Avoiding Slow Linksin Distributed Constraint
Satisfaction

Muhammed Bashatt, Kenneth N. Browh, and Youssef Hamatli

1 Cork Constraint Computation Centre,
Dept. of Computer Science, University College Cork, Ireland.
2 Microsoft Research, 7 J J Thomson Avenue, Cambridge, United iiingd
mb@4c.ucc.ie, k.brown@cs.ucc.ie, youssefh@microsoft.com

Abstract. Distributed Constraint Satisfaction (DisCSP) algorithms assume an
underlying communication network. We show that the presence of slow iimk
that network can have an adverse effect on algorithm performavegropose

two delegationmethods for bypassing slow links, which (i) respect and (ii) ig-
nore the existing priority orderings. We demonstrate in empirical tests thaty w
added to the IDIBT/CBJ algorithm, both methods reduce elapsed time while si-
multaneously reducing the number of messages, and that the methddigtic
nores the priority ordering can achieve up to a 75% reduction in elapsed time

1 Introduction

Distributed Constraint Satisfaction Problems (DisCSPiddmalise naturally distributed
decision problems, where autonomous agents make localidiesj but must collabo-
rate with each other to ensure that their decisions are ctinigaExamples include
scheduling joint oil pipeline usage [2] and target trackimigh sensor networks [3].
DisCSPs are typically solved with distributed tree-baseateh, where a partial order
of agents is used to record the progress of exploration.dselalgorithms, agents send
local solutions to their children (the set of neighboursobethem in the ordering).
Children in turn solve their local problems to be consistgith incoming partial so-
lutions. When an agent cannot find a local solution, a disteithloacktracking step is
started and addressed to a subset of the agent’s parenisn s broad framework,
many different approaches are possible, balancing thesssiutotal run-time, network
transmission costs, fair use of resources, and mainteredrageent privacy.

Distributed tree-based search can either be synchronpos §&ynchronous [1,5].
Synchronised search closely resembles standard noibdiett search processes. Us-
ing a tree ordering, agents pass control up and down the drekgach agent only
becomes active when it has control. In asynchronous seai@gents may operate si-
multaneously, computing their own local solutions basetheir current knowledge of
their parents’ decisions. Each agent is activated to peritercomputations whenever it
receives messages from its neighbours. Asynchronoushsteards to have shorter run-
times, since much of the computation is done in parallel aztleends can be identified

* This work is supported by grants from Microsoft Research, Sciepcadration Ireland, and
the Embark Initiative of the Irish Research Council of Science Engingand Technology.

early, but at the expense of some redundant chains of cotiggutand higher network
load.

Agents are assumed to be autonomous processes residinffeserdiprocessors
connected by some communication network. Message passimgén these proces-
sors plays a critical role in the performance of the solufioycess. Delays in receiving
messages not only prolong overall runtime but, in the cassyrfichronous algorithms,
can increase the amount of redundant search. Previougstoithe impact of random
delays for individual messages have shown that performeogsistently degrades as
the length of delays increase (these are discussed furti8adtion 3).

In this paper, we consider the presence of persistent defaysdividual links be-
tween agents in a DisCSP. These delays appear in the physivebrk layers either
in the form of long term congestion on an Internet path betwe® agents or line-of-
sight interference in radio sensor networks. We show thdibpaance of asynchronous
search algorithms can be adversely affected even when amhal percentage of links
have such persistent delays. To overcome these effects;opese two methods to al-
low agents to build faster logical networks around slowditly delegating agents with
faster links to act as intermediaries for relaying messafjes intermediary agents will
also asynchronously collate decisions they receive sdatger and more coherent par-
tial solutions are transmitted on the faster links - thusititeition is that fewer chains
of redundant search are invoked. We will show that the methadhich can be im-
plemented in existing DisCSP algorithms, preserve privaggls. We also show the
implementation of delegation in existing asynchronousitigms can result in up to
75% savings in runtime in adverse network conditions.

The rest of this paper is structured as follows. We start sitine preliminaries in
Section 2 followed with an overview of related work on theseffof message delays in
distributed search (Section 3). In Sections 4 and 5, the ppocaches to delegation for
by-passing slow links in DisCSP networks are presentedr@$dts from experimental
evaluations of both approaches are presented in Section 7.

2 Preliminaries

A DisCSP is a4-tuple (X,D,C,A) where X is a setoflecision variablesX, X5, ..., X,,)
and D is a set of domaindX, Ds, ..., D,,) of possible values for the variables in X
respectively. C is the set of constraint on the values of #réables. The constraint
Cr(Xk1, ..., Xg;) is a predicate defined on the Cartesian prodigt x ... x Dy,.
ConstraintC, is satisfied if the values assigned to the variables invobagisfy the
predicate. The set A £4;, A,, ..., A, } is the partition of X among autonomous pro-
cesses or Agents where each agéptowns a subset of the variables in X with respect
to some mapping functiofi : X — A, s.t.f(X;) = A;.

A solution to a DisCSP is, as for standard CSPs, an assigntoezsch variable
of value from its domain, such that all constraints are Batlslt is assumed that each
agent controls its own variables, and, as a default, knowstbhe domains of its vari-
ables and the constraints defined on them. The agents catelio find a global so-
lution through message passing. A basic method for findinlplaad) solution uses the
distributed backtracking paradigm [1,5]. The agents ai@ritized into a partial order

<, such that any two agents are connected if there is at leastarsraint between
them. The ordering is determined by user-defined heuriafidsclassical CSP heuris-
tics can be used. Solution synthesis uses the partial aglasiperform an exhaustive
search with backtracking. An agent instantiates its locablem w.r.t. higher prior-

ity agents and sends its local solution to lower prioritygmdiours, while backtracking
messages are passed back up the ordering. This processtesrapgliobal solution by
distributed aggregation of local solutions.

3 Message Delaysin DisCSP Tree Search

There is some consensus from previous investigationsheteffects of delays in mes-
sage passing on distributed tree search performance.tRespbrted in [6,7] show
considerable performance degradation of tree searchithigsr as the delay on inter-
agent links increase. The results reported by Bejar et db[8}d the same degradation
in performance for uniform increases in delays on all linkthieir study with the Asyn-
chronous Backtracking (ABT) [1] and Asynchronous Weak Cammant (AWC) [1]
search algorithms. The study into the effect of non-unifafays on links showed a
performance degradation in ABT, however, the non-unifoatags appeared to benefit
AWC. This prompted the authors to propose artificial delaya ssurce of randomisa-
tion to improve AWC's performance when link delays are unifor

The study by Zivan and Meisels [7] also looked at the effetfixed uniform mes-
sage delays and random delays for individual messagestoibdisd tree search perfor-
mance. The work investigated the the impact of the diffedetdys in ABT, single and
concurrent multi-context synchronous search algorithithe. results on the impact of
fixed uniform delays agree with the findings from [3], showihg considerable degra-
dation in performance as the size of delays increases ahthéhaynchronous single
context search was the worst affected. For ABT, messag@passubled and runtime
increased almost three-fold when the range of delays wasaeed to the equivalent of
50-100 computation steps. They also found that the mutitecxd synchronous search
algorithm was the most robust to the effects of the increpdedays, its message pass-
ing was unchanged and runtime increased by just 40%.

The effect of slow links on performance of distributed apations have also been
studied in the distributed and grid computing communiti&milar findings of the sen-
sitivity to the presence of slow links have been observed.example, Plaat et al [8]
found that applications requiring frequent synchrontsatire particularly sensitive to
slow links in networks. They considered application specifethods for dealing with
slow links like combining messages to reduce the traffic owdinks or reducing the
number of synchronisation points. In related work, Koenidg &ale [9] use dynamic
load balancing to overcome the effects of slow links i.e. astifoning load for proces-
sors by exploiting the knowledge of link delays so that comimations on slow links
are minimised. The idea of routing messages to avoid slde li;ithe obvious method
for dealing which such links. Routing algorithms, appliato networking in general,
are used to find the shortest (or fastest) paths between anyddes in a network (e.g.
[10]). However, privacy (in DisCSP terms) is not a major &s$u network routing as
such there are fewer restrictions on the paths which messagesent between nodes.

In a preliminary step for our study, we investigated theaffef persistent delays on
a random subset of the links in the network. We used the gdeed Distributed Intel-
ligent Backtracking Algorithm (IDIBT/CBJ)[5] to solve rdiom DisCSPs, first without
delays, and then on the same problems with delays equivaéitt constraint checks
on 5% of the links. The results, displayed in Table 1, showaeadese in performance
for all metrics measured. However, what stands out fromekelts is the fact that the
number of backtracks and obsolete backtrack messagessecr&his indicates that
slow links do not just lengthen the time between decisiondenty agents but they also
cause agents to make more decisions with out-dated infamaince we are seeing
such a degradation for just a few slow links, and that slokslimay be a feature of
whatever communication network the DisCSP algorithms aneg,) we now turn our
attention to methods for avoiding the use of such links.

metric without delays with delays change
Runtime 18,223 20,849 +14%
Message count 181,207 195,183 +7%
Backtracks 32,521 37,572 +15%
Obsolete Backtracks 26,528 31,261 +17%

Table 1. Effect of delays on 5% of the links on performance of IDIBT/CBJ (aditrics averaged
over 20 problemgn = 20,d = 10, p; = 0.5, p2 = 0.4)).

4 Selective Directed Delegation

The idea ofdelegation presented in [11], describes a process in which a paredssen
its messages to only one of a pair of children, and delegh&t<hild to forward those
messages to the other when itis ready. If the third agens@sathild of the parent, asin
[11], then this process does not introduce any new links entgginto the DisCSP, and
should not involve a violation of privacy. Delegation in [Mas implemented by local
algorithms which chained together overlapping 3-cliguesgents, producing maximal
delegation paths while maintaining privacy. The algorishwere applied to networks
with no delays, and it was demonstrated that delegation wadad of synchronous
and asynchronous search - some partial local synchromisigtintroduced, but agents
are still free to act autonomously - and was midway betweertlo in performance:
it reduced the message count of asynchronous search atgbrsexof non-concurrent
constraint checks (NCCCs) [12], while reducing the NCCCsyofchronous search at
the expense of messages.

We now show how to apply the idea of delegation for bypassiog $inks in a
network. Children will select intermediaries to relay rmaagss to them, but only if the
paths via the intermediaries are faster then the directftiok the parent. Intermedi-
aries have the advantage of not only providing faster rofsiemessages, but also of
sending larger coherent solutions to the children, sineg tan asynchronously collate
decisions they are meant to relay. More coherent solutioosld reduce the amount of
redundant search.

We introduce a new algorithm for performing delegation agstragents in DisC-
SPs - Selective Directed Delegation (SDD). Unlike the lacaicurrent algorithm from
[11], in SDD agents select intermediaries to relay parenisitens to them rather than
selecting children to relay decisions to lower children.with delegation, SDD is in-
tended to be implemented in distributed tree search algostafter an ordering of
agents has been established (for example, by DisAO [5])lendridering remains static
during search. We also assume that during the ordering phgseats use the opportu-
nity to get estimates of delays on links with their neighlsour

Algorithm 1: SDD: Main loop for each agem

[* n parentspy, ..., p», m childrency, ..., ¢y, */
Data: d: array of n ints, d[i] set to delay on link te
Data: pl: array of n booleans, initially true
Data: cl: array of m booleans, initially true
Data: a: array ofn x n booleans, initially false
Data: Id: array ofn x n ints
Data: r: array of nxn booleans, initially false
Data: f: array of nxm booleans, initially false
1 foreach child ¢; do
2 L send message tq containing{ (p1, d[1]), ..., (pn,d[n]) }

3 whiletruedo
4 message— getMsg()
5 if message sender is a parehen
6 update a
7 update Id
8 findIntermediaries()
9 if message isutLink(A, c;) then
10 | clfi] = false
1 if message iselayDecision(p;, ¢;) then
12 | fli]] = true
13 if message isancel RelayDecision(p;, c;) then

14 | flilli] = false

Algorithms 1 and 2 outline the processes each agent unésrtakperform delega-
tion with SDD. The local data structures can be interpretefbibows: d[i] is the delay
on the link between an agert and a parenp;; pl[i] indicates that the link between
A andp; is active;cl[i] indicates that the link betweed and the child; is active;a
is the adjacency matrix of connectivity between parenté satali][j] is true if there
is a link betweerp; andp;; Id[i][j] is the delay on the link betweep; andp;; rli][j]
indicates thap; relaysp;’s decisions ta4; andf[i][j] states thatA relays decisions from
p; 1O Cj.

The algorithms describe the process where after estafjsin ordering each agent
sends information on link delays with its parents to all itddren (Alg. 1, lines 1-2).

Algorithm 2: SDD: Selecting intermediaries to relay decisions fronepts.

Data: data structures frorAlgorithm 1
1 foreach parentp; in order andp; is not relaying any decisions to @o

2 choosep; s.t.p; <, pj;, pl[j] == true, ali][j] == true, and Id[i][j] is fastest link
3 if 1d[il] <d[i] then

4 newDelay« Id[i][j] + d[j]

5 if pl[i] ==true then

6 sendcut Link(p;, A) to p;

7 ‘ pl[i] « false

8 else

9 sendcancel RelayDecision(p;, A) to p,, (where r[i][k] == true)
10 L rli][k] < false;

11 sendrelayDecision(p;, A) t0 p;

12 d[i] < newDelay

13 rli][i] « true

14 if new intermediary found for any; then

15 foreach child ¢; do

16 L send message g containing{ (p1,d[1]), ..., (pn,d[n]) }

Each agent receives the link delay information from its pterand uses it to update the
adjacency matrices to establish connectivity (and delayg)ngst parents, as well as to
detect all 3-cliques including 2 parents (6-8). For eaclepiar; involved in at least one
3-clique (that has not already been itself chosen as amietdiary), the agent selects
the intermediate parept, with whom it has an active link, to relay decisions fram

if the cummulative delay via; is faster than its direct link withy;® (Alg. 2). After
selectingp; as an intermediary, a message is seng;tto stopp; sending decisions
to A (7) and another message is senpjaequesting it to relay all decisions received
from p; (11). The new delay for receiving messages fronvia p; is saved and then
sent to allA’s children. As information on link delays are updated, agearan find
new (and faster) intermediaries for receiving decisiomsnfrsome parents. As such,
previous relay requests to intermediate parents can b&edy®-10). Agents continue
making changes to the network until no further improvemeatsbe found. The process
terminates when no delegation related messages are exahamy a search for a
solution can proceed.

During a search, agents implement delegation using Algori8. When an agent
receives the decision of a paremt it updates itsAgentViewand finds a compatible
value (Alg. 3, lines 1-2). The agent then initiates a mesdageach of its children
with active links and places its value in the message if it tvas (5-6). And it also
placesp;'s value in the message ¢ uses it as an intermediary for relaying decisions
from p; (7-8). Agents also use intermediaries for sending backtdacisions to their
parents. Therefore, when an agent receivBa.ék message meant for a parent it relays

% Ties are broken in favour of the nearest parent.
4 We assume that there a separate process to detect this.

Algorithm 3: SDD: Responding to a decision from Paréht= x,, by A during
search.
Data: data structures frorAlgorithm 1
1 updateAgentViewP, z p)
2 chooseA’s decisionA = z,
3 foreach child ¢; s.t. cl[i] == true do

4 message = new InfoVal(from! to ¢;)
5 if z, # null then

6 | message.contents(A = x,)

7 if flindexO f(P)][c;] == true then
8 | message.contents(P = zp)

9 | sendmessage

the message to parent if there is an active link between theim the intermediary it
receives the parent’s decisions from.

(i) (i) (iii)

Fig. 1. Establishing directed delegation paths.

The example in Figure 1 is used to illustrate the process tabéshing directed
delegation paths in an ordered DisCSP. Figure 1(i) is a Dis@&h delays on the
individual links between agents shown. To initiate the ps®; each agent sends details
of its connectivity with its parents to each of its childreg,ed, sends out the message
{4, — (Aq,5)}. A, and A, use this message to detect the cliques with A, selects
Ay to relay messages from, and deactivates the affected link, also selectsi, as
an intermediary and as a resuly; has to keep the link witt4, active ignoring the
faster path viad,. (ii). After choosing its intermediaryd. sends an update té,; with
its new delay to4,,. With this updateA, revises its decision to usé, as a relay ford,,
selectingA, instead. Becausé, no longer serves as a relay, then selectsl,. to also
relay decisions from4,. The process then terminates with the network configuration
shown in (iii).

As aresult of the delegations created, during a search wberg receives a deci-
sion from A, it evaluates the decision and relayg’s value along with its own value

to A, and so on. The same delegations are also used during baghtraBo aBack
message froml, to A, will be sent on multiple hops passing through and A;.

5 Selective Undirected Delegation

Restricting the set of possible intermediaries to pareray be a limitation. The im-
plication is that, without re-ordering agents, some sigaiitly slow links can be left
active in a network with adverse effects on search perfoomaRor example, in the
DisCSP shown in Figure 2(i), SDD is forced to retain the skiak in the network.
This is the motivation for our second extension to delegetidhe Selective Undirected
Delegation (SUD) method, which allows agents choose sharidien as relay nodes
for receiving values from parents (Fig. 2(ii)). The key dian in delegation is that the
agent chosen to relay messages from a parent must normedliyeghe parent’s deci-
sions during a search. This rules out the possibility ofc@lg a parent of a parent as a
relay node in undirected delegation as it results in sonmgedbgrivacy.

(i) (i) (iii)

Fig. 2. Limitations of Selective Directed Delegation.

In SUD, agents run similar processes to SDD with the excepgtiat agents can
choose shared children as relays for receiving parentsegalHowever, since agents
only make decisions about receiving decisions from parelgiegation with SUD al-
lows agents to keep some links with children partially axtiVhe example in Figure
2(iii) is one such case, wherg, choosesi to relay decisions froml, and A, chooses
A, to relay decisions from;. Note that we assumé; cannot request,’s messages
to be routed throughl,; then A., sinceA, would then receive message it would not be
entitled to see.

Like SDD, agents make local decisions process to reduce @Ipisnetwork. The
steps are outlined in Algorithms 4 and 5, which differ frongétithms 1 and 2 with
the inclusion of children as possible intermediaries. Thee@ss initiates with agents
informing all their neighbours about connectivity with alther neighbours, as well
as providing information about delays on links to the nemls. As usual 3-cliques
are detected (but this time including children) and intetiages for relaying parent
decisions are selected. Agents may also revise chosemigdiéaries as they receive

updates from their neighbours. Again the process termsnaten no further changes
to the network can be made.

Algorithm 4: SUD: Main loop for each agemt

[* g neighboursn, ..., ng, g parentsps, ..., pg, M childrenci, ..., ¢y */
Data: d: array of g ints, d[i] is delay on link with;
Data: nl: array of g booleans, initially trué& nl[i]==true if link with n; is active*/
Data: a: array ofg x ¢ booleans, initially false
Data: Id: array ofg x ¢ ints
Data: r: array of gxq booleans, initially false
Data: f: array of gxq booleans, initially false
1 foreach neighbourn; do
L send linkinfo message to; containing{ (n1, d[1]), ..., (nq,d[q]) }

N

3 whiletruedo

4 message— getMsg()

5 if message is linkinfthen

6 update a

7 update Id

8 findIntermediaries()

9 if message isutLink(A, c;) then

10 | ni[i] = false

1 if message iselay Decision(pi, c;) then
12 | fli]] = true

13 if message isancel RelayDecision(p;, c;) then

14 | flil[] = false

We use the example in Figure 3 to illustrate the process abéshing undirected
delegation paths with SUD. The figure shows an ordered Dis@&BRork with delays
on individual links between agents. At the start, each agdatms its neighbours of
the delays between itself and other neighbours. For examMplwill send the message
{44 — ((Aq,100), (A4p,5), (A¢, 10))} to all its neighbours. Agents receive these mes-
sages and use them to build a profile of connectivity and ddtathe network. In the
next step, bott; and A. will detect the opportunity to usé, as the relay for receiving
messages from, and take action accordingly (Fig. 3(ii)).

Once A, is selected as an intermediary, has to maintain its direct link with it
thereforeA. will not evaluate the pati, — Ay — A.. After updating the link delays,
both A. and A; send updates to all their neighbours. In this case, the agdan A,
to A, will indicate that the cummulative delay té, is now 7 time units. Using this
update,A. cancels the relay request with,, cuts the direct link with4,, and then
requests thatl; relay the decisions fad,, and 4, to it (Fig. 3(iii)). After A. sends the
updates of its delays, the agents can no longer find any ireprents to the message
passing delay and the process terminates. As with SDD, glarsearch4,, will only

Algorithm 5: SUD: Selecting intermediaries to relay decisions fronepts.

Data: data structures frorAlgorithm 4
1 foreach parentp; in order andp; is not relaying any decisions to @o

2 choosen; s.t.p; <, nj, nlfj] == true, a[iJ[j] == true, and Id[i][j] is fastest link
3 if 1d[ilj] <d[i] then

4 newDelay« Id[i][j] + d[j]

5 if nl[i] ==true then

6 sendcut Link(p;, A) to p;

7 ‘ nlfi] « false

8 else

9 sendcancel RelayDecision(p;, A) to p,, (where r[i][k] == true)
10 L rli][k] < false;

11 sendrelayDecision(p;, A) t0 p;

12 d[i] < newDelay

13 rill] « true;

14 if new intermediary found for any; then

15 foreach neighbourn,; do

16 L send message to; containing{ (n1,d[1]), ..., (nq,d[q]) }

a
d % d % ===
(i) (ii) (iii)

Fig. 3. Establishing undirected delegation paths with SUD.

send its decisions td;, and A, relays all decisions froml, and A, to A.. All Back
messages from. will be relayed throughi,; to the target culprits.

6 Analysis

Termination The SDD and SUD processes are guaranteed to terminate ditétiea
number of delegation decisions have been made. First adelltgations are acyclic -
agents do not choose intermediaries for communicatingtivéh children. So a pair of
connected agents can not simultaneously make decisionsthleaconnections between
them. Secondly, there are a finite number of possible impneves that can be made
by agents. Therefore at some point agents will stop sendimginformation to their
neighbours and the processes will settle on current cofiigums. And finally, agents

Algorithm 6: SUD: Responding to a parent'® (= xp) decision byA during
search.
Data: data structures frorAlgorithm 4
updateAgentView P, z p)
foreach p; s.t. P <, p; and r[i][j] == true do
L send InfoVal@P, x p) to p; /* relay decision immediately */

choose As decision
foreach child ¢, s.t. cl[k] == true do
message = new InfoVal(from to ¢;)
if x, # null then

| message.contents(A = x,)

9 if flindezOf(P)][c;] ==true then
10 | message.contents(P = zp)

0 N o g WN B

1 send message

only revise decisions in favour of faster paths i.e. an agéhhot restore a link after it
has been cut, therefore agents can not oscillate betweenedif network states.

Correctness In order to prove the correctness of both delegation algmst we will
show that: (1) any chain of delegations between any two agénand A; is faster if
the direct link between them is cut, (2) undirected delegatiaths are acyclic, (3) no
agentA; receives the same decisioh) « v from more than one source, (4) privacy
is preserved in the delegation paths created. For thesdsprwe assume that agents
implement the DisAQ algorithm to establish an ordering iprioa search and that tau-
tological links between unconnected parents are creattéeiprocess as well.

Theorem 1 If the direct link fromA; to A; is cut, the cummulative delay on the chain
of intermediate relays,, Rs, ... R,, is lower than the delay on the link; — A;.

Proof. From the algorithms, an agenAt; selects the intermediary;, to relay messages
from A; when the cummulative delayX) via the relay is faster than the direct link with
A;jie.(Dir + Djr) < D; ;. Ag, inturn, will only select4,, to relay messages from
A; if the condition(Dy , + D;) < D; 1 holds. And as a resul{.D; ,,, + Dy m +
D; i) < D; ; which by extension holds true for any number of intermediatays on
the delegation path betweeh) and A;.

Theorem 2 Delegation paths including partially active links in SUDeaaicyclic.

Proof. For SUD, a link is kept partially active if the lower agent dretlink A, relays
messages to its paredt; from a higher parentl; and Ay in turn selectsA,, to relay
messages froml; to it. Thus creating two bidirectional pathd; — A, — A; and
Aj — Ay — Ag. Aj will only use Ay, to communicate withd;, therefore no messages
meant forA; will pass through4,,,. From Theorem 14, can not in turn use the path
A, — A; to send messages b, since its direct link with4; is the fastest available
link. Therefore, there can be no cycles in message passinggstithe agents.

Theorem 3 No agent4; receives the same decisidip < v from two separate agents.
Proof. (Omitted) by inspection of the algorithms.

Theorem 4 An agent4; can receive a decisiod; by delegation if and only if it can
receive it without delegation, given the ordering inducgdisAO (and so privacy of
messages are not violated).

Proof. (Omitted) by inspection of the algorithms.

7 Evaluations

We carried out evaluations of SDD and SUD by implementingtipeimarily in IDIBT

/ CBJ and with additional tests in ABT-Hyb [13]. We studiedfpemance of the algo-
rithms as the quality of network links degraded and theifgrarance with different
distributions of link delays. In the experiments, we vartd number of slow links

in the DisCSP networks; the delays on these links were ndyrdatributed over the
equivalent of 10 to 100 constraint cheeksVe also tested the methods on DisCSPs
where the delays on links were exponentially distributed.

All algorithms were implemented in an environment simulgtasynchronous par-
allel activity by agents. A shared clock was used to meadamsed time where each
tick on the clock is equivalent to a constraint check. Eachnagn the simulator is
triggered into action when it receives messages. The agadsrall its messages and
performs the necessary computation. The number of consithiecks performed is
counted and used to simulate the time which the agent is lgsyrzable to process any
other messages (i.e. the agent is blocked). Messages frdmagant are time-stamped
for delivery at the end of its computation time plus any dslag links between it and
the recipients. The minimum message delay (for good link®)nie tick of the clock.
As in [7], a separate mailer agent is used to handle messagingabetween agents
- messages are sent when delivery time is reached or helduwditkhe recipient is
unblocked.

In IDIBT/CBJ and the extensions, a single search contexségli(i.e. NC=1) and
the algorithms were modified slightly to allow agents to gEgmessages in packets.
A max-degheuristic was used for ordering agents with DisAO prior toheeun. The
message count for the extended versions include the causstablishing the orderings
as well as the messages exchanged in performing delegafio@sesults reported here
are from three experiments on 20 random DisC$RS= 20,d = 10) with sparse,
medium, and dense graphs - at the complexity peak for eaehdéconnectivity. We
recorded the runtime (i.e. NCCCs plus NCCC-equivalentydg/anessage count, and
the number of obsolete backtracks for the evaluations.

Figures 4 and 5 plot the savings with delegation and the nuwfabsoleteBack
messages, respectively, from attempts to solve DisCSPsmeédium densityp; =
0.5,p2 = 0.4). Although it is not shown, performance of the basic IDIBTL&oes

5 The delays were sampled from a truncated normal distribution with 0,0 = 1 returning
values between [-3.6,+3.6], which were scaled to the range [1D,100

degrade as expected as the percentage of slow links in thwnkeincreases. Figure
4 shows that there are savings with both delegation stesegien when the majority
of the links are slow. First, we note that both delegationhods show a decrease in
the number of messages, even though each time we introduoécamediary we are

requiring extra messages - the savings in redundant selaafyaccompensates for this
overhead in most cases. Secondly, we note that the savilg&@C, which includes

the delay and so simulates total elapsed time, are mordisanti, and are greatest for
SUD. We gain close to an order of magnitude speed up for mgsssca

8000 T T
IDIBT/CB) -+

IDIBT/CBJ+SDD —%—

IDIBT/CB}+SUD =----+-

6000

4000

savings (%)
obsolete backtracks

2000

o ks 09 sowins 99
Fig. 4. Savings in runtime and messages wiffig. 5. Number of obsolete backtracks sent
delegation as the number of slow links irfrom runs plotted in Figure 4.
crease.

The same experiment was repeated for defpse= 0.8,p2 = 0.3) and sparse
(1 = 0.3,p2 = 0.5) DisCSPs. The savings on the recorded metrics are plotted in
Figures 6 and 7 respectively. These results show that thagsaen sparse graphs,
though considerable, were not as significant as the eaniginfys. This is expected as
there are fewer 3-cliques in the sparse networks and thiex fepportunities to bypass
the slow links.

SDD messages —+—

savings (%)
X

o 10 20 30 0 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
slow links (%) slow links (%)

Fig. 6. Savings in runtime and message pag3g. 7. Savings in runtime and message pass-
ing for SDD and SUD on dense DisCSPs. ing for SDD and SUD on sparse DisCSPs.

All the results presented so far show that there were lifteny, savings in runtime
when all the links in the network were slow. We attribute thithe fact the delays on the
slow links are distributed normally. Therefore majoritytbése delays were clustered
around the mean values, which meant that there were few Wiokseto avoid and
few faster links available to exploit. To confirm this, we raew experiments with
the same problems, but this time using an exponentiallyydegalistribution of link
delay$. Performance of the delegation methods against the ba#&TIBBJ for the
sparse problems are shown in Figure 8. Compared to Figuherg are consistent and
significant savings in runtime for almost all cases with slimks. Critically, when all
links have delays on them there are still savings of about BO&ntime.

We ran additional tests for both delegation methods with AB/bH and achieved
similar results - assuming that DisAO is used to order agprits to search and new
links are created in that process as well. Results from rargrablems withp; = 0.5
and link delays distributed normally are shown in Figure 9.

SUD méssages —--—--
SUD NCeC

9%)
&
savings (%)

o 10 20 30 20 50 60 70 80 % 100 0 10 20 30 40 50 60 70 80 % 100
slow links (%) slow links (%)

Fig.8. Savings for SUD on sparse DisCSH=@.9. Savings for SDD and SUD imple-
with exponential distribution of link delays. mented in ABT-Hyb.

8 Summary

Asynchronous distributed tree search algorithms are theatd delay on links between
agents. Performance of these algorithms, in terms of rentimd message passing,
can degrade considerably even when only a small percenfaljgke in a network
have persistent delays on them. The presence of such listcalise agents to invoke
additional chains of redundant search which shows up asases in the number of
obsolete backtracks received.

We introduced the idea of delegation for DisCSP tree searcéduce the number
of active links in DisCSP networks while preserving privaoy having agents select
intermediaries for relaying messages. In this paper, wenekthe idea for bypassing
slow links in networks in two ways. First, the Selective Riexd Delegation method

5 sampling a distribution witt, = 0.85 and scaling the resulting values to the range [10,100].

allows agents to cut direct links with parents only if there &aster paths via some
parent intermediaries. Secondly, the Selective Undicebtelegation method breaks the
ordering of agents and allows selection of shared childserelay nodes. Algorithms

for performing both forms of delegation were presented aredshown to be correct

while also preserving privacy.

The two delegation methods were applied to two algorith8T/CBJ and ABT-
Hyb) and tested on random DisCSPs. The results of the ei@hugtiowed that bypass-
ing slow links with delegation improves runtime over thegaral algorithm, achieving
savings of up to 75%. We also showed that delegation achiemesiderable savings in
runtime when all links have delays and these delays arahiistd exponentially.

Our future work will focus on dynamic delegation in respots@bserved delays
during search i.e. when links are intermittently slow ot f&fge will also explore more
selective delegation methods only bypassing really sloksli Finally, we also plan to
study the new delegation methods in other algorithms.

References

1. M. Yokoo, Distributed Constraint Satisfaction:Foundation of Cooperation in Multi-agent
SystemsSpringer, 2001.

2. F. Marcellino, N. Omar, and A. V. Moura, “The planning of the oil idatives transporta-
tion by pipelines as a distributed constraint optimisation problemankshop Distributed
Constraint Reasoning (DCR'OTA. Petcu, ed.), pp. 1-15, January 2007.

3. R. Bgjar, C. Domshlak, C. Feamdez, C. Gomes, B. Krishnamachari, B. Selman, and
M. Valls, “Sensor networks and Distributed CSP: communication, cortipatand com-
plexity.,” Artificial Intelligence vol. 161, pp. 117-147, January 2005.

4. R. Zivan and A. Meisels, “Synchronous vs asynchronous Bear®isCSPs,” irProceed-
ings of the First European Workshop on Multi-Agent Systems (EURDYS.

5. Y. Hamadi, “Conflicting agents in distributed searctnternational Journal on Artificial
Intelligence Toolsvol. 14, no. 3, pp. 459-476, 2005.

6. M.-C. Silaghi and B. Faltings, “Asynchronous aggregation andistency in distributed
constraint satisfaction.Artificial Intelligence vol. 161, pp. 25-53, January 2005.

7. R. Zivan and A. Meisels, “Message delay and DisCSP search algatitAnnals of Mathe-
matics and Artificial Intelligencevol. 46, pp. 415-439, April 2006.

8. A. Plaat, H. E. Bal, and R. Hofman, “Sensitivity of parallel applicatitmkarge differences
in bandwidth and latency in two-layer interconneci&jture Gener. Comput. Systol. 17,
no. 6, pp. 769-782, 2001.

9. G. A. Koenig and L. K&, “Optimizing distributed application performance using dynamic
grid topology-aware load balancing.,” Proc. 21st International Parallel and Distributed
Processing Symposium (IPDR$p. 1-10, IEEE, March 2007.

10. IEEE, “Routing information protocol.”

11. M. Basharu, K. Brown, and Y. Hamadi, “Delegation in tree-se&chlistributed constraint
satisfaction,” inProc. Workshop on Distributed Constraint Reasoning (DCR-0@huary
2007.

12. A. Meisels, |. Razgon, E. Kaplansky, and R. Zivan, “Compapagormance of distributed
constraints processing algorithms.,"Rmoc. Workshop on Distributed Constraint Reasoning
(DCR’02), pp. 86—93, July 2002.

13. I. Brito and P. Meseguer, “Synchronous, asynchronous gmddhalgorithms for DisCSPs,”
in Proc. Workshop on Distributed Constraint Reasoning (DCR’'@ptember 2004.

