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Abstract. Distributed Constraint Satisfaction (DisCSP) algorithms assume an
underlying communication network. We show that the presence of slow links in
that network can have an adverse effect on algorithm performance.We propose
two delegationmethods for bypassing slow links, which (i) respect and (ii) ig-
nore the existing priority orderings. We demonstrate in empirical tests that, when
added to the IDIBT/CBJ algorithm, both methods reduce elapsed time while si-
multaneously reducing the number of messages, and that the method which ig-
nores the priority ordering can achieve up to a 75% reduction in elapsed time.

1 Introduction

Distributed Constraint Satisfaction Problems (DisCSP) [1] formalise naturally distributed
decision problems, where autonomous agents make local decisions, but must collabo-
rate with each other to ensure that their decisions are compatible. Examples include
scheduling joint oil pipeline usage [2] and target trackingwith sensor networks [3].
DisCSPs are typically solved with distributed tree-based search, where a partial order
of agents is used to record the progress of exploration. In these algorithms, agents send
local solutions to their children (the set of neighbours below them in the ordering).
Children in turn solve their local problems to be consistentwith incoming partial so-
lutions. When an agent cannot find a local solution, a distributed backtracking step is
started and addressed to a subset of the agent’s parents. Within this broad framework,
many different approaches are possible, balancing the issues of total run-time, network
transmission costs, fair use of resources, and maintenanceof agent privacy.

Distributed tree-based search can either be synchronous [4] or asynchronous [1,5].
Synchronised search closely resembles standard non-distributed search processes. Us-
ing a tree ordering, agents pass control up and down the tree,and each agent only
becomes active when it has control. In asynchronous search,all agents may operate si-
multaneously, computing their own local solutions based ontheir current knowledge of
their parents’ decisions. Each agent is activated to perform its computations whenever it
receives messages from its neighbours. Asynchronous search tends to have shorter run-
times, since much of the computation is done in parallel and dead-ends can be identified
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early, but at the expense of some redundant chains of computation and higher network
load.

Agents are assumed to be autonomous processes residing on different processors
connected by some communication network. Message passing between these proces-
sors plays a critical role in the performance of the solutionprocess. Delays in receiving
messages not only prolong overall runtime but, in the case ofasynchronous algorithms,
can increase the amount of redundant search. Previous studies on the impact of random
delays for individual messages have shown that performanceconsistently degrades as
the length of delays increase (these are discussed further in Section 3).

In this paper, we consider the presence of persistent delayson individual links be-
tween agents in a DisCSP. These delays appear in the physicalnetwork layers either
in the form of long term congestion on an Internet path between two agents or line-of-
sight interference in radio sensor networks. We show that performance of asynchronous
search algorithms can be adversely affected even when only asmall percentage of links
have such persistent delays. To overcome these effects, we propose two methods to al-
low agents to build faster logical networks around slow links by delegating agents with
faster links to act as intermediaries for relaying messages. The intermediary agents will
also asynchronously collate decisions they receive so thatlarger and more coherent par-
tial solutions are transmitted on the faster links - thus theintuition is that fewer chains
of redundant search are invoked. We will show that the methods, which can be im-
plemented in existing DisCSP algorithms, preserve privacylevels. We also show the
implementation of delegation in existing asynchronous algorithms can result in up to
75% savings in runtime in adverse network conditions.

The rest of this paper is structured as follows. We start withsome preliminaries in
Section 2 followed with an overview of related work on the effect of message delays in
distributed search (Section 3). In Sections 4 and 5, the two approaches to delegation for
by-passing slow links in DisCSP networks are presented. Theresults from experimental
evaluations of both approaches are presented in Section 7.

2 Preliminaries

A DisCSP is a 4-tuple (X,D,C,A) where X is a set ofn decision variables (X1,X2, ...,Xn)
and D is a set of domains (D1,D2, ...,Dn) of possible values for the variables in X
respectively. C is the set of constraint on the values of the variables. The constraint
Ck(Xk1, ...,Xkj) is a predicate defined on the Cartesian productDk1 × ... × Dkj .
ConstraintCk is satisfied if the values assigned to the variables involvedsatisfy the
predicate. The set A ={A1, A2, ..., Ap} is the partition of X amongp autonomous pro-
cesses or Agents where each agentAk owns a subset of the variables in X with respect
to some mapping functionf : X→ A, s.t.f(Xi) = Aj .

A solution to a DisCSP is, as for standard CSPs, an assignmentto each variable
of value from its domain, such that all constraints are satisfied. It is assumed that each
agent controls its own variables, and, as a default, knows only the domains of its vari-
ables and the constraints defined on them. The agents collaborate to find a global so-
lution through message passing. A basic method for finding a global solution uses the
distributed backtracking paradigm [1,5]. The agents are prioritized into a partial order



<o such that any two agents are connected if there is at least oneconstraint between
them. The ordering is determined by user-defined heuristicsand classical CSP heuris-
tics can be used. Solution synthesis uses the partial ordering to perform an exhaustive
search with backtracking. An agent instantiates its local problem w.r.t. higher prior-
ity agents and sends its local solution to lower priority neighbours, while backtracking
messages are passed back up the ordering. This process computes a global solution by
distributed aggregation of local solutions.

3 Message Delays in DisCSP Tree Search

There is some consensus from previous investigations into the effects of delays in mes-
sage passing on distributed tree search performance. Results reported in [6,7] show
considerable performance degradation of tree search algorithms as the delay on inter-
agent links increase. The results reported by Bejar et al [3]found the same degradation
in performance for uniform increases in delays on all links in their study with the Asyn-
chronous Backtracking (ABT) [1] and Asynchronous Weak Commitment (AWC) [1]
search algorithms. The study into the effect of non-uniformdelays on links showed a
performance degradation in ABT, however, the non-uniform delays appeared to benefit
AWC. This prompted the authors to propose artificial delays asa source of randomisa-
tion to improve AWC’s performance when link delays are uniform.

The study by Zivan and Meisels [7] also looked at the effects of fixed uniform mes-
sage delays and random delays for individual messages on distributed tree search perfor-
mance. The work investigated the the impact of the differentdelays in ABT, single and
concurrent multi-context synchronous search algorithms.The results on the impact of
fixed uniform delays agree with the findings from [3], showingthe considerable degra-
dation in performance as the size of delays increases and that the synchronous single
context search was the worst affected. For ABT, message passing doubled and runtime
increased almost three-fold when the range of delays was increased to the equivalent of
50-100 computation steps. They also found that the multi-context synchronous search
algorithm was the most robust to the effects of the increasing delays, its message pass-
ing was unchanged and runtime increased by just 40%.

The effect of slow links on performance of distributed applications have also been
studied in the distributed and grid computing communities.Similar findings of the sen-
sitivity to the presence of slow links have been observed. For example, Plaat et al [8]
found that applications requiring frequent synchronisation are particularly sensitive to
slow links in networks. They considered application specific methods for dealing with
slow links like combining messages to reduce the traffic on slow links or reducing the
number of synchronisation points. In related work, Koenig and Kale [9] use dynamic
load balancing to overcome the effects of slow links i.e. by partitioning load for proces-
sors by exploiting the knowledge of link delays so that communications on slow links
are minimised. The idea of routing messages to avoid slow links is the obvious method
for dealing which such links. Routing algorithms, applicable to networking in general,
are used to find the shortest (or fastest) paths between any two nodes in a network (e.g.
[10]). However, privacy (in DisCSP terms) is not a major issue in network routing as
such there are fewer restrictions on the paths which messages are sent between nodes.



In a preliminary step for our study, we investigated the effects of persistent delays on
a random subset of the links in the network. We used the Interleaved Distributed Intel-
ligent Backtracking Algorithm (IDIBT/CBJ)[5] to solve random DisCSPs, first without
delays, and then on the same problems with delays equivalentto 50 constraint checks
on 5% of the links. The results, displayed in Table 1, show a decrease in performance
for all metrics measured. However, what stands out from the results is the fact that the
number of backtracks and obsolete backtrack messages increase. This indicates that
slow links do not just lengthen the time between decisions made by agents but they also
cause agents to make more decisions with out-dated information. Since we are seeing
such a degradation for just a few slow links, and that slow links may be a feature of
whatever communication network the DisCSP algorithms are using, we now turn our
attention to methods for avoiding the use of such links.

metric without delays with delays change
Runtime 18,223 20,849 +14%
Message count 181,207 195,183 +7%
Backtracks 32,521 37,572 +15%
Obsolete Backtracks 26,528 31,261 +17%

Table 1. Effect of delays on 5% of the links on performance of IDIBT/CBJ (all metrics averaged
over 20 problems〈n = 20, d = 10, p1 = 0.5, p2 = 0.4〉).

4 Selective Directed Delegation

The idea ofdelegation, presented in [11], describes a process in which a parent sends
its messages to only one of a pair of children, and delegates that child to forward those
messages to the other when it is ready. If the third agent is also a child of the parent, as in
[11], then this process does not introduce any new links or agents into the DisCSP, and
should not involve a violation of privacy. Delegation in [11] was implemented by local
algorithms which chained together overlapping 3-cliques of agents, producing maximal
delegation paths while maintaining privacy. The algorithms were applied to networks
with no delays, and it was demonstrated that delegation was ahybrid of synchronous
and asynchronous search - some partial local synchronisation is introduced, but agents
are still free to act autonomously - and was midway between the two in performance:
it reduced the message count of asynchronous search at the expense of non-concurrent
constraint checks (NCCCs) [12], while reducing the NCCCs ofsynchronous search at
the expense of messages.

We now show how to apply the idea of delegation for bypassing slow links in a
network. Children will select intermediaries to relay messages to them, but only if the
paths via the intermediaries are faster then the direct linkfrom the parent. Intermedi-
aries have the advantage of not only providing faster routesfor messages, but also of
sending larger coherent solutions to the children, since they can asynchronously collate
decisions they are meant to relay. More coherent solutions should reduce the amount of
redundant search.



We introduce a new algorithm for performing delegation amongst agents in DisC-
SPs - Selective Directed Delegation (SDD). Unlike the localconcurrent algorithm from
[11], in SDD agents select intermediaries to relay parent decisions to them rather than
selecting children to relay decisions to lower children. Aswith delegation, SDD is in-
tended to be implemented in distributed tree search algorithms after an ordering of
agents has been established (for example, by DisAO [5]) and the ordering remains static
during search. We also assume that during the ordering phase, agents use the opportu-
nity to get estimates of delays on links with their neighbours.

Algorithm 1: SDD: Main loop for each agentA
/* n parentsp1, ..., pn, m childrenc1, ..., cm */
Data: d: array of n ints, d[i] set to delay on link topi

Data: pl: array of n booleans, initially true
Data: cl: array of m booleans, initially true
Data: a: array ofn× n booleans, initially false
Data: ld: array ofn× n ints
Data: r: array of n×n booleans, initially false
Data: f: array of n×m booleans, initially false
foreach child ci do1

send message toci containing{ (p1, d[1]), ..., (pn, d[n]) }2

while true do3

message← getMsg()4

if message sender is a parentthen5

update a6

update ld7

findIntermediaries()8

if message iscutLink(A, ci) then9

cl[i] = false10

if message isrelayDecision(pi, cj) then11

f[i][j] = true12

if message iscancelRelayDecision(pi, cj) then13

f[i][j] = false14

Algorithms 1 and 2 outline the processes each agent undertakes to perform delega-
tion with SDD. The local data structures can be interpreted as follows:d[i] is the delay
on the link between an agentA and a parentpi; pl[i] indicates that the link between
A andpi is active;cl[i] indicates that the link betweenA and the childci is active;a
is the adjacency matrix of connectivity between parents such thata[i][j] is true if there
is a link betweenpi andpj ; ld[i][j] is the delay on the link betweenpi andpj ; r[i][j]
indicates thatpj relayspi’s decisions toA; andf[i][j] states thatA relays decisions from
pi to cj .

The algorithms describe the process where after establishing an ordering each agent
sends information on link delays with its parents to all its children (Alg. 1, lines 1-2).



Algorithm 2: SDD: Selecting intermediaries to relay decisions from parents.
Data: data structures fromAlgorithm 1
foreach parentpi in order andpi is not relaying any decisions to Ado1

choosepj s.t.pi <o pj , pl[j] == true, a[i][j] == true, and ld[i][j] is fastest link2

if ld[i][j] < d[i] then3

newDelay← ld[i][j] + d[j]4

if pl[i] == true then5

sendcutLink(pi, A) to pi6

pl[i] ← false7

else8

sendcancelRelayDecision(pi, A) to pk (where r[i][k] == true)9

r[i][k] ← false;10

sendrelayDecision(pi, A) to pj11

d[i] ← newDelay12

r[i][j] ← true13

if new intermediary found for anypi then14

foreach child ci do15

send message toci containing{ (p1, d[1]), ..., (pn, d[n]) }16

Each agent receives the link delay information from its parents and uses it to update the
adjacency matrices to establish connectivity (and delays)amongst parents, as well as to
detect all 3-cliques including 2 parents (6-8). For each parentpi involved in at least one
3-clique (that has not already been itself chosen as an intermediary), the agent selects
the intermediate parentpj , with whom it has an active link, to relay decisions frompi

if the cummulative delay viapj is faster than its direct link withpi
3 (Alg. 2). After

selectingpj as an intermediary, a message is sent topi to stoppi sending decisions
to A (7) and another message is sent topj requesting it to relay all decisions received
from pi (11). The new delay for receiving messages frompi via pj is saved and then
sent to allA’s children. As information on link delays are updated, agents can find
new (and faster) intermediaries for receiving decisions from some parents. As such,
previous relay requests to intermediate parents can be revoked (9-10). Agents continue
making changes to the network until no further improvementscan be found. The process
terminates when no delegation related messages are exchanged4 and a search for a
solution can proceed.

During a search, agents implement delegation using Algorithm 3. When an agent
receives the decision of a parentpi, it updates itsAgentViewand finds a compatible
value (Alg. 3, lines 1-2). The agent then initiates a messagefor each of its children
with active links and places its value in the message if it hasone (5-6). And it also
placespi’s value in the message ifcj uses it as an intermediary for relaying decisions
from pi (7-8). Agents also use intermediaries for sending backtrack decisions to their
parents. Therefore, when an agent receives aBack message meant for a parent it relays

3 Ties are broken in favour of the nearest parent.
4 We assume that there a separate process to detect this.



Algorithm 3: SDD: Responding to a decision from ParentP = xp by A during
search.

Data: data structures fromAlgorithm 1
updateAgentView(P, xP )1

chooseA’s decisionA = xa2

foreach child ci s.t. cl[i] == true do3

message = new InfoVal(from:A to ci)4

if xa 6= null then5

message.contents∪ (A = xa)6

if f[ indexOf(P )][ ci] == true then7

message.contents∪ (P = xP )8

send message9

the message to parent if there is an active link between them or to the intermediary it
receives the parent’s decisions from.
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Fig. 1. Establishing directed delegation paths.

The example in Figure 1 is used to illustrate the process of establishing directed
delegation paths in an ordered DisCSP. Figure 1(i) is a DisCSP with delays on the
individual links between agents shown. To initiate the process, each agent sends details
of its connectivity with its parents to each of its children e.g,Ab sends out the message
{Ab → (Aa, 5)}. Ac andAd use this message to detect the cliques withAa. Ac selects
Ab to relay messages fromAa and deactivates the affected link.Ad also selectsAb as
an intermediary and as a resultAd has to keep the link withAb active ignoring the
faster path viaAc (ii). After choosing its intermediary,Ac sends an update toAd with
its new delay toAa. With this update,Ad revises its decision to useAb as a relay forAa

selectingAc instead. BecauseAb no longer serves as a relay,Ad then selectsAc to also
relay decisions fromAb. The process then terminates with the network configuration
shown in (iii).

As a result of the delegations created, during a search wheneverAb receives a deci-
sion fromAa it evaluates the decision and relaysAa’s value along with its own value



to Ac and so on. The same delegations are also used during backtracking. So aBack
message fromAd to Aa will be sent on multiple hops passing throughAc andAb.

5 Selective Undirected Delegation

Restricting the set of possible intermediaries to parents may be a limitation. The im-
plication is that, without re-ordering agents, some significantly slow links can be left
active in a network with adverse effects on search performance. For example, in the
DisCSP shown in Figure 2(i), SDD is forced to retain the slowest link in the network.
This is the motivation for our second extension to delegation in the Selective Undirected
Delegation (SUD) method, which allows agents choose sharedchildren as relay nodes
for receiving values from parents (Fig. 2(ii)). The key decision in delegation is that the
agent chosen to relay messages from a parent must normally receive the parent’s deci-
sions during a search. This rules out the possibility of selecting a parent of a parent as a
relay node in undirected delegation as it results in some loss of privacy.
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Fig. 2. Limitations of Selective Directed Delegation.

In SUD, agents run similar processes to SDD with the exception that agents can
choose shared children as relays for receiving parents’ values. However, since agents
only make decisions about receiving decisions from parents, delegation with SUD al-
lows agents to keep some links with children partially active. The example in Figure
2(iii) is one such case, whereAb choosesAd to relay decisions fromAa andAd chooses
Ac to relay decisions fromAb. Note that we assumeAb cannot requestAa’s messages
to be routed throughAd thenAc, sinceAc would then receive message it would not be
entitled to see.

Like SDD, agents make local decisions process to reduce a DisCSP network. The
steps are outlined in Algorithms 4 and 5, which differ from Algorithms 1 and 2 with
the inclusion of children as possible intermediaries. The process initiates with agents
informing all their neighbours about connectivity with allother neighbours, as well
as providing information about delays on links to the neighbours. As usual 3-cliques
are detected (but this time including children) and intermediaries for relaying parent
decisions are selected. Agents may also revise chosen intermediaries as they receive



updates from their neighbours. Again the process terminates when no further changes
to the network can be made.

Algorithm 4: SUD: Main loop for each agentA
/* q neighboursn1, ..., nq, g parentsp1, ..., pg, m childrenc1, ..., cm */
Data: d: array of g ints, d[i] is delay on link withni

Data: nl: array of q booleans, initially true/* nl[i]==true if link with ni is active*/
Data: a: array ofq × q booleans, initially false
Data: ld: array ofq × q ints
Data: r: array of q×q booleans, initially false
Data: f: array of q×q booleans, initially false
foreach neighbourni do1

send linkInfo message toni containing{ (n1, d[1]), ..., (nq, d[q]) }2

while true do3

message← getMsg()4

if message is linkInfothen5

update a6

update ld7

findIntermediaries()8

if message iscutLink(A, ci) then9

nl[i] = false10

if message isrelayDecision(pi, cj) then11

f[i][j] = true12

if message iscancelRelayDecision(pi, cj) then13

f[i][j] = false14

We use the example in Figure 3 to illustrate the process of establishing undirected
delegation paths with SUD. The figure shows an ordered DisCSPnetwork with delays
on individual links between agents. At the start, each agentinforms its neighbours of
the delays between itself and other neighbours. For example, Ad will send the message
{Ad → ((Aa, 100), (Ab, 5), (Ac, 10))} to all its neighbours. Agents receive these mes-
sages and use them to build a profile of connectivity and delays in the network. In the
next step, bothAd andAc will detect the opportunity to useAb as the relay for receiving
messages fromAa and take action accordingly (Fig. 3(ii)).

OnceAb is selected as an intermediary,Ac has to maintain its direct link with it
thereforeAc will not evaluate the pathAb → Ad → Ac. After updating the link delays,
bothAc andAd send updates to all their neighbours. In this case, the update fromAd

to Ac will indicate that the cummulative delay toAa is now 7 time units. Using this
update,Ac cancels the relay request withAb, cuts the direct link withAb, and then
requests thatAd relay the decisions forAa andAb to it (Fig. 3(iii)). After Ac sends the
updates of its delays, the agents can no longer find any improvements to the message
passing delay and the process terminates. As with SDD, during a searchAa will only



Algorithm 5: SUD: Selecting intermediaries to relay decisions from parents.
Data: data structures fromAlgorithm 4
foreach parentpi in order andpi is not relaying any decisions to Ado1

choosenj s.t.pi <o nj , nl[j] == true, a[i][j] == true, and ld[i][j] is fastest link2

if ld[i][j] < d[i] then3

newDelay← ld[i][j] + d[j]4

if nl[i] == true then5

sendcutLink(pi, A) to pi6

nl[i] ← false7

else8

sendcancelRelayDecision(pi, A) to pk (where r[i][k] == true)9

r[i][k] ← false;10

sendrelayDecision(pi, A) to pj11

d[i] ← newDelay12

r[i][j] ← true;13

if new intermediary found for anypi then14

foreach neighbourni do15

send message toni containing{ (n1, d[1]), ..., (nq, d[q]) }16
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Fig. 3. Establishing undirected delegation paths with SUD.

send its decisions toAb andAd relays all decisions fromAa andAb to Ac. All Back
messages fromAc will be relayed throughAd to the target culprits.

6 Analysis

Termination The SDD and SUD processes are guaranteed to terminate after afinite
number of delegation decisions have been made. First of all,delegations are acyclic -
agents do not choose intermediaries for communicating withtheir children. So a pair of
connected agents can not simultaneously make decisions about the connections between
them. Secondly, there are a finite number of possible improvements that can be made
by agents. Therefore at some point agents will stop sending new information to their
neighbours and the processes will settle on current configurations. And finally, agents



Algorithm 6: SUD: Responding to a parent’s (P = xP ) decision byA during
search.

Data: data structures fromAlgorithm 4
updateAgentView(P, xP )1

foreach pi s.t.P <o pi and r[i][j] == true do2

send InfoVal(P , xP ) to pj /* relay decision immediately */3

choose A’s decision4

foreach child ck s.t. cl[k] == true do5

message = new InfoVal(from:A to ci)6

if xa 6= null then7

message.contents∪ (A = xa)8

if f[ indexOf(P )][ ci] == true then9

message.contents∪ (P = xP )10

send message11

only revise decisions in favour of faster paths i.e. an agentwill not restore a link after it
has been cut, therefore agents can not oscillate between different network states.

Correctness In order to prove the correctness of both delegation algorithms, we will
show that: (1) any chain of delegations between any two agents Ai andAj is faster if
the direct link between them is cut, (2) undirected delegation paths are acyclic, (3) no
agentAj receives the same decisionAi ← v from more than one source, (4) privacy
is preserved in the delegation paths created. For these proofs, we assume that agents
implement the DisAO algorithm to establish an ordering prior to a search and that tau-
tological links between unconnected parents are created inthe process as well.

Theorem 1 If the direct link fromAi to Aj is cut, the cummulative delay on the chain
of intermediate relaysR1, R2, ...Rn is lower than the delay on the linkAi → Aj .

Proof. From the algorithms, an agentAj selects the intermediaryAk to relay messages
from Ai when the cummulative delay (D) via the relay is faster than the direct link with
Ai i.e. (Di,k + Dj,k) < Di,j . Ak, in turn, will only selectAm to relay messages from
Ai if the condition(Dk,m + Di,m) < Di,k holds. And as a result,(Di,m + Dk,m +
Dj,k) < Di,j which by extension holds true for any number of intermediaterelays on
the delegation path betweenAi andAj .

Theorem 2 Delegation paths including partially active links in SUD are acyclic.

Proof. For SUD, a link is kept partially active if the lower agent on the link Ak relays
messages to its parentAj from a higher parentAi andAk in turn selectsAm to relay
messages fromAj to it. Thus creating two bidirectional paths,Ai → Ak → Aj and
Aj → Am → Ak. Aj will only useAk to communicate withAi, therefore no messages
meant forAi will pass throughAm. From Theorem 1,Ak can not in turn use the path
Am → Aj to send messages toAi since its direct link withAi is the fastest available
link. Therefore, there can be no cycles in message passing amongst the agents.



Theorem 3 No agentAj receives the same decisionAi ← v from two separate agents.

Proof. (Omitted) by inspection of the algorithms.

Theorem 4 An agentAj can receive a decisionAi by delegation if and only if it can
receive it without delegation, given the ordering induced by DisAO (and so privacy of
messages are not violated).

Proof. (Omitted) by inspection of the algorithms.

7 Evaluations

We carried out evaluations of SDD and SUD by implementing them primarily in IDIBT
/ CBJ and with additional tests in ABT-Hyb [13]. We studied performance of the algo-
rithms as the quality of network links degraded and their performance with different
distributions of link delays. In the experiments, we variedthe number of slow links
in the DisCSP networks; the delays on these links were normally distributed over the
equivalent of 10 to 100 constraint checks5. We also tested the methods on DisCSPs
where the delays on links were exponentially distributed.

All algorithms were implemented in an environment simulating asynchronous par-
allel activity by agents. A shared clock was used to measure elapsed time where each
tick on the clock is equivalent to a constraint check. Each agent in the simulator is
triggered into action when it receives messages. The agent reads all its messages and
performs the necessary computation. The number of constraint checks performed is
counted and used to simulate the time which the agent is busy and unable to process any
other messages (i.e. the agent is blocked). Messages from each agent are time-stamped
for delivery at the end of its computation time plus any delays on links between it and
the recipients. The minimum message delay (for good links) is one tick of the clock.
As in [7], a separate mailer agent is used to handle message passing between agents
- messages are sent when delivery time is reached or held backuntil the recipient is
unblocked.

In IDIBT/CBJ and the extensions, a single search context is used (i.e. NC=1) and
the algorithms were modified slightly to allow agents to process messages in packets.
A max-degheuristic was used for ordering agents with DisAO prior to each run. The
message count for the extended versions include the count for establishing the orderings
as well as the messages exchanged in performing delegations. The results reported here
are from three experiments on 20 random DisCSPS〈n = 20, d = 10〉 with sparse,
medium, and dense graphs - at the complexity peak for each level of connectivity. We
recorded the runtime (i.e. NCCCs plus NCCC-equivalent delays), message count, and
the number of obsolete backtracks for the evaluations.

Figures 4 and 5 plot the savings with delegation and the number of obsoleteBack

messages, respectively, from attempts to solve DisCSPs with medium density〈p1 =
0.5, p2 = 0.4〉. Although it is not shown, performance of the basic IDIBT/CBJ does

5 The delays were sampled from a truncated normal distribution withµ = 0, σ = 1 returning
values between [-3.6,+3.6], which were scaled to the range [10,100].



degrade as expected as the percentage of slow links in the network increases. Figure
4 shows that there are savings with both delegation strategies even when the majority
of the links are slow. First, we note that both delegation methods show a decrease in
the number of messages, even though each time we introduce anintermediary we are
requiring extra messages - the savings in redundant search clearly compensates for this
overhead in most cases. Secondly, we note that the savings inNCCC, which includes
the delay and so simulates total elapsed time, are more significant, and are greatest for
SUD. We gain close to an order of magnitude speed up for most cases.
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Fig. 5. Number of obsolete backtracks sent
from runs plotted in Figure 4.

The same experiment was repeated for dense〈p1 = 0.8, p2 = 0.3〉 and sparse
〈p1 = 0.3, p2 = 0.5〉 DisCSPs. The savings on the recorded metrics are plotted in
Figures 6 and 7 respectively. These results show that the savings on sparse graphs,
though considerable, were not as significant as the earlier findings. This is expected as
there are fewer 3-cliques in the sparse networks and thus fewer opportunities to bypass
the slow links.
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Fig. 6. Savings in runtime and message pass-
ing for SDD and SUD on dense DisCSPs.
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All the results presented so far show that there were little,if any, savings in runtime
when all the links in the network were slow. We attribute thisto the fact the delays on the
slow links are distributed normally. Therefore majority ofthese delays were clustered
around the mean values, which meant that there were few worselinks to avoid and
few faster links available to exploit. To confirm this, we rannew experiments with
the same problems, but this time using an exponentially decaying distribution of link
delays6. Performance of the delegation methods against the basic IDIBT/CBJ for the
sparse problems are shown in Figure 8. Compared to Figure 7, there are consistent and
significant savings in runtime for almost all cases with slowlinks. Critically, when all
links have delays on them there are still savings of about 50%in runtime.

We ran additional tests for both delegation methods with ABT-Hyb and achieved
similar results - assuming that DisAO is used to order agentsprior to search and new
links are created in that process as well. Results from runs on problems withp1 = 0.5
and link delays distributed normally are shown in Figure 9.
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8 Summary

Asynchronous distributed tree search algorithms are sensitive to delay on links between
agents. Performance of these algorithms, in terms of runtime and message passing,
can degrade considerably even when only a small percentage of links in a network
have persistent delays on them. The presence of such links also cause agents to invoke
additional chains of redundant search which shows up as increases in the number of
obsolete backtracks received.

We introduced the idea of delegation for DisCSP tree search to reduce the number
of active links in DisCSP networks while preserving privacy, by having agents select
intermediaries for relaying messages. In this paper, we extend the idea for bypassing
slow links in networks in two ways. First, the Selective Directed Delegation method

6 Sampling a distribution withλ = 0.85 and scaling the resulting values to the range [10,100].



allows agents to cut direct links with parents only if there are faster paths via some
parent intermediaries. Secondly, the Selective Undirected Delegation method breaks the
ordering of agents and allows selection of shared children as relay nodes. Algorithms
for performing both forms of delegation were presented and are shown to be correct
while also preserving privacy.

The two delegation methods were applied to two algorithms (IDIBT/CBJ and ABT-
Hyb) and tested on random DisCSPs. The results of the evaluation showed that bypass-
ing slow links with delegation improves runtime over the original algorithm, achieving
savings of up to 75%. We also showed that delegation achievedconsiderable savings in
runtime when all links have delays and these delays are distributed exponentially.

Our future work will focus on dynamic delegation in responseto observed delays
during search i.e. when links are intermittently slow or fast. We will also explore more
selective delegation methods only bypassing really slow links. Finally, we also plan to
study the new delegation methods in other algorithms.
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