
Delegation in Tree-search for Distributed Constraint
Satisfaction

Muhammed Basharu1⋆, Ken Brown1, and Youssef Hamadi2

1 Cork Constraint Computation Centre, University College Cork, Ireland.
mb@4c.ucc.ie, k.brown@cs.ucc.ie

2 Microsoft Research, 7 J J Thomson Avenue, Cambridge, United Kingdom.
youssefh@microsoft.com

Abstract. We introduce the idea of delegation in distributed tree-search, as a
method to reduce the communication overhead when solving Distributed Con-
straint Satisfaction Problems (DisCSPs). With delegation, an agent can eliminate
some direct forward links to child neighbours and choose intermediariesfor com-
municating with such children. We present an algorithm which constructs long
delegation paths automatically, and we prove that given certain assumptions it
does not decrease privacy. We show experimentally that delegation can reduce
messages by 50% for hard problems, although at the expense of moreconstraint
checks.

1 Introduction

Distributed Constraint Satisfaction Problems (DisCSP) [10] are a generalisation of CSPs
for tackling decision problems where the processing power and autonomy are naturally
distributed - for example, meeting scheduling or sensor networks. Agents maintain local
CSPs, which are linked through inter-agent constraints. DisCSPs are generally solved
by distributed tree-based search, where a partial order of the agents is used to record the
progress of the exploration. In most of these algorithms, agents send local solutions to
their children (the set of neighbours lower than them in the ordering). Children in turn
solve their local problems to be consistent with the incoming partial solutions. When
an agent cannot find a local solution, a distributed backtracking step is started and ad-
dressed to a subset of the agent’s parents. Within this broadframework, many different
approaches are possible, balancing the issues of total run-time, network transmission
costs, fair use of resources, and maintenance of agent privacy.

The main decision is whether the search should be synchronous or asynchronous.
Synchronised search closely resembles standard non-distributed search processes. Us-
ing the tree-ordering, agents pass control up and down the tree, and each agent only
operates when it has control. Typically, an agent receives apartial solution for all its an-
cestor agents, computes its own local extension, and passesthe new partial solution onto
its children. Backtracking is synchronised similarly. In asynchronous search, all agents

⋆ This work is supported by grants from Microsoft Research, Science Foundation Ireland, and
the Embark Initiative of the Irish Research Council of Science Engineering and Technology.

98

may operate simultaneously, computing their own local solution based on whatever cur-
rent knowledge they have of the other agents’ decisions, andupdating those solutions
when that knowledge is updated. Asynchronous search tends to have a smaller total run-
time, since much computation is done in parallel and dead-ends can be identified early,
but at the expense of more network traffic, and possibly redundant chains of computa-
tion. Synchronous search reduces the network traffic, but typically has a longer runtime.
In addition, privacy can be compromised, since larger partial solutions are passed up and
down the tree. The consensus view is that if message passing is relatively more expen-
sive than computation, and privacy is not important, then synchronised search is better;
on the other hand, if runtime is important, or privacy is important, then an asynchronous
search is better.

Here, we consider the case where message passing is slow, unreliable or expen-
sive, but where privacy is also important. We present a concept called delegation, where
some agents may decide to transmit their local solutions through intermediate agents.
Specifically, an agent may appoint one of its neighbours to relay messages to a second
neighbour. This can be viewed as an implicit form of local synchronisation, although
each agent is still free to act asynchronously, and indeed backtracking messages con-
tinue to be asynchronous. The intuition is that the second neighbour should receive
larger and more coherent partial solutions from the intermediary, and thus should in-
voke fewer redundant chains of decisions, at the expense of asmall delay in receiving
the original message. We will show a simple delegation strategy which preserves the
privacy level of existing algorithms. We also show that the delegation strategy can re-
duce the number of messages by approximately 50% for hard problems, but similarly
increases the number of constraint checks, and thus is effective in scenarios where the
cost of each message is high.

In the following, we start with an overview of the DisCSP formalism. Section 3 de-
fines delegation, and in Section 4, we present an algorithm for performing delegation in
advance of a search where links between unconnected agents are added prior to a search.
In Section 5, we consider algorithms where new links are created as a search progresses
and present a technique for performing delegation for such algorithms. Both Sections 4
and 5 also include results of evaluations of the respective delegation strategies.

2 Background

A DisCSP is a 4-tuple (X,D,C,A) where:

1. X is a set ofn variablesX1, X2, . . . , Xn.
2. D is a set of domainsD1, D2, . . . , Dn of possible values for the variablesX1, X2,

. . ., Xn respectively.
3. C is a set of constraints on the values of the variables. The constraintCk (Xk1, . . .,

Xkj) is a predicate defined on the Cartesian productDk1× . . .×Dkj . A constraint
is satisfied if the value assignment of these variables satisfies the predicate.

4. A = {A1, A2, . . . , Ap}is a partition ofX amongp autonomous processes or agents
where each agentAk “owns” a subset of the variables inX with respect to some
mapping functionf : X→ A, s.t.f(Xi) = Aj .

99

X1

X3={a,b,

X7={a,b}
X4={a,b,

DisCSP
ordering ordering

min−domain

c,d}
X1={a,b, X5={a,b}

X6={a,b,
c}

X2={a,b}

c}

c}

max−degree

X1

X2

X3 X4 X5

X7 X6

X6

X5 X2 X7

X4X3

Fig. 1.A DisCSP and two agent orderings.

A solution to a DisCSP is, as for standard CSPs, an assignmentto each variable of
value from its domain, such that all constraints are satisfied.

In the solving process, we assume that each agent controls its own variables, and,
as a default, knows only its own domains and the constraints defined on its variables.
The agents must cooperate to find a global solution through message passing. A basic
method for finding a global solution uses the distributed backtracking paradigm [8,3].
The agents are prioritized into a partial order<o such that any two agents are con-
nected if there is at least one constraint between them. The ordering is determined by
user-defined heuristics and classical CSP heuristics can beused as presented in Fig-
ure 1. Solution synthesis uses the partial ordering to perform an exhaustive search with
backtracking. An agent instantiates its local problem w.r.t. higher priority agents and
sends its local solution to lower priority neighbours, while backtracking messages are
passed back up the ordering. This process computes a global solution by distributed
aggregation of local solutions.

3 Delegation in DisCSP

Consider the situation shown in Figure 2.Ai has to share its partial solution with at
least two connected children,Aj andAk. On receiving this solution, bothAj andAk

make choices of their own, and transmit those to their chosenneighbours, invoking
further search. SupposeAk then receivesAj ’s choice, and discovers it is incompatible
with its own choice. It must then find a new consistent choice and transmit that to its
neighbours, overriding the previous message. This will invoke a new search, whose
messages may take some time to catch up and override the previous one, and thus two
searches, each requiring messages and computation, are spreading across the network
at the same time, even though one of them is redundant. Alternatively, Ak may not
be able to find a consistent value, and so must transmit a backtrack message toAj ;
meanwhile, the previous redundant search continues in the rest of the network without
being cancelled.

The question we ask here is whether a more selective procedure for transmitting
partial solutions can improve efficiency by reducing the number and size of redun-
dant searches. In particular, we consider whether an agent should reduce the number
of forward messages it sends, by delegating some children torelay the messages to

100

Agent i

Xi

Agent j

Xj

Agent k

Xk

Fig. 2.A DisCSP agent 3-clique

other children. In our example,Ai might choose to delegate throughAj , and soAk

would receive messages fromAj only, where each message contains consistent value
assignments forAi andAj . Initially, this reduces the number of messages (from 3 to 2
between the agents shown), and may stop a possibly redundantsearch initiated before
Aj ’s value is transmitted. However, (i) the details of the search algorithm can interact
in different ways to cause different searches, and (ii) the inherent unpredictability of
message timings can have significant effects on the efficiency of an algorithm.

We define delegation in DisCSPs as follows:

Definition 1 A DisCSP P=(X,D,C,A) can implement delegation iff,∃Ai, Aj , Ak,

Xi, Xj , Xk s.t. f(Xi) = Ai, f(Xj) = Aj , f(Xk) = Ak and ∃Cij , Cik, Cjk ∈ C.

Ai can delegate its messages forAk via Aj , denoted as(Ai, (Aj , Ak)), s.t.Ai does not
send any messages directly toAk, andAj relaysAi’s decisions toAk instead.

Note that the definition ensures that the agents form a3-clique, and hence delegation
does not add any extra links in the graph. Furthermore, delegation preserves the privacy
of existing algorithms since although partial solutions are collated within agents, no
agent will receive any values it would not have received without delegation.

3.1 Delegation vs. Synchronisation

The collation and transmission of partial solutions in delegation appears to be similar to
synchronised search [2,9,11]. However, there are significant differences. In the follow-
ing, we highlight some key features of synchronous search and we use these to show
how it differs from delegation and why asynchrony is still retained with delegation.

1. Privilege passing:At the core of synchronous distributed search is the concept
of privilege passing[2,11], where agents are in turn given a privilege to extend a
partial solution or to revise earlier decisions as a search progresses. Generally, in
synchronous search one agent is active at a time while all theother agents remain
in a wait state, although in some versions [2] a DFS-tree ordering allows agents in
unconnected branches of a search tree to be active simultaneously. Privilege passing
ensures that agents have up-to-date information on the state of a search and as
such minimises useless processing. In delegation there is no concept of privilege

101

passing. Agents still retain their autonomy and they carry out an asynchronous
search where each agent is triggered into action whenever itreceives messages
irrespective of the state of its ancestors or successors. Therefore, an agent may be
active simultaneously with other agents that are constrained with it. However, there
is clearly some form of local synchronisation in delegation, since some agents only
receive a parent’s decision after some intermediary has processed it.

2. Backtracking: because of privilege passing, the processing of backtrack messages
tends to be in reverse order of the search, and an agent must wait until all its children
complete their actions before processing a backtrack from one of them. Using dele-
gation, an agent responds immediately to a backtrack message, and can initiate new
searches as a result, so there can be multiple searches proceeding simultaneously
in the same sub-tree. The basic principle of delegation alsomakes no commitment
to what should happen when a dead-end is discovered - depending on the details of
the algorithm, an agent may decline to forward infeasible partial solutions, or may
forward some sub-solution, allowing child agents to continue with a search or learn
nogoods.

3. Privacy: In the synchronous algorithms of [9,11], the current partial solution for all
ancestors is passed from one agent to the next, and thus agents will receive values
for variables to which they are not connected. Using delegation, an agent should
only receive values that it would also have received in the original algorithm. An
additional consequence of this is that message packets should be smaller.

The idea of deputing agents was also explored in the Asynchronous Partial Overlay
(APO) algorithm [5]. APO involves a resolution process thatrequires conflicting agents
to centralise information about related parts of a problem within a mediator to resolve
conflicts. There are significant privacy implications from mediation as agents have to
reveal complete information about their domains and constraints violations for media-
tion to take place. In contrast, delegation requires agentssimply to detect cliques, select
intermediaries, and to route only the information that intermediaries are expected to see
through them. Previous research on the performance trade-offs between synchronous
and asynchronous backtracking have shown that message passing is reduced with syn-
chronisation, but these savings come with the cost of an increase in run time (e.g. in
[9]). However, later results reported in [11] suggest that synchronous algorithms may
perform equally as well as asynchronous algorithms in runtime although idle time is
much higher in synchronous search. Other results reported in [1] also show that the
inclusion of some partial synchronisation improves efficiency of asynchronous back-
tracking - improving both the message count and the runtime.

4 Performing static delegation

We first consider delegation inside IDIBT/CBJ [4]. In the preprocessing phase of IDIBT
/CBJ, agents are ordered with the Distributed Agent Ordering (DisAO) algorithm [4],
part of which involves an extension of DisCSP graphs with theaddition of tautologi-
cal constraints between unconnected agents along different sub-trees. The extensions
ensure the correctness of backtracking steps. The algorithm and its proof of complete-

102

ness have been described in [4]. In this section, we show how to plan delegation after
ordering but before search, and evaluate its effect experimentally.

4.1 Establishing Delegation Paths

Algorithm 1 is presented for establishing the delegation paths below an agentA. This al-
gorithm is independent of the tree search and it is run after agents construct an ordering
with DisAO. Therefore each agent knows its parents, its children, and their positions in
the ordering. The local data structures can be interpreted as follows: d[i] states whether
A talks directly toci; l[i] is the length of the delegation path toci; m[i][j] indicates
whetherci is a parent ofcj ; r[i][j] states whetherci will relay messages tocj ; and f[i][j]
states whether A must forwardpi’s messages tocj .

First, an agent must detect all ordered 3-cliques involvingitself and two children.
Each agent sends the full list of its children to each of its parents (line 2); the receiving
agent can then populate its parenthood matrix m (3-7). The agent then processes each
child in order of priority; if the child has no intermediate parents, it remains directly
connected; otherwise, the intermediate parent that is furthest away from the agent (10)
is selected to relay messages (11), the child’s path length is updated (12), and it is
marked as no longer directly connected (13). Once all delegations have been selected,
each child is told to whom it must relay A’s messages (15). Finally, when an agent
receives those messages from its parents, it records the relay instructions (18). This
algorithm selects the longest path for each delegation by chaining together overlapping
3-cliques. We aim for long delegation paths in order to remove many forward links, and
so that the final messages aggregate as many local solutions as possible.

Figure 3(a) presents an example of this algorithm in use. We assume the 5 agents
have been ordered using DisAO with the max-deg heuristic, asshown in Figure 3(b).
First, X5 will send an empty list to bothX4 andX1, X4 sends{X5} to X3 andX1,
andX3 sends{X2, X4} to X1. On receipt of these messages,X1 keepsX3 on a direct
link, and then decides to delegateX3 to relay messages toX4. Similarly,X1 eliminates
the forward links withX2, selectingX3 as the intermediary, and eliminates the forward
link to X5, with X4 as the intermediary. Figure 3(c) shows the DisCSP with the active
forward links (solid links) after delegation paths have been established. Note that only
1 out of 4 links fromX1 is active. Therefore, during a tree searchX1 will only have to
communicate withX3 whenever it revises its value, but it knows the updates will reach
all its children. Note that messages fromX1 to X5 are relayed twice:X3 will relay X1’s
decision toX4, andX4 knows that if it receives a decision forX1, it must extract it and
relay it toX5.

Algorithm 2 describes the process of relaying the appropriate decisions during
search. A message to an agent from a parent will contain a decision for that parent,
and may contain decisions for other parents as well. The agent first makes its own de-
cision (line 1). The agent initialises a message for each of its childrencj with active
links and places its value in the message if it has one (3). Andthen for each other parent
decision (5), if there is another childct for which A usescj as an intermediary and to
which A is expected to forward the other parent’s decision (7), then A adds that deci-
sion tocj ’s message (8). If however, the agent has no value, it holds onto the values for

103

Algorithm 1 : choosing delegation paths for agent A
/* n children c1, . . . cn, m parentsp1, . . . pm */
Data: d: array of n booleans, initially true
Data: l: array of n ints, initially 1
Data: m: array of n×n booleans, initially false
Data: r: array of n×n booleans, initially false
Data: f: array of m×n booleans, initially true
foreachparentpi do1

send message topi containing{c1, . . . , cn}2

foreachchild ci do3

receive message fromci containing child setCi4

for x∈ Ci do5

if x is a child of A (x =cj) then6

m[i][j] ← 17

foreachchild cj in order do8

if ∃ k s.t. m[k][j] = 1 then9

find i with highest l[i] s.t. m[i][j] = 110

r[i][j] ← true11

l[j] ← l[i]+112

d[j] ← false13

foreachchild ci do14

send message toci with {cj : r[i][j] = true}15

foreachmessage withSi received from a parentpi do16

foreach cj ∈ Si do17

f[i][j] ← 118

each parent’s decision that contributes to the domain wipe out (i.e. its conflict set) and
it forwards other parents’ decisions (10).

4.2 Theoretical properties

Here we proof that delegation paths created locally with local information are valid,
showing that: (1) there is always a path of active forward links between each agent and
each of its children, and (2) privacy is preserved in the paths generated. In particular,
we will show that all intermediaries chosen to forward messages to child neighbours
have active forward links with those children. We also give some other formal prop-
erties of Algorithm 1. For these results, we assume that the agent ordering algorithm,
DisAO, produces a single highest priority agent, and recursively adds links to uncon-
nected agents that share a child.

Theorem 1 All agents in a delegation path fromAi to An are children ofAi

Proof. From Algorithm 1,Ai only reasons and constructs paths with its children.

104

Algorithm 2 : Agent A reacting to decision frompi

Input : Mi = {(pk, xk) : pk is parent of A}
choose A’s decisionxA1

foreach cj s.t. d[j] = true do2

if xA 6= null then3

message[j]← {(A, xA)}4

foreach (k, xk) ∈Mi do5

if xA 6= null then6

if f[k][t] = true then7

message[j]←message[j]∪{(k, xk)}8

else9

if (f[k][t] = true) ∧(k /∈ conflictSetA) then10

message[j]←message[j]∪{(k, xk)}11

send message[j] tocj12

X1

X4
X3

X2

X5

(a)

X1

X4

X3

X2

X5

(b)

X1

X4

X3

X2

X5

Delegations
(X1, (X3,(X2,X4)))

(X1, (X4,X5))

(c)

Fig. 3. An example DisCSP (a), a max-deg ordering established with DisAO (b), and active for-
ward links (solid lines) after delegation (c).

Theorem 2 The path length assigned to an agentAj during the algorithm for agentAi

is the maximum path length fromAi to Aj using the sub-graph defined byAi andAi’s
children.

Proof. (Omitted) by induction on the assigned path length

Corollary 3 The delegation path fromAi to An is a maximum length path fromAi to
An in the sub-graph defined byAi andAi’s children.

Proof. proof straight from Theorem 2.

Theorem 4 For any 3-clique(Ai, Aj , An), whereAi → Aj , Ai → An, Aj → An and
there is a delegation(Ai, (Aj , An)), Aj will send its own decisions directly toAn.

Proof. To prove this, we will show that there can be no chain of agentsC1, C2, . . . , ct

betweenAj andAn in the ordering, such thatAj delegates its message forAn through

105

this chain. The extension phase of DisAO is a recursive process that add directed links
(tautological constraints) between pairs of unrelated agents if they have at least one
child in common. If there was such a chain, the procedure would have added links
Ai → Ck for eachCk, working backwards from the childAn. But by Corollary 4.3, the
chainC1 to Ct must be the longest path betweenAj andAn. Substituting this chain for
the direct linkAj → An would then give a longer path inAi’s delegation chain. But
by Corollary 4.3,Ai has chosen the longest path. Contradiction. Thus there can be no
such intermediate chain, and soAj must send its decision directly toAn.

Theorem 5 An agentAj can receive a decisionAi ← v by delegation if and only if
it can receive it without delegation, given the ordering induced by DisAO (and so we
don’t violate the privacy of any message).

Proof. (Omitted) by inspection of the algorithm

Theorem 6 No agentAj receives the same decisionAi ← v from two separate agents.

Proof. (Omitted) by inspection of the algorithm

4.3 Algorithm modifications

To implement delegation in IDIBT/CBJ, following modifications were made to the al-
gorithm:

– Agents construct delegation structures after an ordering has been established with
DisAO by running the processes in Algorithm 1. Once the delegations have been
selected, each child is told to whom it must relay its parentsmessages.

– A search proceeds as normal with IDIBT/CBJ, except that eachagent will only send
InfoVal messages to those child neighbours with whom it has an activeforward
link. And when an agent receives values from a parent neighbour, for whom it acts
as an intermediary, it relays that value to the respective child neighbour after it has
processed the message and selected its own value (see Algorithm 2).

– All backward links remain active. Even if there is an intermediary between agents
Ai andAk, Ak will bypass the intermediary and sendBack messages directly to
agentAi.

– For the sake of simplicity, all search in IDIBT/CBJ is executed in a single search
context (i.e. assuming NC=1).

In Section 3.1, we highlighted backtracking as one of key differences of delegation
and synchronous search. In synchronous search, when the agent holding the current
partial solution backtracks it returns the privilege (and by extension the partial solution)
back to a culprit variable. In delegation, however, there are a number of options for
dealing with partial solutions by dead end agents. In our preliminary evaluations, we
considered the following:

1. Backtracking agents still pass down collated partial solutions to child neighbours.
The case for doing this is that while a search below the dead end agents contin-
ues with an incorrect search context, it gives opportunities for child neighbours
to quickly detect other conflicts with subsets of the partialsolutions that remain
coherent after the resolution of the original conflict.

106

2. An agent could hold back its conflict set i.e. the subset of parents’ values that cause
a domain wipe out, and relay other values. Again, this allowsthe search to retain
its asynchrony as well as allow child neighbours to quickly detect conflicts with the
other ancestors in the solutions they receive.

3. There is the option of allowing agents temporarily hold upthe search beneath them
and not relay any parent decisions to child neighbours whenever they can not ex-
tend the partial solutions. With this, child neighbours will eventually receive more
coherent solutions but this approach comes with a risk of these pauses cascading
up a search tree and gradually introducing additional synchronisation into agents
activations.

While each of the choices has its merits, we chose the option ofholding back conflict
sets in the implementation of delegation in IDIBT/CBJ. Thisallows us to preserve more
asynchrony in a search (compared to holding all collated values) while reducing the
amount of redundant work would be performed if agents still forward down all collated
values when they perform backtracking.

4.4 Evaluations

IDIBT/CBJ with delegation was implemented in a discrete event simulation environ-
ment using a shared simulated clock for all agents. In the simulation, we assume that
the time taken to perform each constraint check is equivalent to one simulated time step.
And, we also assume that message passing delay is uniform forall agents.

The modified algorithm was tested on random DisCSPs〈n = 30, d = 10〉 on
problems with different constraint densities (p1 = {0.3, 0.5}) and different percentages
of forbidden tuples (p2) in the constraints for each density. 30 problems where generated
for each combination of constraint density and tightness. For comparison, similar runs
were made on the same problems with IDIBT/CBJ and a synchronous backjumping
algorithm (SCBJ) [11]. SCBJ is a distributed equivalent of acentralised backjumping
algorithm, where a total ordering3 is imposed on agents and agents are activated in turn
(one at a time) to extend a partial solution. A partial solution is passed from one agent
to the next during a search. When the partial solution can not be extended, the earliest
assignments in the partial solution that contribute to a domain wipe-out are resolved
into a conflict set and used to determine (and activate) the culprit agent in backjumping.

In the charts plotted in Figure 4, we summarise the results from the experiments per-
formed. The results show the average message count and the average Non-Concurrent
Constraint Checks (NCCC) [6] from the runs. The average message count plotted in
Figure 4 comprises the cost of running DisAO, messages exchanged in the course of the
different searches, and where applicable, the messages exchanged in performing dele-
gation with Algorithm 1. The results presented show with SCBJ, the average message
count is lower than the asynchronous algorithms but its average NCCC is higher. With
delegation in place, message count in the asynchronous search is reduced significantly
especially on the most difficult problems.

3 To keep comparisons fair, we use the samemax-degagent ordering from DisAO in SCBJ as
well.

107

Graph density = 0.3

Graph density = 0.5

30

60

90

120

0.2 0.3 0.4 0.5 0.6 0.7

tightness

m
es

sa
ge

s
('0

00
)

SCBJ

IDIBT/CBJ

with Delegation

20

40

60

80

100

0.2 0.3 0.4 0.5 0.6 0.7
tightness

N
C

C
C

 (
'0

00
)

SCBJ

IDIBT/CBJ

with Delegation

100

200

300

400

0.2 0.3 0.4 0.5 0.6 0.7

tightness

m
es

sa
ge

s
('0

00
)

SCBJ

IDIBT/CBJ

with Delegation

100

200

300

0.2 0.3 0.4 0.5 0.6 0.7
tightness

N
C

C
C

 (
'0

00
)

SCBJ

IDIBT/CBJ

with Delegation

Fig. 4. Average message count and NCCC for solving DisCSPS with SCBJ, IDIBT/CBJ, and
IDIBT/CBJ with delegation.

With respect to the NCCC, it appears that with delegation theaverage cost is higher
than the corresponding cost for IDIBT/CBJ but lower than theaverages for SCBJ.
NCCC is a measure of the longest chain of sequential checks that can not be performed
concurrently. Delegation appears to worsen performance onthis metric because, firstly,
it creates a physical chain of agents which can lengthen the sequential chain of con-
straint checks included in the final value of the metric. Secondly, delegation introduces
some artificial delays in message passing, particularly foragents at the end of long mes-
sage passing chains. It meant that in some cases the detection of conflicts with parents
high up in a search tree was some times delayed. This resultedin intermediate agents
having to abandon and reconstruct solutions, when such conflicts were discovered, with
cost implications for the NCCC count.

Our motivation for delegation is to improve communication overhead of distributed
backtracking in scenarios where the message passing is expensive relative to constraint
checking but privacy is an issue. The results show that message passing is reduced with
delegation compared to standard IDIBT/CBJ; however, this improvement comes with
the cost of additional constraint checks. The results also show that by maintaining asyn-
chrony in the search, constraint checking with delegation is lower than SCBJ. Message
passing in SCBJ is lower but this is only achieved by violating privacy when partial
solutions are passed from one agent to the next - and agents receive values they are not
meant to see.

108

5 Dynamic delegation

Algorithms based on ABT [9,1] add links during search (as opposed to IDIBT/CBJ’s
preprocessing step). In such cases, precomputing the delegation paths before search is
unlikely to be effective. Therefore, we now consider a dynamic delegation strategy, in
which we allow agents to detect 3-cliques from the nogoods generated during a search,
and then to chain together valid delegation paths. In this section, we describe our dy-
namic delegation method, implement it in a variant of ABT, and evaluate it experimen-
tally.

5.1 Performing dynamic delegation

As mentioned earlier, in this form of delegation, coherent nogoods generated during a
search are used to discover 3-cliques and to establish delegation paths. The key idea
here is to allow an agent that receives nogoods to use the information to identify cliques
and to determine if it can act as an intermediary for parent neighbours in the nogood.

no-good: b = V (a = V)
b a

a

b

c

addLink request
delegation requesta

b

c

a

b

c

(a) (b) (c)

Fig. 5.Discovering cliques from nogoods.

The example in Figure 5 is used to illustrate the process.Ab receives the nogood
(b 6= Vb ⇒ (a = Va)) from which it can detect the 3-clique involving itself and both
Aa andAc. If the link from Ab to Ac is active,Ab can determine if it can perform dele-
gation on behalf of the parentAa to the childAc. In this example, such an opportunity
exists. Therefore, using Algorithm 3,Ab will send a delegation request toAa for the
delegation. After which the request is saved, to preventAb sending the same request
repeatedly if there is thrashing along its path with both theparent and the child.

WhenAa receives the delegation request, it processes the request with Algorithm
44. A delegation request is rejected if either the forward linkfrom the receiving agent
to the target agent is inactive or the receiving agent is already delegating messages for a
parent to the target agent. Otherwise, the request is accepted; which prompts the recip-
ient to implement the delegation and to respond with an acceptance e.g. the acceptance
from Aa to Ab, prompting agentAb to relayAa’s decisions toAc whenever ever it
receives a value update fromAa; and agentAa de-activates its forward link withAc.

4 Algorithm 4 uses the same data structures with Algorithm 1.

109

Algorithm 3 : Agent A using nogoods to discover 3-cliques and delegations.
Input : NG = {(p1, ...pn) : pi is var∈ rhs(NG); s is nogood sender}
Data: Q: list of delegation requests sent by A
foreachpi ∈ rhs(NG) do1

if (pi, (A, s)) /∈ Q then2

senddelRequest(pi, A, s) to pi;3

Q← Q ∪ (pi, (A, s))4

Algorithm 4 : Agent A responding to delegation requests.
Input : delRequest(A, (Ai, At)) : Ai is intermediate agent,At is delegation target
i← index ofAi in children(A);1

t← index ofAt in children(A);2

if (d[t] = false) ∨ (f [∗][t] = true) then3

reject(A, (Ai, At));4

/* accepting delegation */;5

d[t] = false;6

r[i][t] = true;7

send message toAi with {At : r[i][t] = true};8

5.2 Algorithm modifications

For dynamic delegation, we modified ABT with partial synchronisation (ABTHyb) [1]
as follows:

– Firstly, two new message types are introduced:

• delRequest(Ai, Aj , Ak) - delegation request sent from an intermediate neigh-
bour (Aj) to a parent (Ai) to inform the parent of the opportunity for delegating
messages forAk throughAj .

• delegation(Ai, Aj , Ak) - an acceptance for a delegation request. This is sent
from the parentAi to the the intermediaryAj .

– Agents run the steps outlined in Algorithm 3 whenever nogoods are received from
child neighbours. In the case that nogoods received containvalues for unconnected
agents, new links with these agents are first created before any delegation requests
are sent.

– In response to delegation requests received, steps in Algorithm 4 are used to deter-
mine if such requests are accepted.

– Backward links between all agents remain active. Thereforenogoods are sent di-
rectly culprit parents irrespective of the delegation structures that exist at the time.

– When an agent sends a nogood, it moves into the synchronous phase of the search
as described in [1]. With delegation, the agent will continue this partial synchro-
nisation by holding on to any collated partial solutions until it returns to the asyn-
chronous search.

110

5.3 Evaluation

The same problems from Section 4.4 were used to evaluate ABTHyb with dynamic
evaluation. As previously, we also compared the modified algorithm with its ancestor
and with SCBJ. However, for these evaluations we make SCBJ a nogood recording
algorithm (and therefore it is referred to as SBT in the results for consistency), so that
all three algorithms are compared on like terms. Furthermore, a total (max-deg) ordering
is imposed on agents in all three algorithms.

Graph density = 0.3

Graph density = 0.5

20

40

60

0.2 0.3 0.4 0.5 0.6 0.7
tightness

m
es

sa
ge

s
('0

00
)

SBT

ABTHyb

with Delegation

10

20

30

40

50

0.2 0.3 0.4 0.5 0.6 0.7
tightness

N
C

C
C

 (
'0

00
)

SBT

ABTHyb

with Delegation

40

80

120

160

200

0.2 0.3 0.4 0.5 0.6 0.7
tightness

m
es

sa
ge

s
('0

00
)

SBT

ABTHyb

with Delegation

40

80

120

160

200

0.2 0.3 0.4 0.5 0.6 0.7
tightness

N
C

C
C

 (
'0

00
)

SBT

ABTHyb

with Delegation

Fig. 6. Average message count and NCCC for solving DisCSPS with SBT, ABTHyb, and
ABTHyb with delegation.

In Figure 6, we plot the averages of the evaluation metrics from the runs of the three
algorithms. The results are consistent with the previous findings. They show that the
synchronised algorithm still saves on message passing (although at the cost violating
privacy) and that the NCCCs remain higher. Between the asynchronous algorithms, the
effects of delegation is consistent with the earlier findings. Message passing cost is
considerably reduced with delegation in place and there is the accompanying increase
in the average NCCC count. Some reasons for the higher average NCCC count have
been listed in Section 4.4, and these are still applicable.

6 Conclusion

We have introduced a new concept of delegation for improvingthe efficiency of mes-
sage passing in distributed tree search. With delegation, agents can appoint intermediate
neighbours for transmission of their local solutions to other child neighbours. The idea

111

reduces message passing by de-activating some forward links from agents with dele-
gations, but it can enhance the search by improving the coherency of partial solutions
received by agents while still preserving the privacy levels of an underlying algorithm.

We presented two forms of delegation for the prominent tree search strategies in
DisCSP i.e. where links between unconnected agents are created prior to a search and
where such links are created on the fly as required. We have shown, with empirical
experiments, that both forms of delegation reduce message passing in asynchronous
algorithms by as much as 50%. But the improvements come at thecost of additional
non-concurrent checks, which we attribute to some implicitdelays caused by the dele-
gation of messages.

Overall, the results indicate that delegation is effectivestrategy for distributed tree
search where the cost of message passing is significant relative to the cost of constraint
checking and where privacy is an issue. For future work, we intend to extend delega-
tion to other algorithms, such as ADOPT [7], and to improve the dynamic delegation
algorithm. In particular, we are motivated by problems where the network connections
are expensive, of different quality, and unreliable, and weare developing delegation
heuristics which make use of this information.

References

1. I. Brito and P. Meseguer. Synchronous, asynchronous and hybrid algorithms for DisCSPs.
In Proc. of the 5th Int’l Workshop on Distributed Constraint Reasoning, September 2004.

2. Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed constraint satisfaction.
In Proc. of the 12th Int’l Joint Conference on Artificial Intelligence, IJCAI, pages 318–324,
1991.

3. Y. Hamadi, C. Bessière, and J. Quinqueton. Backtracking in distributed constraint networks.
In ECAI, pages 219–223, Aug 1998.

4. Youssef Hamadi. Conflicting agents in distributed search.Int’l Journal on Artificial Intelli-
gence Tools, 14(3):459–476, 2005.

5. R. Mailler and V. Lesser. Using cooperative mediation to solve distributed constraint satisfac-
tion problems. InProc. of 3rd Int’l Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2004), 2004.

6. A Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed
constraints processing algorithms., July 2002.

7. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for dis-
tributed constraint optimization. InIn Proc. The 2nd Int’l Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2003, pages 161–168. ACM, July 2003.

8. M. Yokoo. Distributed Constraint Satisfaction:Foundation of Cooperation in Multi-agent
Systems. Springer, 2001.

9. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for
formalizing distributed problem solving. In12th Int’l Conference on Distributed Computing
Systems (ICDCS-92), pages 614–621, 1992.

10. M. Yokoo, T. Ishida, and K. Kubawara. Distributed constraint satisfaction for DAI problems.
In M. N. Huhns, editor,Proc. of the 10th International Workshop on Distributed Artificial
Intelligence, chapter 9. 1990.

11. R. Zivan and A. Meisels. Synchronous vs asynchronous searchon DisCSPs. InProc. First
European Workshop on Multi-Agent Systems (EUMAS), December 2003.

112

