when solving Distributed Con
straint Satisfaction Problems (DisCSPs). With delegation, an agent can eliminate
some direct forward links to child neighbours and choose intermediariesm-
municating with such children. We present an algorithm which constructs lon
delegation paths automatically, and we prove that given certain assumjition
does not decrease privacy. We show experimentally that delegatioredace
messages by 50% for hard problems, although at the expense otormieaint
checks.

1 Introduction

Distributed Constraint Satisfaction Problems (DisCSB]) fite a generalisation of CSPs
for tackling decision problems where the processing powdraaitonomy are naturally
distributed - for example, meeting scheduling or sensavoids. Agents maintain local
CSPs, which are linked through inter-agent constraintsCBPs are generally solved
by distributed tree-based search, where a partial ordéeeadgents is used to record the
progress of the exploration. In most of these algorithmen&gsend local solutions to
their children (the set of neighbours lower than them in tlteeong). Children in turn
solve their local problems to be consistent with the incappartial solutions. When
an agent cannot find a local solution, a distributed backingcstep is started and ad-
dressed to a subset of the agent’s parents. Within this Braadework, many different
approaches are possible, balancing the issues of totalman-network transmission
costs, fair use of resources, and maintenance of agentpriva

The main decision is whether the search should be synchsomoasynchronous.
Synchronised search closely resembles standard noibdistt search processes. Us-
ing the tree-ordering, agents pass control up and down #ee &nd each agent only
operates when it has control. Typically, an agent receiyesgigal solution for all its an-
cestor agents, computes its own local extension, and péesesw partial solution onto
its children. Backtracking is synchronised similarly. Byachronous search, all agents

* This work is supported by grants from Microsoft Research, Scienoedation Ireland, and
the Embark Initiative of the Irish Research Council of Science Engingaid Technology.

98

may operate simultaneously, computing their own localttmitbased on whatever cur-
rent knowledge they have of the other agents’ decisionsuaddting those solutions
when that knowledge is updated. Asynchronous search tefdse a smaller total run-
time, since much computation is done in parallel and deald-ean be identified early,
but at the expense of more network traffic, and possibly rédonchains of computa-
tion. Synchronous search reduces the network traffic, pitayly has a longer runtime.
In addition, privacy can be compromised, since larger gkstlutions are passed up and
down the tree. The consensus view is that if message passiataiively more expen-
sive than computation, and privacy is not important, therchyonised search is better;
on the other hand, if runtime is important, or privacy is intpat, then an asynchronous
search is better.

Here, we consider the case where message passing is sl@liable or expen-
sive, but where privacy is also important. We present a qatrezdled delegation, where
some agents may decide to transmit their local solutiormutiir intermediate agents.
Specifically, an agent may appoint one of its neighbourslayimessages to a second
neighbour. This can be viewed as an implicit form of local@yonisation, although
each agent is still free to act asynchronously, and indeekittzecking messages con-
tinue to be asynchronous. The intuition is that the secornghbeur should receive
larger and more coherent partial solutions from the inteliarg, and thus should in-
voke fewer redundant chains of decisions, at the expensawia#l delay in receiving
the original message. We will show a simple delegation egsatvhich preserves the
privacy level of existing algorithms. We also show that tlededation strategy can re-
duce the number of messages by approximately 50% for hatdgong, but similarly
increases the number of constraint checks, and thus idieéféa scenarios where the
cost of each message is high.

In the following, we start with an overview of the DisCSP faiism. Section 3 de-
fines delegation, and in Section 4, we present an algorithipeidorming delegation in
advance of a search where links between unconnected ageatdced prior to a search.
In Section 5, we consider algorithms where new links areteteas a search progresses
and present a technique for performing delegation for sigdrithms. Both Sections 4
and 5 also include results of evaluations of the respectlegation strategies.

2 Background
A DisCSP is a 4-tupleX,D,C,A) where:

1. Xis a set ofn variablesX1, X, ..., X,,.

2. Dis a set of domain®,, D-, ..., D,, of possible values for the variablgs, Xo,
..., X, respectively.

3. Cis a set of constraints on the values of the variables. Thet@intCy, (Xx1, - . .,
Xi;) is a predicate defined on the Cartesian prodgt x . . . x Dy;. A constraint
is satisfied if the value assignment of these variablesfiestithe predicate.

4. A= {41, As,..., A,}is a partition ofX amongp autonomous processes or agents
where each ageM;, “owns” a subset of the variables i with respect to some
mapping functionf : X — A, s.t.f(X;) = A;.

99

DisCSP max-degree min-domain
ordering ordering

S5

Fig. 1. A DisCSP and two agent orderings.

A solution to a DisCSP is, as for standard CSPs, an assigrnmeatch variable of
value from its domain, such that all constraints are satisfie

In the solving process, we assume that each agent consalwit variables, and,
as a default, knows only its own domains and the constragfiaetl on its variables.
The agents must cooperate to find a global solution througtsage passing. A basic
method for finding a global solution uses the distributedkbracking paradigm [8,3].
The agents are prioritized into a partial ordey such that any two agents are con-
nected if there is at least one constraint between them. Tdering is determined by
user-defined heuristics and classical CSP heuristics carsdx as presented in Fig-
ure 1. Solution synthesis uses the partial ordering to parfn exhaustive search with
backtracking. An agent instantiates its local problemtwhigher priority agents and
sends its local solution to lower priority neighbours, whilacktracking messages are
passed back up the ordering. This process computes a glolbiéEba by distributed
aggregation of local solutions.

3 Delegation in DisCSP

Consider the situation shown in Figure 2; has to share its partial solution with at
least two connected childred,; and 4. On receiving this solution, botd; and Ay,
make choices of their own, and transmit those to their chosgghbours, invoking
further search. Supposg, then receivesi;’s choice, and discovers it is incompatible
with its own choice. It must then find a new consistent choiov@ ansmit that to its
neighbours, overriding the previous message. This wilbkeva new search, whose
messages may take some time to catch up and override theysewie, and thus two
searches, each requiring messages and computation, eealsy across the network
at the same time, even though one of them is redundant. Atfeety, A, may not
be able to find a consistent value, and so must transmit a feagkinessage tel;;
meanwhile, the previous redundant search continues iregtef the network without
being cancelled.

The question we ask here is whether a more selective proeddutransmitting
partial solutions can improve efficiency by reducing the bemand size of redun-
dant searches. In particular, we consider whether an apentdsreduce the number
of forward messages it sends, by delegating some childrealdy the messages to

100

Agent j

Fig. 2. A DisCSP agent2lique

other children. In our example}; might choose to delegate througty, and soA,
would receive messages frody only, where each message contains consistent value
assignments fod; and A;. Initially, this reduces the number of messages (from 3 to 2
between the agents shown), and may stop a possibly redusetanmah initiated before
A;'s value is transmitted. However, (i) the details of the skalgorithm can interact
in different ways to cause different searches, and (ii) tireient unpredictability of
message timings can have significant effects on the effigiehan algorithm.

We define delegation in DisCSPs as follows:

Definition 1 A DisCSP P=(X,D,C,A) can implement delegation #f};, A;, Ay,
Xi, Xj, Xy st f(X;) = Ay, f(X;) = Ay, f(Xk) = Ay and 3C;;, O, Oy € C.
A; can delegate its messages fof via A;, denoted agA;, (4,, Ax)), s.t. A; does not
send any messages directly4d@, and A; relays A;’s decisions ta4;, instead.

Note that the definition ensures that the agents foBtkque and hence delegation
does not add any extra links in the graph. Furthermore, détagpreserves the privacy
of existing algorithms since although partial solutions aeollated within agents, no
agent will receive any values it would not have received autidelegation.

3.1 Delegation vs. Synchronisation

The collation and transmission of partial solutions in datéon appears to be similar to
synchronised search [2,9,11]. However, there are signifitiéferences. In the follow-
ing, we highlight some key features of synchronous seardhvanuse these to show
how it differs from delegation and why asynchrony is stithieed with delegation.

1. Privilege passing:At the core of synchronous distributed search is the concept
of privilege passind2,11], where agents are in turn given a privilege to extend a
partial solution or to revise earlier decisions as a searobrpsses. Generally, in
synchronous search one agent is active at a time while atittier agents remain
in a wait state, although in some versions [2] a DFS-treeraordallows agents in
unconnected branches of a search tree to be active simoltsigePrivilege passing
ensures that agents have up-to-date information on the efaé search and as
such minimises useless processing. In delegation there ®mcept of privilege

101

passing. Agents still retain their autonomy and they cauy an asynchronous
search where each agent is triggered into action whenevecéives messages
irrespective of the state of its ancestors or successoeseldre, an agent may be
active simultaneously with other agents that are constchaivith it. However, there

is clearly some form of local synchronisation in delegat&ince some agents only
receive a parent’s decision after some intermediary hasepeed it.

2. Backtracking: because of privilege passing, the processing of backtradsages
tends to be in reverse order of the search, and an agent mitaniall its children
complete their actions before processing a backtrack froerod them. Using dele
gation, an agent responds immediately to a backtrack mesaad can initiate new
searches as a result, so there can be multiple searcheggigsimultaneously
in the same sub-tree. The basic principle of delegationralsices no commitment
to what should happen when a dead-end is discovered - depeoiithe details of
the algorithm, an agent may decline to forward infeasibléigiasolutions, or may
forward some sub-solution, allowing child agents to camgiwith a search or learn
nogoods.

3. Privacy: In the synchronous algorithms of [9,11], the current phstéution for all
ancestors is passed from one agent to the next, and thusagémeceive values
for variables to which they are not connected. Using delegaain agent should
only receive values that it would also have received in thgimal algorithm. An
additional consequence of this is that message packettddbmsmaller.

The idea of deputing agents was also explored in the AsynclusPartial Overlay
(APO) algorithm [5]. APO involves a resolution process ttegfuires conflicting agents
to centralise information about related parts of a problethiwa mediator to resolve
conflicts. There are significant privacy implications fronedration as agents have to
reveal complete information about their domains and cairds violations for media-
tion to take place. In contrast, delegation requires agemigly to detect cliques, select
intermediaries, and to route only the information thatimediaries are expected to see
through them. Previous research on the performance trffsl&etween synchronous
and asynchronous backtracking have shown that messagegaseduced with syn-
chronisation, but these savings come with the cost of are#se in run time (e.g. in
[9]). However, later results reported in [11] suggest thatchronous algorithms may
perform equally as well as asynchronous algorithms in nuatalthough idle time is
much higher in synchronous search. Other results repont¢dl] ialso show that the
inclusion of some patrtial synchronisation improves efficie of asynchronous back-
tracking - improving both the message count and the runtime.

4 Performing static delegation

We first consider delegation inside IDIBT/CBJ [4]. In the jprecessing phase of IDIBT
/CBJ, agents are ordered with the Distributed Agent OrdefdisAO) algorithm [4],
part of which involves an extension of DisCSP graphs withatidition of tautologi-
cal constraints between unconnected agents along diffstgmtrees. The extensions
ensure the correctness of backtracking steps. The algostid its proof of complete-

102

ness have been described in [4]. In this section, we show bgah delegation after
ordering but before search, and evaluate its effect exgertiatly.

4.1 Establishing Delegation Paths

Algorithm 1 is presented for establishing the delegatichpbelow an agem. This at
gorithm is independent of the tree search and it is run affents construct an ordering
with DisAO. Therefore each agent knows its parents, itgdeéil, and their positions in
the ordering. The local data structures can be interpretéollaws: d[i] states whether
A talks directly toc;; I[i] is the length of the delegation path tg; m[i][j] indicates
whetherc; is a parent ot;; r[i][]] states whethek; will relay messages te;; and f[i][j]
states whether A must forwagg’s messages te;.

First, an agent must detect all ordered 3-cliques involhitisglf and two children.
Each agent sends the full list of its children to each of itepts (line 2); the receiving
agent can then populate its parenthood matrix m (3-7). Tkatahen processes each
child in order of priority; if the child has no intermediatargnts, it remains directly
connected; otherwise, the intermediate parent that iedattaway from the agent (10)
is selected to relay messages (11), the child’s path lerggtipdated (12), and it is
marked as no longer directly connected (13). Once all détagmhave been selected,
each child is told to whom it must relay As messages (15)alnwhen an agent
receives those messages from its parents, it records te iredtructions (18). This
algorithm selects the longest path for each delegation hinaig together overlapping
3-cliques. We aim for long delegation paths in order to reenoany forward links, and
so that the final messages aggregate as many local solutiqgussible.

Figure 3(a) presents an example of this algorithm in use. $8arae the 5 agents
have been ordered using DisAO with the max-deg heuristishagn in Figure 3(b).
First, X5 will send an empty list to bottX, and X;, X, sends{X5} to X3 and X,
and X5 sends{ X5, X4} to X;. On receipt of these messagég, keepsX; on a direct
link, and then decides to delegatg to relay messages t8,. Similarly, X, eliminates
the forward links withXs, selectingXs as the intermediary, and eliminates the forward
link to X5, with X as the intermediary. Figure 3(c) shows the DisCSP with thigeac
forward links (solid links) after delegation paths haverbestablished. Note that only
1 out of 4 links fromX is active. Therefore, during a tree searhwill only have to
communicate withX'3 whenever it revises its value, but it knows the updates w#th
all its children. Note that messages frof to X5 are relayed twiceX; will relay X;'’s
decision taX,, and X, knows that if it receives a decision &y, it must extract it and
relay it to Xs.

Algorithm 2 describes the process of relaying the approgri®cisions during
search. A message to an agent from a parent will contain &idador that parent,
and may contain decisions for other parents as well. Thetdigshmakes its own de-
cision (line 1). The agent initialises a message for eaclsothildrenc; with active
links and places its value in the message if it has one (3).tAed for each other parent
decision (5), if there is another chitd for which A usesc; as an intermediary and to
which A is expected to forward the other parent’s decisiontfren A adds that deci-
sion toc;’s message (8). If however, the agent has no value, it holds thre values for

103

Algorithm 1: choosing delegation paths for agent A

/*n childrency,. .. c,, m parentq, ... pm */
Data: d: array of n booleans, initially true
Data: I: array of n ints, initially 1
Data: m: array of nxn booleans, initially false
Data: r: array of nxn booleans, initially false
Data: f: array of mxn booleans, initially true
1 foreach parentp; do
2 L send message g containing{ci,...,c,}

foreach child ¢; do
receive message from containing child se€;
for x e C; do
if X is a child of A (x =¢;) then
L | mfli] <1

N o o b~ W

8 foreachchild ¢; in orderdo
if 3k s.t. mK][j] =1 then

10 find i with highest I[i] s.t. m[i][j]=1
11 rlilj] < true

12 Ii] < I[i]+1

13 d[j] « false

14 foreach child ¢; do

15 L send message g with {c; : r[i][j] = true}

16 foreach message witl$; received from a parens; do
17 foreachc; € S; do

18 |l <1

each parent’s decision that contributes to the domain wipdi@. its conflict set) and
it forwards other parents’ decisions (10).

4.2 Theoretical properties

Here we proof that delegation paths created locally withallacformation are valid,
showing that: (1) there is always a path of active forwarkdibetween each agent and
each of its children, and (2) privacy is preserved in the pgtmerated. In particular,
we will show that all intermediaries chosen to forward mgssato child neighbours
have active forward links with those children. We also gieene other formal prop
erties of Algorithm 1. For these results, we assume that geeteordering algorithm,
DisAO, produces a single highest priority agent, and reeeigsadds links to uncon-
nected agents that share a child.

Theorem 1 All agents in a delegation path from; to A,, are children ofA4;

Proof. From Algorithm 1,A; only reasons and constructs paths with its children.

104

Algorithm 2: Agent A reacting to decision from
Input: M; = {(pk,zk) : pr is parent of A

1 choose As decisiom 4

2 foreachc; s.t. d[j] = true do

3 if xa # null then

4 | message[j}- {(A, =)}

5

6

7

8

foreach (k, zx) € M; do
if xa # null then
if flK][t] = true then
L message[j}— message[jD{(k, zx)}
9 else
10 if (f][t] =true) A(k & conflictSeta) then
11 L | message[j}- message[jl{(k, zx)}

12 | send message[j] to;

X1 X1

\ X3 fOX3N Delegations
/ \ a | Ly l\ (XL, (X3.,0x2.X4))
A
X2 /

" o M o (X1, (X4,X5))
X4 l ; l
\xB/ 4
X5 X5

(@) (b) ©

Fig. 3. An example DisCSP (a), a madeg ordering established with DisAO (b), and active for-
ward links (solid lines) after delegation (c).

Theorem 2 The path length assigned to an agentduring the algorithm for agend;
is the maximum path length frod; to A; using the sub-graph defined fyand A;’s
children.

Proof. (Omitted) by induction on the assigned path length

Corollary 3 The delegation path from; to A,, is a maximum length path from; to
A, in the sub-graph defined by; and A;’s children.

Proof. proof straight from Theorem 2.

Theorem 4 For any 3-clique(A4;, A,, A,,), whered, — A;, A; — A,,A; — A, and
there is a delegatioi4,, (4;, A)), A; will send its own decisions directly t4,.

Proof. To prove this, we will show that there can be no chain of agéhts’,, ..., ¢
betweend; andA,, in the ordering, such that; delegates its message fdy, through

105

this chain. The extension phase of DisAQ is a recursive potieat add directed links
(tautological constraints) between pairs of unrelatechegé they have at least one
child in common. If there was such a chain, the procedure dvbiave added links
A; — C} for eachCy,, working backwards from the child,,. But by Corollary 4.3, the

chainC; to C; must be the longest path betwegpandA,,. Substituting this chain for
the direct linkA; — A,, would then give a longer path iA;'s delegation chain. But
by Corollary 4.3,4; has chosen the longest path. Contradiction. Thus thereeao b
such intermediate chain, and 49 must send its decision directly 4, .

Theorem 5 An agentA; can receive a decisiod; — v by delegation if and only if
it can receive it without delegation, given the orderingundd by DisAO (and so we
don't violate the privacy of any message).

Proof. (Omitted) by inspection of the algorithm
Theorem 6 No agentA; receives the same decisidnp < v from two separate agents.

Proof. (Omitted) by inspection of the algorithm

4.3 Algorithm modifications

To implement delegation in IDIBT/CBJ, following modificatis were made to the-al
gorithm:

— Agents construct delegation structures after an orderasgbeen established with
DisAO by running the processes in Algorithm 1. Once the d#iegs have been
selected, each child is told to whom it must relay its parergssages.

— A search proceeds as normal with IDIBT/CBJ, except that ageht will only send
InfoVal messages to those child neighbours with whom it has an afctivwerd
link. And when an agent receives values from a parent neighliar whom it acts
as an intermediary, it relays that value to the respectiild aeighbour after it has
processed the message and selected its own value (seetiig@).

— All backward links remain active. Even if there is an intedizey between agents
A; and Ay, Ay will bypass the intermediary and seBeéck messages directly to
agentA;.

— For the sake of simplicity, all search in IDIBT/CBJ is examliin a single search
context (i.e. assuming NC=1).

In Section 3.1, we highlighted backtracking as one of kefedénces of delegation
and synchronous search. In synchronous search, when the tagding the current
partial solution backtracks it returns the privilege (agdeRktension the partial solution)
back to a culprit variable. In delegation, however, theie amumber of options for
dealing with partial solutions by dead end agents. In oulimpneary evaluations, we
considered the following:

1. Backtracking agents still pass down collated partialtsmhs to child neighbours.
The case for doing this is that while a search below the deddagents contin-
ues with an incorrect search context, it gives opportusitae child neighbours
to quickly detect other conflicts with subsets of the pasiautions that remain
coherent after the resolution of the original conflict.

106

2. An agent could hold back its conflict set i.e. the subsetoéipts’ values that cause
a domain wipe out, and relay other values. Again, this alltvessearch to retain
its asynchrony as well as allow child neighbours to quicldyedt conflicts with the
other ancestors in the solutions they receive.

3. There is the option of allowing agents temporarily holdhgsearch beneath them
and not relay any parent decisions to child neighbours wregrteey can not ex
tend the partial solutions. With this, child neighbourslwilentually receive more
coherent solutions but this approach comes with a risk cfetpauses cascading
up a search tree and gradually introducing additional syribation into agents
activations.

While each of the choices has its merits, we chose the optibalding back conflict
sets in the implementation of delegation in IDIBT/CBJ. Tdlisws us to preserve more
asynchrony in a search (compared to holding all collatedes)l while reducing the
amount of redundant work would be performed if agents stilvard down all collated
values when they perform backtracking.

4.4 Evaluations

IDIBT/CBJ with delegation was implemented in a discretené\@mulation environ-
ment using a shared simulated clock for all agents. In theilsition, we assume that
the time taken to perform each constraint check is equivédame simulated time step.
And, we also assume that message passing delay is uniforall &gyents.

The modified algorithm was tested on random DisC&ks= 30,d = 10) on
problems with different constraint densities (= {0.3,0.5}) and different percentages
of forbidden tuplesyfz) in the constraints for each density. 30 problems wherengéee
for each combination of constraint density and tightness.cémparison, similar runs
were made on the same problems with IDIBT/CBJ and a synchobackjumping
algorithm (SCBJ) [11]. SCBJ is a distributed equivalent akeatralised backjumping
algorithm, where a total orderirigs imposed on agents and agents are activated in turn
(one at a time) to extend a partial solution. A partial solatis passed from one agent
to the next during a search. When the partial solution can e@xbended, the earliest
assignments in the partial solution that contribute to a @ilonwipe-out are resolved
into a conflict set and used to determine (and activate) thpeitagent in backjumping.

In the charts plotted in Figure 4, we summarise the resuta the experiments per-
formed. The results show the average message count andetamawWon-Concurrent
Constraint Checks (NCCC) [6] from the runs. The average aggssount plotted in
Figure 4 comprises the cost of running DisAO, messages egekin the course of the
different searches, and where applicable, the messagkareged in performing dele-
gation with Algorithm 1. The results presented show with 3ClBe average message
count is lower than the asynchronous algorithms but itsegeNCCC is higher. With
delegation in place, message count in the asynchronoushsisaeduced significantly
especially on the most difficult problems.

% To keep comparisons fair, we use the samax-degagent ordering from DisAO in SCBJ as
well.

107

120
—%—SCB)

—&— IDIBT/CBJ
80 —8— with Delegation

—%—SCBJ

—&— IDIBT/CB)

—8— with Delegation

Graph density = 0.3

400 300
—x—sCB)
—8— IDIBT/CB)

—&—viith Delegation

—%—5CBJ
—&— IDIBT/CB)

—8— with Delegation
300

NCCC (000)

200

messages (000)

100

100

02 03 04 05 06 0.7 02 03 04 05 06 07

Graph density = 0.5

Fig. 4. Average message count and NCCC for solving DisCSPS with SCBJ, IDIBT,/&d
IDIBT/CBJ with delegation.

With respect to the NCCC, it appears that with delegatioratle@age cost is higher
than the corresponding cost for IDIBT/CBJ but lower than #verages for SCBJ.
NCCC is a measure of the longest chain of sequential cheaksdln not be performed
concurrently. Delegation appears to worsen performandkismetric because, firstly,
it creates a physical chain of agents which can lengthendfaestial chain of con
straint checks included in the final value of the metric. $elty) delegation introduces
some artificial delays in message passing, particularlgdents at the end of long mes-
sage passing chains. It meant that in some cases the detettionflicts with parents
high up in a search tree was some times delayed. This resoliatermediate agents
having to abandon and reconstruct solutions, when suchiasiilere discovered, with
cost implications for the NCCC count.

Our motivation for delegation is to improve communicatimenead of distributed
backtracking in scenarios where the message passing ingExpeelative to constraint
checking but privacy is an issue. The results show that rgegsassing is reduced with
delegation compared to standard IDIBT/CBJ; however, thigrovement comes with
the cost of additional constraint checks. The results dswghat by maintaining asyn-
chrony in the search, constraint checking with delegasdower than SCBJ. Message
passing in SCBJ is lower but this is only achieved by violgtorivacy when partial
solutions are passed from one agent to the next - and ageetse@alues they are not
meant to see.

108

5 Dynamic delegation

Algorithms based on ABT [9,1] add links during search (asagggl to IDIBT/CBJ's
preprocessing step). In such cases, precomputing theadielegaths before search is
unlikely to be effective. Therefore, we now consider a dyitatielegation strategy, in
which we allow agents to detectcliques from the nogoods generated during a search,
and then to chain together valid delegation paths. In thif@® we describe our dy-
namic delegation method, implement it in a variant of ABTd @waluate it experimen-
tally.

5.1 Performing dynamic delegation

As mentioned earlier, in this form of delegation, coherargoods generated during a
search are used to discover 3-cliques and to establishadelegpaths. The key idea
here is to allow an agent that receives nogoods to use therafmn to identify cliques
and to determine if it can act as an intermediary for pareigthiurs in the nogood.

addLink request
a a delegation request

a
b b *b

¢ c
no-good: b =V (a#\,)

@) (b) (©

Fig. 5. Discovering cliques from nogoods.

The example in Figure 5 is used to illustrate the procdgsieceives the nogood
b # Vi, = (a = V,)) from which it can detect the 3-clique involving itself andth
A, andA.. If the link from A, to A, is active,A;, can determine if it can perform dele-
gation on behalf of the parent, to the childA.. In this example, such an opportunity
exists. Therefore, using Algorithm 31, will send a delegation request tb, for the
delegation. After which the request is saved, to prevensending the same request
repeatedly if there is thrashing along its path with bothgaeent and the child.

When A, receives the delegation request, it processes the reqitbslgorithm
4%, A delegation request is rejected if either the forward lfirdm the receiving agent
to the target agent is inactive or the receiving agent isdyelelegating messages for a
parent to the target agent. Otherwise, the request is amtephich prompts the recip-
ient to implement the delegation and to respond with an dacep e.g. the acceptance
from A, to A;,, prompting agent4, to relay A,’s decisions toA. whenever ever it
receives a value update frory,; and agentd,, de-activates its forward link with...

4 Algorithm 4 uses the same data structures with Algorithm 1.

109

Algorithm 3: Agent A using nogoods to discovercliques and delegations.
Input: NG = {(p1,...pn) : piisvare rhs(NG); s is nogood sender
Data: Q: list of delegation requests sent by A
1 foreachp; € rhs(NG) do
if (p;, (A,s)) ¢ Q then
L senddel Request(p;, A, s) t0 p;;
Q— QU (pi, (4 5))

A WN

Algorithm 4 : Agent A responding to delegation requests.
Input: del Request(A, (A;, Ay)) : A; is intermediate agentl, is delegation target
1 4 « index of A; in children(A);
t «— index of A; in children(A);
if (d[t] = false) V (f[#][t] = true) then
| reject(4, (4, Ay));

A W N

5 [* accepting delegation */
6 d[t] = false;
7 r[i][t] = true;
8 send message t&; with {A; : r[i][t] = true};

5.2 Algorithm modifications

For dynamic delegation, we modified ABT with partial synafisation (ABTHyDb) [1]
as follows:

— Firstly, two new message types are introduced:

o delRequegtd;, A;, A;) - delegation request sent from an intermediate neigh-
bour (4,) to a parent ;) to inform the parent of the opportunity for delegating
messages fad;, throughA;.

o delegationfd;, A;, A;) - an acceptance for a delegation request. This is sent
from the parent; to the the intermediaryl;.

— Agents run the steps outlined in Algorithm 3 whenever nogaar@ received from
child neighbours. In the case that nogoods received comddires for unconnected
agents, new links with these agents are first created befgrdedegation requests
are sent.

— In response to delegation requests received, steps initigod are used to deter-
mine if such requests are accepted.

— Backward links between all agents remain active. Therafiogoods are sent di-
rectly culprit parents irrespective of the delegationdintes that exist at the time.

— When an agent sends a nogood, it moves into the synchronoss phthe search
as described in [1]. With delegation, the agent will condirthis partial synchro-
nisation by holding on to any collated partial solutionsilubteturns to the asyn-
chronous search.

110

5.3 Evaluation

The same problems from Section 4.4 were used to evaluate ABTtith dynamic
evaluation. As previously, we also compared the modifiedrittygm with its ancestor
and with SCBJ. However, for these evaluations we make SCBdgaau recording
algorithm (and therefore it is referred to as SBT in the rssiar consistency), so that
all three algorithms are compared on like terms. Furtheerretotal (nax-deg ordering
is imposed on agents in all three algorithms.

messages (000)

200 200
—%—saT —%—sBT

—o— ABTHYD —o— ABTHYD
160 —e—with Delegation 160 —e— with Delegation

120

messages (000)

02 03 04 05 06 07 02 03 04 05 06 07

Graph density = 0.5

Fig. 6. Average message count and NCCC for solving DisCSPS with SBT, ABTHyd, a
ABTHyb with delegation.

In Figure 6, we plot the averages of the evaluation metrmsfthe runs of the three
algorithms. The results are consistent with the previoudirfigs. They show that the
synchronised algorithm still saves on message passirp(agh at the cost violating
privacy) and that the NCCCs remain higher. Between the d&sgnous algorithms, the
effects of delegation is consistent with the earlier findinlylessage passing cost is
considerably reduced with delegation in place and thefeesatcompanying increase
in the average NCCC count. Some reasons for the higher av&&¢C count have
been listed in Section 4.4, and these are still applicable.

6 Conclusion
We have introduced a new concept of delegation for improttimgefficiency of mes

sage passing in distributed tree search. With delegatg@mta can appoint intermediate
neighbours for transmission of their local solutions toeotthild neighbours. The idea

111

reduces message passing byad#ivating some forward links from agents with dele-
gations, but it can enhance the search by improving the eobgrof partial solutions
received by agents while still preserving the privacy Is\alan underlying algorithm.

We presented two forms of delegation for the prominent tesach strategies in
DisCSP i.e. where links between unconnected agents aredrpador to a search and
where such links are created on the fly as required. We hawensheith empirical
experiments, that both forms of delegation reduce messasggir in asynchronous
algorithms by as much as 50%. But the improvements come atateof additional
non-concurrent checks, which we attribute to some imptielays caused by the dele-
gation of messages.

Overall, the results indicate that delegation is effecsitrategy for distributed tree
search where the cost of message passing is significarivediathe cost of constraint
checking and where privacy is an issue. For future work, venith to extend delega-
tion to other algorithms, such as ADOPT [7], and to improve dynamic delegation
algorithm. In particular, we are motivated by problems vetiie network connections
are expensive, of different quality, and unreliable, andanme developing delegation
heuristics which make use of this information.

References

1. I. Brito and P. Meseguer. Synchronous, asynchronous anddhgligorithms for DisCSPs.
In Proc. of the 5th Int'l Workshop on Distributed Constraint ReasonSgptember 2004.

2. Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed congtesitisfaction.

In Proc. of the 12th Int’l Joint Conference on Atrtificial Intelligence, [JCpages 318-324,
1991.

3. Y. Hamadi, C. Bessre, and J. Quinqueton. Backtracking in distributed constraint networks
In ECAI, pages 219-223, Aug 1998.

4. Youssef Hamadi. Conflicting agents in distributed seahstil. Journal on Atrtificial Intelli-
gence Tools14(3):459-476, 2005.

5. R. Mailler and V. Lesser. Using cooperative mediation to solve distidlrdastraint satisfac-
tion problems. IrProc. of 3rd Int’l Joint Conference on Autonomous Agents and Multifge
Systems (AAMAS 20Q4004.

6. A Meisels, |. Razgon, E. Kaplansky, and R. Zivan. Comparindgoperance of distributed
constraints processing algorithms., July 2002.

7. P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronougptete method for dis-
tributed constraint optimization. lim Proc. The 2nd Int'l Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2008ges 161-168. ACM, July 2003.

8. M. Yokoo. Distributed Constraint Satisfaction:Foundation of Cooperation in Multi-agent
SystemsSpringer, 2001.

9. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributedstraint satisfaction for
formalizing distributed problem solving. t2th Int'l Conference on Distributed Computing
Systems (ICDCS-92)ages 614-621, 1992.

10. M. Yokoo, T. Ishida, and K. Kubawara. Distributed constraint fatteon for DAl problems.
In M. N. Huhns, editorProc. of the 10th International Workshop on Distributed Artificial
Intelligence chapter 9. 1990.

11. R. Zivan and A. Meisels. Synchronous vs asynchronous searBtisCSPs. IrProc. First
European Workshop on Multi-Agent Systems (EUMB8Eember 2003.

112

