Supply Chain Coordination through Distributed
Constraint Optimisation *

David A. Burke!, Kenneth N. Brown!, Mustafa Dogru?**, and Ben Lowe?**

1 Centre for Telecommunications Value-chain Research and
Cork Constraint Computation Centre,
Department of Computer Science, University College Cork, Ireland
2 Bell Labs Ireland, Alcatel-Lucent, Dublin, Ireland
d.burke@4c.ucc.ie,k.brown@cs.ucc.ie,{dogru,blowe}@alcatel-lucent.com

Abstract. Supply chain coordination involves planning and coordinat-
ing a range of activities across the supply chain, among several business
units. These business units are naturally distributed and we assume that
they operate autonomously, but they need to be coordinated in order
to effectively meet end user demand and avoid waste. Distributed Con-
straint Optimisation (DisCOP) considers algorithms explicitly designed
to handle such problems, providing support for coordinating agents (au-
tonomous nodes or business units) in the supply chain. In this paper we
describe the supply chain coordination problem and present it as a new
benchmark problem suitable for modelling and solving using DisCOP. In
this problem each agent has a large complex problem with many public
variables (variables constrained with other agents), and this character-
istic poses new challenges to DisCOP algorithms. To deal with this, we
introduce a number of modelling and search techniques, which we use
with the ADOPT DisCOP algorithm in order to solve the supply chain
problem. We perform experiments on problem instances of varying com-
plexity to demonstrate the effectiveness and limitations of our approach.

1 Introduction

Many combinatorial decision problems are naturally distributed over a set of
agents: e.g. coordinating activities in a sensor network [1], or scheduling meetings
among a number of participants [2]. Distributed Constraint Reasoning (DCR) [3]
considers algorithms explicitly designed to handle such distributed problems.
Algorithms search for globally acceptable solutions, balancing communication
costs with processing time, while allowing private information to be kept local
to each agent. Many different algorithms have been proposed that consider both
satisfaction (DisCSP) [3,4] and optimisation (DisCOP) [5-7].

In this paper we make two contributions. Our first contribution is to propose
the Supply Chain Coordination (SCC) problem as a new benchmark for Dis-
COP. SCC involves the planning and coordinating of production and delivery

* This work is supported by Science Foundation Ireland under Grant No. 03/CE3/1405
** Supported partly by Industrial Development Agency (IDA), Ireland

schedules among several agents (business units). This benchmark problem is a
useful addition as it considers problems where agents have large internal prob-
lems with many variables. This is in contrast to other existing benchmarks for
DCR (e.g. SensorDCSP [1], Graph-colouring [7], Meeting Scheduling [2]) that
consider single or small numbers of variables per agent. A characteristic of the
problem is that each agent has many public variables (variables constrained with
other agents), which leads to an extremely large distributed search space, posing
significant challenges for existing DisCOP algorithms. In our second contribu-
tion, to address these challanges, we propose modelling techniques and search
strategies that can effectively prune the initial search space of this problem and
allow the remaining search space to be traversed more efficiently. Through imple-
mentation with the ADOPT DisCOP algorithm, we apply these techniques and
perform a number of experiments demonstrating the strengths and limitations
of our approach.

2 Distributed Constraint Optimisation Problem

A Distributed Constraint Optimisation Problem (DisCOP) consists of a set A=
{a1,as,...,a,} of agents, and for each agent a;, a set X;={w;1,%2,...,Tim,}
of wariables it controls, such that Vi#j X;NX; =0. Each variable z;; has a
corresponding domain D;; of possible values. X =J X; is the set of all variables
in the problem. C'={c1,¢a,...,c:} is a set of constraints. Each ¢ has a scope
s(cx) € X, and is a function Ck:Hij:xijEs(ck)Dij — IN. The agent scope, a(cy),
of ¢k is the set of agents that ¢ acts upon: a(cg) = {a; : X;N s(cx) #0}. An
agent a; is a neighbour of an agent a; if dci: a4, a; € a(cy). For each agent aj;,
pi={xi;: Ve x;ij €s(c) — s(c) CX;} is its private variables — variables which are
not constrained by other agents’ variables — and e; = X;\p; is its public variables
— variables that have constraints with other agents. A global assignment, is the
selection of one value for each variable in X. A local assignment, to an agent a;,
is an assignment to X;. The global objective function, F', assigns a cost to each
global assignment: F": [, D — INt: g — >4 ck(gs(c,))- An optimal solution is
one which minimises F'. The solution process, however, is restricted: each agent
is responsible for the assignment of its own variables, and thus agents must
communicate with each other in order to find a global solution.

Apoprt [7] is a memory-bounded, complete DisCOP algorithm that allows
agents to work asynchronously. Agents are first prioritised into a tree, whereby
each agent maintains lower and upper bounds for the subtree rooted at that
agent. The algorithm proceeds by higher priority agents choosing assignments
to their variables and sending these to lower priority neighbours. Lower priority
agents respond with lower and upper bound costs that their subtree will incur
based on the proposed assignments. As the search progresses, the lower and
upper bounds on costs will be tightened in each agent until the lower bound of
the minimum cost solution is equal to its upper bound. If an agent detects this
condition, and its parent has terminated, then an optimal solution is found and
it may terminate also.

Supplier X

3 ; Component Manufacturer
Production N

5) delivery schedule; -
constraints Fl \

! fatinfesk - * [Production constraints
Supply ' Comp. X4 —) - Factory caparity
constraints A - Machine dependenci e
Y\ LG Xa - B
R

\

= delivery schedules =
Supplier Y Demand constraints

TP oTLen Supplier ¥ - Product demand
Production , Component - ozt of non-delivery
N delivery schedule; & e

constraints o T i E

Manufact. !

= x Comp. g |,
Comp. ¥y —

Comp. Y

1
1
\
1
Component 1
1
1
1
)
1

Supply
constraints

]
Y

Y
\

Fig. 1. Basic supply chain coordination scenario

3 The Supply-chain Coordination (SCC) Benchmark

3.1 Motivation

Supply chain management involves planning and coordinating a range of ac-
tivities across the supply chain. The supply chain typically consists of several
interdependent agents (organisations or business units — from the same or dif-
ferent companies), each holding the responsibility for provision of particular
components that are combined in a final product. In order to reduce costs, each
agent may try to optimise its internal processes (planning, scheduling, etc.);
however by making decisions locally and independently, the actions may lead
to inefficiencies in the wider supply chain. Thus, there is a need for agents to
coordinate their actions: “as market pressures dictate that today’s commercial
supply chains provide rapid and efficient supply, the need to coordinate with all
organisations within the supply chain is becoming increasingly critical” [8]. By
coordinating the actions of all participants, more efficiencies can be gained, re-
ducing inventories, lead times and costs and improving quality and service levels.
While in some cases the competitive nature of business may restrict coordina-
tion possibilities, some environments will allow certain levels of coordination,
e.g. (i) coordination of business units within the same company; (ii) an alliance
of independent firms who wish to cooperate in order to compete better in the
market; or (iii) a dominant firm using its position to encourage cooperation in
the supply chain, e.g. the use of Vendor Managed Inventory by Wal-Mart [9].

To optimise the actions of all agents in the supply chain, it is often difficult to
centralise the problem because of one or more of the following reasons: (i) each
agent is a seperate business unit and may be unwilling to share local information;
(ii) each agent’s internal problem is large and complex, meaning that the cost
involved in centralising this information is prohibitive and attempting to solve
such a problem centrally leads to large monolithic models of great complexity;
(iii) each agent’s local low level problems (such as factory scheduling) are more
suited to be solved at that agent’s location where detailed information is readily
available. For these reasons, a decentralised approach is necessary.

Problem parameters
D;; : the amount demanded for product ¢ in period t,
B;; :the number of components j needed to produce one unit of product i,
I'™ : the manufacturer’s opening inventory level for component j,
Y/™ : the opening inventory level for product i,
l; : the length of time required to build product i,
r; : the time taken to deliver an order for product i to a customer,
7" : the manufacturer’s factory capacity (total time) available at period ¢,
M : the maximum quantity of products that can be built in any period,

k; :the maximum number of batches for component j,
y; : the cost of delivering a single order for component j,
sj : the batch size for component j,

hi* : the holding cost for a single unit of product/component i for one period,
w; : the setup cost for the manufacturer for product 7,

v; : the setup time for product 7,

p; : the cost of not meeting an order for product i

Public decision variables
O7; : the number of batches delivered for component j in period ¢

Private decision variables

0j+ :a {0,1} variable indicating if there is an order for component j in period ¢,
bir :a{0,1} variable indicating if any of product ¢ will be built in period ¢,

m;¢ : the quantity of product ¢ manufactured at time ¢, m;; € IN

Auxiliary variables
I3 : the total cost,
7 : the number of component j arriving at period ¢, A7; € IV
qit : the quantity of product ¢ for dispatch in period ¢, gi+ € IN
7 the closing inventory level for component j at period ¢, IJ} € IN,

' the closing inventory level for product ¢ at period ¢, Y;i* € IV

Fig. 2. Manufacturer model — input parameters and variables.

3.2 Scenario Description

Consider a simple 2-tier supply chain (Fig. 1). At the top of the chain is a
manufacturer producing a number of products over a fixed planning horizon.
In Figures 2 and 3, we give an example model for the manufacturers problem.?
In each period ¢ of the planning horizon, the manufacturer has a specific de-
mand D;; from customers for each of its products ¢. To produce the products,
the manufacturer must order components from its suppliers. Components are
delivered in batches (e.g. pallet, container or truckload), where s; is the quan-
tity /batch size. A single order O7;, incurring a fixed cost y;, specifies the number
of batches of a particular component j that must be delivered in period ¢. The
manufacturer must coordinate with the suppliers to decide how to schedule the

3 The superscripts m and s are used to distinguish between similar parameter and
variable names in the manufacturer and suppliers’ models.

utility function

=" lojey; + h"Vil" + hi v + biswi + pi(Di — git)] (1)

vt Vi Vj
production constraints
Mbit >= myt Vt, Vi (2)
> (limir + bivi) < CF i (3)

Vi

supply/delivery constraints

Ajy =55 x Of Vi, Vg (4)
> 05 <k v (5)
t
kjoje >= O} Vt, Vs (6)
qit < Digt1ry) vt, Vi (7)
Iy =1" Vj (8)
w0 =Y Vi (9)
It =TI+ A — Z Bijmi Vt,Vj (10)
Vi
it = Yieo1 + mar — Qi Vt, Vi (11)

Fig. 3. Manufacturer model — utility function and constraints.

orders/deliveries. When negotiating these schedules, the agents have to consider
production constraints. We assume the manufacturer has a single production
facility for producing all products, and there is a setup cost, w;, and time v;
associated with starting production of a product. Each product takes a specific
length of time to build /;. In any period, the manufacturer will decide how much
of each product it will build, m;;. Given that each product is independent, the
sequence of these productions is irrelevant and so can be done one after the other.
In this case, there will at be at most one setup cost per period per product, indi-
cated by the {0,1} variable b;; which is forced to be correctly set according to (2).
A capacity constraint (3) states that the total production in any period cannot
exceed the total factory capacity, C}", for that period. The closing component
inventory in any period is equal to the previous days closing inventory plus the
number of components arriving less the number of components used in that pe-
riod — what components go into each product is defined by the bill of materials,
B;; (10). The closing product inventory is calculated in a similar manner (11).
Note that the latter two constraints also have the effect of ensuring that g;; is
less than or equal to the products available on any particular day. Holding costs
are charged for each item in storage and we assume that these costs incorporate
charges for both excess and obsolete items. The number of components that ar-
rive is dependent on the assignment to O7; (4), which is also constrained by (5).

Problem parameters

I}® : the opening inventory level for component j,

R’® : the opening inventory level for raw material j,

l; : the length of time required to build component j,

r; : the time taken to deliver an order for component j to the manufacturer,
C? : the supplier’s factory capacity (total time) available at period t,

M : the maximum number of components that can be built in any period,

kj :the maximum number of batches for component j,
sj : the batch size for component j,
j¢+ @ the quantity of raw material for j arriving at period ¢,
hj : the holding cost for a single unit of component/raw material j for one period,
w; : the setup cost for component j,
v; : the setup time for component j

Public decision variables
7+ : the number of orders delivered for component j in period ¢

Private decision variables
bj: :a {0,1} variable indicating if any of component j will be built in period ¢,
mj; : the number of component j manufactured at time ¢, mj;; € IN

Auxiliary variables

13 : the total cost,
3¢+ the closing inventory level for raw material of component j at period ¢, R}, € IN
;¢ the closing inventory level for component j at period ¢, I}, € IN

Fig. 4. Supplier model — input parameters and variables.

The variable o;; is used identify the periods in which order costs are incurred
(6). The quantity of products dispatched in any period cannot be greater than
the demand from customers on the corresponding delivery date (dispatch date
+ delivery time) (7). We assume that the manufacturer will deliver its products
on time or not at all. However, there is a cost associated with non-delivery (i.e.
profits missed out on). The utility function, (1), calculates costs that arise for
the manufacturer from (i) order costs (ii) holding costs (iii) missed customer
orders; and (iv) production setup.

The supplier model is described in Figures 4 and 5. The supplier has a decision
variable O3, which is constrained to be equal to the corresponding manufacturers
variable (O;’t’) The suppliers internal problem is similar to the manufacturers,
except we are assuming that a known, fixed amount of raw materials for pro-
ducing components will arrive in each time period Aj; (supply constraints). The
supplier has a capacity constraint (14) on what it can produce in any given
period. The inventory at the end of any period has to be non-negative, when
the number of components dispatched to the manufacturer is subtracted — the
number of components dispatched in each period is calculated to be the number
of batches that have to be sent (taking into account the delivery time) multi-
plied by the batch size (19). The raw material inventory is also constrained to be

utility function

§=Y Y (MRS + 5L, + byew] (12)
vt Vj
production constraints
Mbjt >= mjt Vt,Vj (13)
Z(ljmjt + bjtvj) S Cts Vt (14)
v

supply/delivery constraints

> 05 <k vj (15)
t

Ry = R Vi (16)

Lo =1 Vi (17)

R}, =R} 1 + Aj —myy Vt, Vi (18)

I;t = I;t—l + mjs — (Sj X Oj(t+rj))Vt,Vj (19)

Fig. 5. Supplier model — utility function and constraints.

non-negative (18). The setup costs are calculated as in the manufacturer model
using the variable b;; (13). The supplier’s utility function, (1), is the sum of the
holding costs and production setup costs. The overall objective of the agents
is to coordinate their schedules such that the total costs in the supply chain
network are minimised.

We make a number of assumptions in this scenario, but it is possible to
extend it to consider more details if required. Production scheduling could be
extended to allow multiple production facilities, dependencies, etc., if desired.
We assume unlimited storage space, but the scenario can easily be extended to
include storage limits. A more sophisticated cost model with customers, incorpo-
rating various late-delivery charges could also be included if necessary. Finally,
it is also possible to include further tiers in the supply chain, i.e. sub-suppliers
delivering goods to the suppliers. Agents representing the sub-suppliers can be
introduced and the supply constraints of the suppliers can be replaced with
delivery schedules that should be agreed with these sub-suppliers.

3.3 Benchmark Parameters

To instantiate the models we provide parameter settings, chosen to be represen-
tative of real-world scenarios, in Table 1. The ranges for each parameter allow
a variety of different SCC instances to be considered, e.g. high/low product de-
mand, underconstrained/overconstrained factory capacities, different ratios of
holding cost to penalty cost etc. The benchmark specification is also currently
being finalised for inclusion in CSPLib [10]. This will include OPL models for
each agent type and a number of problem instances and their solutions.

Table 1. Parameter ranges used for generating problem instances.

Symbol [Description Parameter
H planning horizon 4-12

5; batch size for component j 50-100

D¢ amount demanded for product i in period ¢ 10-120
cirL,ey factory capacity (total time) available at period t 50-100

I7™Y{™, |opening inventory levels for raw material/components/prod-|0-100
R I ucts

Ui l; length of time required to build component/product 1-2
T4,T§ time taken to deliver a component/product order 0-2
h; holding cost for a single unit of component j for one period |1-25
hi holding cost for a single unit of product ¢ for one period Evg' Bijh
+/-5

wj,W; setup cost for the production of component j/product & hj,hi x 100
Vi,V; setup time for component/product manufacturing 5-10
0 cost of single order for component j 20-50 * s;
i cost of not meeting an order for product ¢ 250-500

Tt quantity of raw material for j arriving at period ¢ 50-100

4 Modelling and Solving the Problem as a DisCOP

4.1 Basic algorithm

We will use the ADOPT algorithm to coordinate the decision making of the
agents. To integrate the local solving process with the distributed search we
use a compilation approach [11]. In a preprocessing phase before the distributed
search begins we find the optimal local solution for each valid combination of
assignments to the public variables. Each compiled value contains a unique as-
signment to the public variables (public assignment) and the optimal local cost
for that assignment. It is not necessary to store the assignments to the private
variables as these are not required by the distributed search. Once the distributed
algorithm is finished, we then rediscover the optimal assignment to the private
variables for the chosen public assignment. There are a number of motivations
for using compilation: (i) it can be done offline and independently by each agent
— given the nature of this application, both time and memory are available to the
agents for this; (ii) it acts as a caching mechanism, which avoids repeated local
search —i.e. once an optimal local solution has been found for a particular public
assignment then this search will not need to be performed again (except for the
final chosen public assignment); and (iii) all local cost information is calculated
prior to the distributed search beginning — this reduces the computation and
time required for the distributed search to execute.

Consider the supply chain in Fig. 6 (a) with a single manufactuer M pro-
ducing 2 products, and three suppliers S1, S2 and S3 producing 4 components.
The agents are prioritised such that agent M is the root of the priority tree and

[1]z2]3]4]5]e]7 a0z

b

[1]z2]3]4-6 J7-9 Juw-12 |

kes
[k [50

Fig. 6. (a) Example SCC problem, 1 manufacturer, 3 suppliers. Product P; consists
of components C1, C>. Product P» consists of components Cs, Cs, C4. (b) The number
of periods to consider in the planning horizon can be reduced by aggregating periods
together. (c) Components from the same supplier, used in the same product, can be
aggregated to reduce the number of components that need to be considered. (d) The
number of batches to schedule can be reduced by combining two or more batches, e.g.
the batch size s; is doubled to consider pairs of batches together.

agents S1 — S3 its children. To begin solving the problem, M finds the local
assignment that gives it the lowest potential cost. Since M has not yet received
cost information from its children, the lower bound for each subtree is 0 and the
upper bound is oo for all assignments, therefore it chooses the assignment that
has the lowest local cost and this cost becomes the lower bound for M. M then
sends its public assignment to its children in the priority tree (the suppliers).
Agents S1 — S3 calculate the cost that they would incur if they agree to this
schedule and inform M of this cost. M now has the full cost for the current
assignment, which is an upper bound on the optimal cost. Considering this new
cost information, M then performs a new search for its best assignment. Since
the current assignment now has known costs for the suppliers, it is likely that
a different assignment now has the lowest potential cost and so is chosen. This
new assignment is then sent to the suppliers and the search continues in this
manner until M’s lower bound is equal to its upper bound. At this stage an
optimal solution has been found and the algorithm can terminate.

This standard search process, while simple and adequate, is far from efficient.
The reason for this is the complexity caused by the public decision variables of
the agents. The number of public variables of the agent is ¢t = 48, where ¢
is the number of components and ¢ is the number of periods. The domain size
of the public variables is & — the maximum number of batches to schedule for
each component, i.e. k batches of each component will ensure that all customer
demand can be met. This means that the number of possible combinations of
assignments to the public variables is huge — k°*. If we assume that ¢t = 12 (e.g.
12 weeks/1 quarter) and k = 6, then k°* >2e+37). However, not all of these
assignments need to be considered, since the total number of batches for each
component over the planning horizon does not need to be greater than k. This
reduces the number of public assignments to approximately 1le+17. In the worst
case, the manufacturer would have to suggest each of its 1le+17 possible public
assignments to its suppliers in order to find the optimal solution.

This a problem common to DisCOPs with complex local problems where
the agents have many public variables. Search based algorithms like ADOPT are
faced with exponentially large search spaces. An alternative inference based al-
gorithm, DPOP, is faced with exponentially large memory requirements. Hybrid
search/inference versions of DPOP [5,12] reduce the memory problems, but are
still impacted by the increasing search space. In the following sections we propose
two methods (aggregation and pre-propagation) that can be used to reduce the
the domain of public assignments, and an additional technique (dynamic value
ordering) that can be used to efficiently process the domain of public assign-
ments. The first two are general, algorithm-independent techniques, while the
third is specific to ADOPT + compilation. All methods may be of use in other
problem domains.

4.2 Aggregation

As the planning horizon, number of components and number of batches per com-
ponent are increased, the domain of public assignments increases. If we aggregate
these variables, we can reduce the number of possible public assignments.

Planning Horizon Aggregation: The 12 period horizon from our example
is too large to deal with effectively. To reduce this we aggregate periods of
the planning horizon. In Fig 6 (b) we consider the initial 3 periods as they
are, but we combine the remaining periods in blocks of 3. This allows us
to still produce a detailed delivery schedule for the near future, while being
less accurate in the longer horizon. As the problem is solved periodically,
the part of the planning horizon that is considered in detail will shift with
each execution. In our proposed approach we do not modify the agents local
problem, i.e. each agent still deals with 12 periods. However, the periods
are combined for the purpose of the distributed search, thus reducing the
number of public variables. To ensure correctness, deliveries are assumed to
be made on the first of the aggregated periods, e.g. if the aggregated delivery
variable for the periods 4-6 is set to 2, then suppliers must ensure that 2
batches can be delivered in period 4 while the manufacturer assumes that 2
batches will be delivered in period 4. The remainder of the agents’ models
still function considering all 12 periods.

Component aggregation: There is also scope for aggregating components.
Two components from the same supplier for the same product could be
treated as one, since the manufacturer will always need these components in
equal amounts. In our example in Fig 6 (c), C3 and Cy can be aggregated.

Batch aggregation: To aggregate batches, two or more can be combined to
reduce the number of batches that have to be considered. In Fig 6 (d), we
group batches into pairs, thus doubling the batch size.

In our example, we reduce the number of public assignments down to 7.2e+11
through aggregation of the planning horizon, down to 7.8e+8 when the com-
ponent aggregation is included, and down to 592,704 when we aggregate the

batches. However, it is important to note that the resulting solutions will only
be optimal for the aggregated problem rather than the original (aggregated so-
lutions provide an upper bound on the optimal solution cost for the original
problem), and so aggregation should be used sparingly.

4.3 Pre-propagation

We can further reduce the number of delivery schedules to be considered, through
introduction of a propagation phase prior to search. For the suppliers several
schedules may be infeasible. E.g. unless it has a large opening inventory it may
not be able to deliver all batches in the first period. The supplier can calculate
an upper bound (based on the opening inventory level, daily factory capacity
and component manufacturing time) for the number of batches it can deliver for
each period ¢ of the planning horizon (Eqn. 20). The upper bound on batches
for each period can then be propagated up the supply chain network to the
manufacturer, who can add an additional constraint to its model (Eqn. 21).

wie= (It 3 G205, (20)

t'el..t J

> O < rj Vt,Vj (21)
tel. .t

We can also propagate information down the supply chain, taking into con-
sideration what batches are required by the manufacturer. The supply chain will
never benefit from the manufacturer receiving more batches for a component
than it needs to produce its expected demand. If we consider each period of the
horizon in turn and then just look at future demand from that period on, we can
determine the maximum number of batches that the manufacturer will want to
receive in that horizon. (Eqn. 22). The manufacturer can add a constraint to its
model (Eqn. 23), thus pruning public assignments that are dominated and can
never be part of an optimal solution. The upper bounds can also be propagated

to the suppliers, who can add a similar constraint to their model.

)\jt:(> Dit'Bij)/Sj (22)

Vit et H

SO <A LY (23)
t'et..H

In our example, let us assume that each supplier has no opening inven-
tory and can manufacture half of a batch size (%) in each period. The max-
imum number of batches that the supplier can deliver in each period is then
{0,1,1,2,2,3,3,4,4,5,5,6}. If the product demand is such that the manufac-
turer also requires half of a batch size in each period to meet its demand, then
the maximum number of batches that the manufacturer requires over the plan-
ning horizon is {6,6,5,5,4,4,3,3,2,2,1,1}. Taking these two constraints into
account, the domain of public assignments for the manufacturer is now 46,656.

Finally, any agent that is building a product containing more than one com-
ponent can further prune its search space. E.g. the manufacturer has two com-
ponents being used in each product. No solution should be considered that will
leave the inventories imbalanced by greater than a batch size. This is because if
there is greater than a single batch left over at the end of the horizon, there is
guaranteed to be a better solution with one less batch (this is assuming a linear
cost model, i.e. no economies of scale). In this case, the constraint is specific to
the agent concerned and related to the BOM for a product. For our example, we
can use Eqn. 24, which when implemented leaves the manufacturer with 11,406
public assignments to consider.

(Zw Ogl,t501) —sc1 + (Ew 023'3,:5303) - 503) < (Zw OgQ,tSCQ) <
(2w Ol psc1) + (v Olis 15c3) + 502)

Note that all public assignments (and their corresponding local solutions)
that we have pruned are dominated, i.e. they could never be part of an op-
timal solution. This pre-propagation phase could be seen as a special form of
i-consistency. Consistency mechanisms for use during search in distributed con-
straint satisfaction have previously been proposed to consider pairs of variables
(arc-/local-consistency) [13,14]. Our mechanism is a stronger consistency that
considers sets of variables of size < i, where i = planning horizon. We add sum
constraints (21,23) over these sets, and propagate between agents the bounds
to be used in the constraints. In this particular case, the propagation follows
the supply chain topology, with the bounds calculated in Eqn. 20, propagated
up the supply chain from leaf suppliers to the manufacturer, with each agent
waiting for all propagation messages from agents below it in the supply chain,
before calculating its own bounds and propagating them further up. The bounds
calculated in 22 are propagated in a similar manner in the opposite direction. A
general consistency mechanism for DPOP [15] could also be adapted for ADOPT.
However, we achieve greater pruning than this by removing dominated as well as
infeasible assignments. Also, by propagating information on pruned assignments
to neighbouring agents prior to search we further reduce the search space.

(24)

4.4 Dynamic Value Ordering

At this stage, the domain of public assignments has been significantly reduced.
However, it is still quite large, and how we process it can have significant perfor-
mance impacts. The root agent, M, will always make proposals suggesting the
assignment that gives it the best lower bound. In the basic algorithm, there is
no specific order placed over public assignments, and each assignment will need
to be examined in turn to find the assignment that currently has the best lower
bound. We can improve on this by keeping track of the currently known lower
bound for each public assignment, and maintaining a sorted list of assignments
that is updated everytime new cost information becomes available. The agent
can then always just choose the assignment at the top of the list, eliminating
the need to evaluate all the public assignments.

7200 + + + 3600 T T T
; Propagation + dynamic value ordering —— Propagation + dynamic value ordering —+—
Propagation, No dynamic value ordering ---x--- Propagation, No dynamic value ordering -----

No propagation, No dynamic value ordering -
6000 - ! 3000 - !

4800 | B 2400 - B
3600 A

1800 - T

2400 +

total execution time (seconds)

1200 1

distributed execution time (seconds)

1200 [

, I
° 4 ° 4 6 8 10 12
planning horizon planning horizon
(a) Total execution time (b) Distributed execution time

Fig. 7. (a) Pre-propagation reduces the number of public assignments that have to
be considered by each agent, thus reducing execution time. Dynamic value ordering
improves the results further. (b) The benefit of dynamic value ordering can be seen
clearer if we just compare the distributed search time, i.e. exclude compilation time.

7200 3600
! Propagation + dynamic value ordering —— Propagation + dynamic value ordering ——
Propagation, No dynamic value ordering -—-x--- Propagation, No dynamic value ordering -—-x---
6000 b 3000 i
> g e
§ 4800 - 4 g 2400 - 4
. e — e 2 g
o £
g I A
S 3600 4 ! £ 1800 1
s
§ g
2 §
g 8
¢ =
2 2400 | N £ 1200 | N
3
s £
= kil
3
1200 [— 600 —
|
o . . o n !
4 6 8 10 4 6 8 10
number of agents number of agents
(a) Total execution time (b) Distributed execution time

Fig. 8. Dynamic value ordering allows our approach to scale well as additional agents
are added into the supply chain by reducing the required distributed search time.

5 Experimental analysis

To demonstrate that DisCOP can be used to solve the SCC problem, we per-
form a case-study considering a ‘W’ supply chain topology. In this scenario the
manufacturer produces 2 products. Each product is made from 2 components,
one of which is common to both products. Thus, there are 3 components, each
produced by a different supplier. We consider planning horizons of 4,6, 8,10 and
12 periods, but aggregate to 6 periods for the latter 3. The remaining parameters
are generated randomly from within the ranges specified in Table 1, and each of
our results is averaged over 10 problem instances. The test cases are executed in
a properly distributed environment, with each agent on its own machine. This
environment allows time to be used as a accurate metric for evaluation.

In Fig. 7 we can see that the basic algorithm performs poorly, reaching an
imposed cut-off of two hours when more than 4 periods are considered. As the
planning horizon increases the pruning of the search space in our pre-propagation

Batch size: 100 ——) Capacity: 50 ——
L Baich size: 75 —x—— , L Capacity: 75 —x— 1
6600 Batch size: 50 6600 Capacity: 100 -

total execution time (seconds)
@
8
8
8
total execution time (seconds)
@
8
8
8

<<<<<<<<

planning horizon planning horizon

(a) Batch size (b) Capacity

Fig. 9. Parameters that affect the number of possible delivery schedules that have to
be considered by the agents affect the runtime. E.g. Batch size and factory capacity.

phase proves essential. Even when pre-propagation is applied, the number of pub-
lic assignments in the compilation increases as the planning horizon is extended,
but we can see that dynamic value ordering allows the distributed search phase
of the algorithm to scale gracefully. In Fig. 8, we extend our experiements to
consider 7 agents (a single sub-supplier for each supplier) and 10 agents (two
sub-suppliers for each supplier). Again, dynamic value ordering is shown to be
important to allow the distributed search scale. It should also be noted that for
10 agents and 12 periods, the average time to find the (aggregated) optimal so-
lution using our best method is 1884 seconds. If this system was to be deployed
we would envisage it being run overnight, which would allow us to deal with
much larger problems (or the existing problem with fewer aggregations).

While for most problem instances an optimal (aggregated) solution could be
found, some proved too difficult to solve within the time limit. In particular,
the search space is increased by parameter settings that increase the number of
batches that the agents have to consider scheduling. E.g. the smaller the batch
size, the greater the number of batches and public assignments that have to be
considered (Fig. 9 (a)) — although in this case batch aggregation could be used to
reduce the problem. Other parameters that effect the number of public assign-
ments to be considered are lead time, raw material availability, ratio of capacity
to processing cycles (Fig. 9 (b)) and customer demand. Each of these param-
eters affects the level of pre-propagation that can be done. Suppliers that are
under-constrained (e.g. high capacity) will have more feasible schedules to con-
sider. Manufacturers that have high customer demand will require more batches,
which also leads to more schedules that have to be considered. Future work will
investigate incomplete search methods for these harder problem instances.

6 Conclusion

We have presented the Supply Chain Coordination (SCC) problem as a bench-
mark for distributed constraint optimisation. We plan to make this benchmark

available in CSPLib, including a formal specification, agent models and prob-
lem instances. Unlike many other DisCOP benchmarks, this problem deals with
agents that have large local problems. Each agent also has several variables con-
strained with other agents, which poses complexity difficulties that have not
previously been examined in DisCOP. To reduce the complexity we have pro-
posed an aggregation method that can be applied when modelling the problem.
To further prune the search space we also advocate a propagation phase prior to
search that eliminates infeasible and dominated solutions in each agent. Finally,
we introduce a dynamic value ordering mechanism that allows the agents to
efficiently search through a compiled cache of their many possible public assign-
ments. In our initial case-study we have demonstrated that we can solve problem
instances of varying size and complexity. We have also identified problem set-
tings that our approach can not find an optimal solution for in a reasonable time.
Future work will consider incomplete search mechanisms that are more suited
to solving these problem instances and we will also extend our experiments to
consider a wider range of supply chain network topologies.

References

1. Béjar, R., Domshlak, C., Fernandez, C., Gomes, C., Krishnamachari, B., Selman,
B., Valls, M.: Sensor networks and distributed CSP: communication, computation
and complexity. Artificial Intelligence 161(1-2) (2005) 117-147

2. Wallace, R., Freuder, E.: Constraint-based reasoning and privacy/efficiency trade-
offs in multi-agent problem solving. Artificial Intelligence. 161(1-2) (2005) 209227

3. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3(2) (2000) 185207

4. Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking with-
out adding links: a new member in the ABT family. A. I. 161 (2005) 7-24

5. Petcu, A., Faltings, B.: MB-DPOP: A new memory-bounded algorithm for dis-
tributed optimization. In: Proc. IJCAIL (2007) 1452-1457

6. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward-bounding for dis-
tributed constraints optimization. In: Proc. ECAIL (2006) 103107

7. Modi, P., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed
constraint optimization with quality guarantees. A. I. 161(1-2) (2005) 149-180

8. Xu, L., , Beamon, B.M.: Supply chain coordination and cooperation mechanisms:
An attribute-based approach. Journal of Supply Chain Mgmt. 42(1) (2006) 4-12

9. 9. Selguk Erengiig, Simpson, N., Vakharia, A.J.: Integrated produc-
tion/distribution planning in supply chains: An invited review. European Journal
of Operational Research 115(2) (1999) 219-236

10. Gent, I.P., Walsh, T.: CSPLib (2007) http://www.csplib.org.

11. Burke, D., Brown, K.: Efficient handling of complex local problems in distributed
constraint optimization. In: Proc. ECAIL (2006) 701-702

12. Petcu, A., Faltings, B.: O-DPOP: An algorithm for open/distributed constraint
optimization. In: Proc. AAAIL (2006) 703-708

13. Hamadi, Y.: Optimal distributed arc-consistency. In: Proc. CP. (1999) 219-233

14. Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Consistency maintenance for ABT.
In: Proc. CP. (2001) 271-285

15. Kumar, A., Petcu, A., Faltings, B.: H-DPOP: Using hard constraints to prune the
search space. In: Proc. Distributed Constraint Reasoning, IJCAI (2007) 40-55

