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Abstract We investigate the use of value ordering in backtracking search for Quan-
tified Constraint Satisfaction problems (QCSPs). We consider two approaches for
ordering heuristics. The first approach is solution-focused and is inspired by adver-
sarial search: on existential variables we prefer values that maximise the chances of
leading to a solution, while on universal variables we prefer values that minimise
those chances. The second approach is verification-focused, where we prefer values
that are easier to verify whether or not they lead to a solution. In particular, we
give instantiations of this approach using QCSP-Solve’s pure-value rule Gent et al.
(QCSP-solve: A solver for quantified constraint satisfaction problems. In Proceed-
ings of IJCAI, pp. 138–143, 2005). We show that on dense 3-block problems, using
QCSP-Solve, the solution-focused adversarial heuristics are up to 50% faster than
lexicographic ordering, while on sparse loose interleaved problems, the verification-
focused pure-value heuristics are up to 50% faster. Both types are up to 50% faster
on dense interleaved problems, with one pure-value heuristic approaching an order
of magnitude improvement.

Keywords Value ordering · Quantified CSPs · Backtracking search

This work was supported in part by Microsoft Research through the European PhD Scholarship
Programme, and by the Embark Initiative of the Irish Research Council for Science,
Engineering and Technology (IRCSET).

D. Stynes (B) · K. N. Brown
Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Cork, Ireland
e-mail: d.stynes@4c.ucc.ie

K. N. Brown
e-mail: k.brown@cs.ucc.ie



Constraints (2009) 14:16–37 17

1 Introduction

Quantified Constraint Satisfaction Problems (QCSP) are a generalization of CSPs
which can be used to model many PSPACE-complete problems, including adversar-
ial game playing, planning under uncertainty, and interactive design. In QCSPs, the
variables are in a fixed sequence, and some of them are universally quantified; in a
solution to a QCSP, for each possible value of those universally quantified variables
there must be a solution to the remaining problem. Recent research has focused
on developing QCSP solvers, including propagation [8, 22] and pruning of the
search space using techniques from quantified boolean formulae (QBF) solvers [18].
However, there has been little attention paid to ordering heuristics within search,
even though these have proven to be significant for standard CSP solvers [15, 16]. In
this paper, we consider two different approaches to value ordering for QCSP. The
first is solution-focused, and is based on a model of QCSP as an adversarial game:
for existential variables we try to choose values which lead to a solution, and for
universal variables we try to choose values which lead away from a solution. The
second approach is verification-focused: in all cases, we try to choose values which
require less effort to verify whether or not they lead to a solution.

For the solution-focused approach, we adapt the minimax [27] heuristic from
adversarial search. We consider a QCSP as a model of a two-player game over a
CSP, in which variables are assigned in a sequence. Player A chooses values for the
variables that were existentially quantified and tries to reach a solution, while player
B chooses values for the variables that were universally quantified and tries to reach a
non-satisfying assignment. If the QCSP has a solution, then player A can force a win.
The minimax heuristic tells each player on each turn to make a move which minimises
the maximum reward that the other player can achieve. Thus when solving QCSPs,
for the existential variables we should first try values that maximise the chance of
leading to a solution, while for universal variables, we should first try values that
maximise the chance of leading to no solution. This can also be regarded as switching
between the promise [16] and fail-first [20] principles. We have developed a number
of different instantiations of this general heuristic, based on measures of support and
domain size, and we have tested them on randomly generated QCSPs using QCSP-
Solve [18]. We show that some versions can give up to 50% improvement in solution
time across the hard region compared to lexicographic ordering. But in the easier
regions of sparse loose problems, including those with fully interleaved quantifiers,
these same heuristics can actually be worse than lexicographic ordering.

For the verification-focused approach, the heuristics must be tailored to the
behaviour of the solver. We note that it is the presence of the universally-quantified
variables that move QCSP up to a higher complexity class, and having multiple
values in those domains explodes the size of the search tree. Value choices which
minimise the size of those domains will leave sub-problems that are easier to search.
In QCSP-Solve, the Pure-Value rule removes values from the universal domains, and
so for QCSP-Solve we develop specific heuristics which prefer values that trigger the
application of this rule. We show that some of these heuristics provide a significant
speed-up across the range of interleaved quantifier problems, and in loose regions of
low-density problems.

The two approaches appear to complement each other. In regions where there are
few or no solutions, solution-focused approaches are faster; in regions where there
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are many solutions, the verification-focused heuristics are faster. Finally, on dense
interleaved problems, we show that heuristics of both types offer a speed-up of over
50% in running time, with one verification-focused heuristic consistently providing a
significant improvement.

2 Background

2.1 QCSPs

A QCSP is a formula �C, where � is a sequence of quantified variables Q1x1...Qnxn,
each Qi is either ∃ or ∀, and each variable xi occurs exactly once in the sequence.
C is a conjunction of constraints (c1 ∧ ... ∧ cm) where each ci constrains a subset of
{x1, ..., xn}.

If � is of the form ∃x1�1 then �C has a solution if and only if there exists some
value a ∈ D(x1) such that (�1C|x1 = a) has a solution. If � is of the form ∀x1�1

then �C has a solution if and only if for every value a ∈ D(x1), (�1C|x1 = a) has a
solution. If � is empty, then there are no unassigned variables left in C, so C is simply
a conjunction of ground logical statements, and �C has a solution if and only if C is
true. A solution to a QCSP is thus a tree of assignments, where a node has a single
child if it is followed by an existential variable, and multiple children if it is followed
by a universal variable. Determining whether a QCSP has a solution is PSPACE-
Complete [7]. Note that the ordering of the quantified variables is important. Two
QCSPs that differ only in the order of quantified variables do not necessarily have the
same truth-value. A pair of quantified variables Qixi and Q jx j can be interchanged
in the sequence if and only if Qi = Qi+1 = Qi+2 = ... = Q j.

Interest in QCSPs has been growing, with a number of efficient solvers now in
existence. [8] and [22] extended CSP propagation algorithms for QCSPs. QCSP-
Solve [18] is based on an extension of standard CSP with features from QBF solvers
incorporated to improve performance. Block-Solve [5] is a bottom-up solver for
QCSPs which finds partial solutions to the last block of the QCSP and attempts
to extend them to full solutions. QeCode [2] is a QCSP solver which reuses a
classical CSP solver (GeCode) for the quantified case. It fully supports all types
of constraints supported by GeCode, including intentional and extensional non-
binary constraints. QeCode also accepts QCSP+ problems [3], which are QCSPs
with restricted quantification, which makes modeling real problems easier. Strategic
CSPs [6] also extend QCSPs to simplify the modeling of problems, where universal
variables adapt their domains to be compatible with previous choices, while [13]
extends techniques for problem relaxation and explanations to QCSP. [23] developed
propagation algorithms for non-binary QCSP, implementing them in a solver called
Queso, and demonstrated one practical application of QCSP by using it to model a
factory scheduling problem with uncertainty.

2.2 QCSP-solve

We use QCSP-Solve [18] as our underlying solver. QCSP-Solve is restricted to binary
QCSPs, which are also PSPACE-Complete [7]. In binary QCSPs, each constraint cij
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involves two variables xi and x j (where variable xi is before x j in the quantification
sequence) which may be universally or existentially quantified. If xi is universally
quantified and x j is existentially quantified, we will describe cij as a ∀∃-constraint
(and similarly for ∃∃, ∃∀ and ∀∀).

QCSP-Solve searches similarly to a standard CSP solver. It assigns the variables
in � in order from left to right and treats existential variables as in CSP. For
universal variables, if any of the values is found to cause a wipe-out it will backtrack
immediately. If all of the variables are assigned values without causing a wipe-out,
then it will backtrack to the last universal variable with unchecked values and attempt
to extend the next value to a full assignment as well. Only once every value for each
universal variable’s node in the search tree has been extended to full assignments has
a solution been found. We now describe the more advanced look-ahead and look-
back functions used by QCSP-Solve to optimise this search process.

QCSP-Solve allows look-ahead using modifications of forward checking (FC) [20]
and maintaining arc consistency (MAC) [26]. For ∃∀-constraints, any value of xi that
conflicts with any value of x j can be removed in preprocessing, and the constraint
can then be ignored. Similarly, ∀∀-constraints are checked only during preprocessing
(and any conflicting pair of values means the QCSP has no solution). For ∃∃-
constraints, both propagation algorithms work as for CSPs. For ∀∃-constraints, for
FC, all values of xi are checked against the domain of x j before assignment, and if
any value causes a wipe-out, the search algorithm backtracks to the last existential
variable. MAC works analogously with the addition that if it attempts to remove
a value from a universal domain, it treats it as a domain wipe-out and backtracks.
QCSP-Solve allows look-back in the form of conflict-based backjumping (CBJ) [24]
in conjunction with FC.

QCSP-Solve also utilizes neighborhood interchangeability (NI) [14] to break
symmetry. A value a ∈ D(xi) is neighborhood interchangeable with a value b ∈
D(xi) iff for each j, such that cij ∈ C, a and b are supported by exactly the same
values of D(x j).

Solution Directed Pruning (SDP) is derived from solution directed backjumping
for QBF [19]. When a complete assignment to all the variables is found, QCSP-Solve
takes the last universal, xi, and checks whether each value is compatible with all of the
current assignments to the existentially quantified variables after it. Any value which
is compatible with all of them is temporarily removed from D(xi). If there are then no
more available values in D(xi), SDP checks the universal immediately before xi in Q,
say x j. x j is then similarly checked against all of the existentially quantified variables
after it. This is repeated recursively until a universal variable is found with values still
available after SDP has been applied, or until no universal variables remain, in which
case a complete solution has been found.

Finally, QCSP-Solve uses a Pure Value Rule, derived from the Pure Literal Rule
in QBF [11]: a value a ∈ D(xi) of a QCSP is pure iff ∀x j ∈ Q, where xi �= x j and
∀b ∈ D(x j), the assignments (xi, a) and (x j, b) are compatible. The Pure Value Rule
in QCSP-Solve detects pure values before and during search. When testing for a
pure value, only future variables need to be checked against, as FC/MAC ensure
compatibility with the previous variables. If a pure value, a, of an existentially quan-
tified variable, xi, is discovered during preprocessing (search), then the assignment
(xi, a) is made and all other values in D(xi) are permanently (temporarily) removed.
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If a pure value, a, of an universally quantified variable, xi, is discovered during
preprocessing (search), then a is permanently (temporarily) removed from D(xi).
If all values of a universal are pure, QCSP-Solve effectively ignores that variable.
The pure value rule is applied to all variables during the preprocessing phase, then
during search it is applied to each variable individually prior to assigning them
values.

2.3 Variable and value selection

In standard CSPs, variable and value ordering heuristics can have a significant effect
on the efficiency of a solver [4, 9, 12, 15, 16, 21, 25]. The fail-first principle [20]
says that the next variable to be chosen should be the one for which a failure
would be easiest to detect. If the current partial solution can be extended to a
complete solution, then this method of choosing will not have any negative effect.
If on the other hand the current partial solution can not be extended to a full
solution, following this principle would allow one to more quickly backtrack out
of the dead-end. Haralick and Elliot implemented their fail-first principle through
use of a dynamic variable ordering heuristic, which selects as the next variable to
be instantiated the variable with a minimal domain size. When choosing a value, the
promise [16] principle says that the value most likely to lead to a solution should
be chosen. If the current partial solution cannot be extended to a full solution, then
we will have to test all of the remaining values for the current variable to confirm
this, and so it is irrelevant which values we pick first. However, when the current
partial solution can be extended to a full solution, the choice of value is important
and picking the one that leads to a solution will reduce the search time by avoiding
exploring unnecessary subtrees. A measure of promise was implemented by Geelen
as the product of the supports in the remaining unassigned variables’ domains.
Recent work [1] has shown that effective fail-first heuristics already have an element
of promise in their selections. There have been no published evaluations of QCSP
value ordering, and very few comments on value ordering heuristics in the literature.
A value ordering heuristic is reported for Block-Solve [5] which picks the value which
is compatible with the largest set of tuples of outer (unassigned) blocks, but there is
no evaluation of that heuristic. In particular, no value orderings are discussed for
QCSP-Solve (e.g. [18]. Since variable ordering is restricted in QCSP, in this paper we
focus on value ordering as the most promising area for speeding up search. We leave
variable ordering for future research.

In AI game playing, the game is represented as a tree of game states, with players
taking turns to select a transition from one state to another. Typically, players do not
have sufficient time to search the whole tree, and so must form estimates of which
move is likely to lead to a win. Most algorithms are based on the minimax heuristic
[27], which says that a player should make the choice which minimises the (estimated)
maximum that the opponent can achieve. In practice, a subtree of limited depth
is generated, the leaf nodes evaluated according to a heuristic function, and then
these valuations are propagated back up the tree to the root, alternating between the
minimum and the maximum of each set of child nodes. [10] applied minimax in what
they call Adversarial CSP, in which solving agents take turns to choose instantiations
for variables in a shared CSP.
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3 Solution-focused adversarial heuristics

As noticed previously, QCSPs have a strong connection with adversarial two-player
games. We can regard a QCSP as a problem statement for analysing a two-player
game, where players control different variables, and assign them in a pre-determined
sequence. One player is aiming to find a solution, while the opponent is trying to
prevent a solution. In the QCSP, the variables for the solving player are existentially
quantified, and the opponent’s variables are universally quantified. If the QCSP
has a solution, then the solving player can force a solution to the CSP (i.e. player
wins); if there is no solution to the QCSP, then the opponent can prevent a solution
to the CSP (i.e opponent wins). For solving QCSPs in general, our aim is then to
determine as quickly as possible which player wins, and thus we choose to investigate
value-ordering heuristics based on minimax. The existential player is aiming to find
a solution, and so should prefer values which are likely to lead to a solution; the
universal player is aiming to prevent a solution, and so should prefer values that are
likely to fail.

The game view of QCSP solving is simply an analogy; however, consideration of
the effect of the choices on the solution process leads us to the same conclusion. For
an existentially quantified variable, if our current search path can lead to a solution,
then we should aim to stay on a path to a solution, and so should choose a value that
is most likely to lead to a solution, and thus we may avoid exploring unnecessary
sub-trees; if our current search path cannot lead to a solution, then we will have to
consider all possible values to prove this, and so the choice of which value to consider
first is less important. For a universally quantified variable, if the current search path
can lead to a solution, then we must consider all values to prove this is still the case,
and so the order in which we try them is less important; if our current search path
cannot lead to a solution, then we want to identify as quickly as possible one of the
values that does not lead to a solution, so that we can backtrack, and so we should
first choose the value least likely to lead to a solution. Hence, regardless of the state
of the current search path, for an existential variable, we should choose the value
most likely to lead to a solution (promise), while for a universal variable, we should
choose the value least likely to lead to a solution (fail-first).

In order to apply this principle, we need to generate an estimate of how likely a
value choice is to lead to a solution. We do this by considering the domain sizes or the
presence of supporting values in future domains. A value b ∈ D(x j) is said to support
a value a ∈ D(xi) when the assignments (xi, a) and (x j, b) satisfy the constraint cij.
For each value remaining in a variable’s domain, we count the number of supporting
values in each of the future domains. We then construct three measures based on
this count: average support (AS) computes the AS over all the future domains,
smallest support (SS) records the minimum support value over the future domains
and Geelen’s Promise (GP) [16] which computes the product of the supports. Higher
values of these measures are then assumed to have a higher chance of leading to
a solution. The support counts can be done once before search, or dynamically
throughout search, and thus we have six support heuristics: static average support
(SAS), dynamic average support (DAS), static smallest support, dynamic smallest
support (DSS), static Geelen’s promise and dynamic Geelen’s promise (DGP). In the
AS and GP cases, we break ties lexicographically; in the SS, we choose the value with
the highest second-SS value, etc.
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An alternative method is to use the domain sizes that will result after the value
choice has been propagated. That is, for each value a ∈ D(xi), we make the assign-
ment (xi, a), propagate, and record the domains sizes. We then order the values,
and choose accordingly. We tested two measures (both dynamic): average domain
size (AD) and smallest domain size (SD). Note that if FC is used instead of AC, then
AD is equivalent to DAS, and SD is equivalent to DSS. Using these various estimates
of how likely a value is to lead to a solution, we then follow the previous principle
by choosing the value with the highest domain size (or support count) when on an
existential variable, and choosing the value with the SD (or support count) when on
a universal variable.

Since variable assignments only affect the domains of the existentially quantified
variables, we do not include the future universally quantified variables when calcu-
lating support/domain sizes. Also the additional overhead of calculating the domain
size heuristics is reduced because QCSP-Solve’s FC and MAC already propagate
each possible value assignment for universally quantified variables before making
an assignment. Therefore there is only an additional propagation overhead when
selecting values for the existentially quantified variables.

4 Experiments: adversarial heuristics

We have implemented a MAC version of QCSP-Solve (without CBJ). It performs
AC, NI and the pure value rule as preprocessing and uses MAC, SDP and the
pure value rule throughout search. We shall henceforth refer to QCSP-Solve with
lexicographical value selection as LEX, and to QCSP-Solve with some heuristic as
just the heuristic name.

We initially used the same random problem generator as [18]. This generator
creates three blocks of variables. The first block is existentially quantified, the second
is universally quantified and the final block is again existentially quantified. Since ∃∀-
and ∀∀-constraints could be removed by preprocessing, they are not generated. The
generator has seven parameters: < n, n∀, npos, d, p, q∀∃, q∃∃ > where n is the total
number of variables, n∀ is the number of universally quantified variables, npos is the
position of the first universally quantified variable, d is the size of the domains, p
is the fraction of constraints out of the possible ∀∃ and ∃∃ constraints, q∃∃ is the
number of goods in ∃∃ constraints as a fraction of all possible tuples and q∀∃ is a
similar quantity for ∀∃ constraints. A random total bijection from D(xi) to D(x j)

is generated. (1 − q∀∃) is the fraction of tuples in the bijection which are conflicts,
and all other tuples (both those in the bijection and those not) are goods. This
method of generating ∀∃-constraints is used to allow generation of more random
QCSPs which lack a flaw described in [17]. This flaw is when some combination
of values assigned to some of the universal variables results in a domain wipe out
of a future existential variable regardless of what values earlier existential variables
are assigned. We generated 5000 test cases for each value of q∃∃ as shown in Figs. 1
and 2, comparing the mean average run times and the number of nodes explored
during search respectively, with a timeout of 1,000,000 ms. Since we prevent the flaw
described in [17], 98.9% of the problems generated have solutions, with all problems
at q∃∃ ≥ 75 having a solution. We omit some of the heuristics from the figures for
clarity: those omitted fall somewhere between DGP and LEX for q∃∃ = 50 to 80, and
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Fig. 1 n = 21, n∀ = 7, d = 8, p = 0.20, q∀∃ = 1/2

are higher than LEX for q∃∃ = 85 to 95. The graph is plotted with a log scale on the
vertical axis.

For q∃∃ = 50 to 80 we see that DGP, SAS and SD are faster than LEX, with
the DGP heuristic being consistently the fastest, with an improvement over LEX
of up to 50%. Surprisingly, the dynamic heuristic, DSS, is slower than the static
ones. In fact, as Fig. 2 shows, DSS is slightly better than LEX in the number of
search nodes it generates, but the overhead of calculating the support makes its
runtime slower. However, for q∃∃ ≥ 85, all of the heuristics are slower than LEX.
Investigating further, we can see that many of the heuristics also had slightly higher
nodes than LEX, so it was not merely the calculation overheads causing them to be
slower. In this region of the problem space, the heuristics appear to be making bad
decisions.

We used 5000 tests cases since on smaller test suites we observed a low chance
(below 0.4%) of a generated problem in the q∃∃ = 60 to 70 range causing one or
more heuristics to timeout and using those smaller suites would unfairly bias the
results against those heuristics. These outliers each affected a different subset of the
heuristics with no discernable pattern. The larger test suite obviously included more
outliers, but now they were spread more uniformly across the heuristics and q∃∃
points. However, none of the outliers adversely affected the performance of SAS,
while LEX timed out on all of them. Even when we remove the outliers from the
results, the heuristics still perform better than LEX on q∃∃ = 60 to 70, which is then
the hardest region.

In order to get a deeper insight into how the heuristics perform, we altered the
problem generator to allow us to generate problems with an arbitrary number of
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Fig. 2 n = 21, n∀ = 7, d = 8, p = 0.20, q∀∃ = 1/2

blocks of variables. The parameters d, p, q∀∃ and q∃∃ all function the same in this new
generator as the old, but a new parameter b is added for the size of the blocks. We ran
the heuristics on 500 test cases of problems with 24 blocks, all of size 1 (i.e. where we
have interleaved universal and existential quantifiers). We used 24 variables instead
of 21 on these interleaved problems in order to get sufficiently difficult problems,
as our initial tests on interleaved 21 variable problems ran too quickly for us to
accurately distinguish between heuristics. For both problem types, if we fix 20% of
the maximum amount of ∀∃-constraints and ∃∃-constraints, the amount of constraints
out of the total possible constraints, when the preprocessable types are included, is
different. For the 21 variable three-block problems we tested, there are 49 possible
∀∃-constraints, 91 possible ∃∃-constraints, 49 possible ∃∀-constraints and 21 possible
∀∀-constraints. So at p = 0.20 we generated 28 constraints out of 210 constraints,
or 13.33% constraint density. For the 21 variable interleaved problems, there are
55 possible ∀∃-constraints, 55 possible ∃∃-constraints, 55 possible ∃∀-constraints and
45 possible ∀∀-constraints. So at p = 0.20 we generate 22 constraints out of 210
constraints, or 10.48% constraint density. The interleaved problems we generated
are thus much sparser then three-block problems. It is also worth noting that these
interleaved problems do not suffer heavily from the flaw described in [17]; in our
randomly generated test cases, by q∃∃ = 40, 50% of the generated problems have
solutions. For value of q∃∃ above 75, all problems had solutions. This means that
none of these latter problems were flawed, so there is empirically less than a 0.2%
chance of a flaw existing.

Figure 3 shows the search time results of running the heuristics on these new
problems (again, some heuristics are omitted for clarity). This time, the result was
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Fig. 3 n = 24, b = 1, d = 8, p = 0.20, q∀∃ = 1/2

surprising. All of the heuristics, with the exception of DAS and DGP, are now worse
than LEX for almost all values of q∃∃. Figure 4 confirms that again these heuristics
are also exploring more nodes than LEX.

Why should these heuristics perform so poorly on the interleaved problems?
As a check, we implemented anti-heuristics, which reversed the value orderings,
minimizing the chance of leading to a solution on existentially quantified variables
and maximizing on the universally quantified variables. Figures 5 and 6 show a
comparison between the SD heuristic and its anti-heuristic. On the three block
problems, we can see the anti-heuristic performs worse than SD on the harder
regions, but on the easier regions (e.g. q∃∃ ≥ 85) and on the interleaved problems
the anti-heuristic performs better than SD does. Similar behaviour was visible for
anti-heuristics of the other adversarial heuristics.

To isolate the cause of these unexpected results, we first tried to identify the
difference between the three block problems and the interleaved problems which
might be the source of the change. We first checked to see if it was the lower density
of the interleaved problems (as explained previously) which may be the source of
the change in performance. However as Fig. 7 shows, on a three-block problem with
24 variables and approximately the same density as the interleaved tests, we do not
see the same poor performance across all values of q∃∃. For q∃∃ ≥ 75, though, all of
the heuristics are slower than LEX. This is lower than on the p = 0.20 problems,
so it appears that while density may influence the change, it is not the sole source
of it. The issue appears to be a combination of sparse constraint graphs with loose
constraints (high q∃∃). The interleaved problems have a higher ratio of ∀∃-constraints
to ∃∃-constraints than the three-block problems. Owing to the nature of q∀∃, these
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∀∃-constraints are extremely loose. Therefore, the interleaved problems are both
sparser and looser than the three-block problems. For sparse, loose problems, we
can expect many value choices to lead to a solution, and it seems that optimising our
measures is then counterproductive, and actually leads to more search.

The reason why QCSPs are typically harder to solve than CSPs is the presence
of the universally quantified variables. During the search, for a universal variable,
to prove a solution we have to extend search trees down to the leaf nodes for
every value in the domain. If adversarial heuristics are effectively favouring large
universal domains in cases where many choices lead to a solution, then they would
be increasing the size of the search space instead of reducing it. In QCSP-Solve,
the main way of affecting the size of the universal domains is the Pure Value
Rule, which identifies values in universal domains that are supported by all values
in future domains, and removes them. On an existentially quantified variable, the
adversarial heuristics attempt to maximize the support or domain size. The lexico-
graphic ordering, however, is effectively random, and so on average it picks a value
which results in smaller domains for the future variables than the other heuristics.
If many choices lead to a solution (as in sparse loose problems), then the smaller
domains are more likely to trigger the Pure Value Rule, reducing the size of the
universal domains but still allowing a path to a solution, and hence less search for
the solver. Similarly, the anti-heuristics minimise the domain size, and may benefit
from this in sparse loose problems. The Pure Value Rule could also explain why
the static heuristics performed better than the dynamic ones for 3-block problems.
The dynamic heuristics make more informed choices, which produce on average
larger future domains than the static heuristics. If we assume that even on most
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Fig. 7 n = 24, n∀ = 8, d = 8, p = 0.14, q∀∃ = 1/2

of the difficult problems the selections given by the static heuristics were good and
extendable to solutions, then on average they would have smaller search trees.

5 Verification-focused pure value heuristics

In the previous analysis, we saw that the work required to prove or disprove that
a partial assignment leads to a solution may be significant, and we postulated that
optimising measures that estimate the likelihood of a solution may sometimes lead to
choices which increase the overall verification effort. We now consider an alternative
approach to value-ordering heuristics, where we try to choose values which require
less effort for verification, regardless of whether or not they lead to a solution. This
verification effort will depend on the features of the chosen solver, and thus it is likely
that the heuristics will need to be tailored specifically for each solver. As before,
we examine the behaviour of QCSP-Solve. Since the domain size of the universal
domains has the most impact on search tree size, and QCSP-Solve’s pure value
rule removes values from these domains, we develop heuristics which choose values
which trigger the pure-value rule.1 We expect these heuristics to be most effective on
sparse loose problems, where there are likely to be more solutions.

1These heuristics can be viewed as analogous to the Block-Solve heuristic, which, although operating
bottom-up, tries to minimise the branching effect of the universals to reduce search time.
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The first heuristics are based on full application of the pure value rule. During
search, we test each value by applying the Pure Value Rule to all future universal
variables and count the number of values which would be pruned. We then generate
three heuristics based on this count: Highest Average Pruning Full Pure Value
(HAFPV) computes the average number of values pruned for future universal
variables and selects values that maximise this, Lowest Smallest Domain Full Pure
Value (LSFPV) computes the sizes of the future domains after pruning and chooses
the value which results in the lowest smallest domain (tie-breaking to 2nd smallest,
etc.) and finally Lowest Domain Product Full Pure Value (LPFPV) which computes
the sizes of the future domains and chooses the value which has the lowest product
of those domain sizes. The overhead of these heuristics is very large: approximately
80% of total runtime is spent generating the value ordering due to all the additional
pure value calculations which are required. In comparison, for the adversarial
domain heuristics less than 10% of runtime is spent on value ordering, and for the
adversarial support heuristics it is generally less than 1%.

To reduce the computational overhead, instead of directly calculating the pure
values we can merely estimate how many pure values will be pruned. Again we
have three variations on the basic heuristic: Highest Average Pruning Dynamic
Pure Value Estimate (HADPVE),Lowest Smallest Domain Dynamic Pure Value
Estimate (LSDPVE) and Lowest Domain Product Dynamic Pure Value Estimate
(LPDPVE). Before search, the HADPVE heuristic preprocesses all existentially
quantified variables after the first universally quantified variable. Every value a ∈
D(xi), where xi is existentially quantified, is given a counter, PVestimatea, which
starts at zero. Then a is checked against all values in the domains of the universally
quantified variables before xi, and it is recorded whether the values support each
other or not. If the values do not support each other, PVestimatea is incremented.
Thus the counters PVestimatea become a counter for the maximum possible number
of pure values which could be created by removing a from D(xi). During search,
HADPVE propagates after every value like the domain size heuristics, and then
sums the PVestimates of all the values remaining in the domains of future exis-
tentially quantified variables. These sums are then ranked in ascending order, as
the value with the lowest total is most likely to have created the most pure values.
LSDPVE and LPDPVE perform similarly to HADPVE, except they have multiple
PVestimates per value in each existential variable’s domain, which keep track of the
estimated PV removals possible for the individual universal variables rather than
just the total. LSDPVE and LPDPVE use these values to attempt to estimate the
sizes of the future universal domains after the estimated pure values are removed.
They then use these estimated universal domain sizes in the same way as their FPV
counterparts.

We tested these new heuristics on the same problems as before, including DGP
and LEX for comparison and excluding some of the pure value heuristics for clarity in
the graphs. Figures 8 and 9 show the results on the 3-block problems for search times
and nodes explored, while Figs. 10 and 11 show the interleaved problem results. The
first thing to note is that the FPV heuristics, despite their immense computational
overhead, give significant run-time improvements over LEX when the value of q∃∃
is high. For other values of q∃∃ the FPV reduces the number of nodes explored,
but the large overhead outweighs the benefit. HAFPV (omitted from the figures for
clarity) and LPFPV both perform very similarly on all test cases, with LPFPV being
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Fig. 8 n = 21, n∀ = 7, d = 8, p = 0.20, q∀∃ = 1/2
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slightly better for most values of q∃∃. LSFPV by its nature gives fewer pure value
removals than HAFPV and LPFPV, so it is more effective on the more difficult
3-block problems which have fewer possible solutions and less effective on the other
easier 3-block problems and the interleaved problems.

LSDPVE and LPDPVE both performed significantly worse than HADPVE, due
to the high inaccuracy of their estimations of the domain sizes after pruning. Since
QCSP-Solve only calls the pure value rule on the current variable, there can be
many values in the domains of future universals which are already prunable but
have not yet been removed. Thus the true size of the universal domains is masked
from LSDPVE and LPDPVE and so their attempts to choose the lowest minimum
domain size will be inaccurate. Also the PVestimates proved too inaccurate when used
to count individual universal domains’ prunings as opposed to a measure of overall
total prunings. Of these two heuristics, on 3-Block problems LSDPVE was generally
better, while on Interleaved problems LPDPVE was better.

HADPVE, however, performs notably better. In the 3-block problems, it is the
best heuristic on the tighter problems, and outperforms LEX on the loosest problems
(although it is poorer in the middle of the range). On the interleaved problems,
HADPVE outperforms LEX across the range, giving a speed-up of approximately
50% for almost all values of q∃∃. It is only overtaken by the full pure value heuristics
at the higher values of q∃∃. Note LPFPV is an order of magnitude better on nodes
expanded than LEX on the interleaved problems.

6 Higher density problems

Finally, we consider the performance of the best of our heuristics on higher density
problems. If our conjectures about sparse loose problems, the pure value rule and
the universal domains are correct, then as we move to denser problems we should
see the adversarial heuristics outperform the others. Figures 12 and 13 show our
heuristics applied to three-block problems with a higher constraint density (40%).
The performance of the SAS and DGP heuristics are consistently better than LEX
for all values of q∃∃, with the most noticeable improvements again in the harder
region, where we again achieve approximately 50% improvements over LEX. This
is as we would expect, since when the constraint graph is dense, we would not
expect most choices to lead to solutions even with loose constraints, and so the
conflict with the Pure Value Rule does not come into effect. The HADPVE heuristic
performs slightly better than we expected, having slightly lower running times than
LEX before the hard region, but then having a slower running time on the more
difficult problems. Again, this poorer performance was expected, since the heuristic
is likely to make choices leading to smaller future domains which are not extensible
to solutions due to the higher constraint density. The LPFPV heuristic proved best
of the FPV heuristics, and proved slower than LEX for most values of q∃∃ (though it
was again better on search nodes explored) only improving on it at the highest values
of q∃∃ but still performing worse than the adversarial heuristics. Problems with even
higher densities showed the same behaviour.

For higher density interleaved problems, we initially found that a large number
(approximately 60%) of the randomly generated test cases possessed the flaw
described in [17]. As such we altered the problem generator to only allow adding
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a new ∀∃-constraint to an existential variable if there are currently less than (d − 1)

∀∃-constraints on it already. In this way all flaws are prevented as it is impossible
for the universals to cause a domain wipe out of an existential variable on their
own. In addition, we reduced the problem size to 22 variables as at higher densities
24 variables were taking too long for all heuristics and LEX to run. Figures 14
and 15 show the performance on these flawless higher density (70%) interleaved
problems. The three adversarial heuristics outperform LEX across the range, giving
over a 50% decrease in run-times. Surprisingly the pure value heuristics proved to
be very effective choices for high density interleaved problems. HADPVE is still a
very good heuristic across all of the q∃∃ values. LPFPV becomes the best heuristic
starting at q∃∃ = 93, showing a 50% reduction in run-time, and approaching an order
of magnitude reduction at higher values of q∃∃ despite its extremely high overhead.
For the number of search nodes expanded (Fig. 15), again we see that LPFPV is
consistently an order of magnitude better than LEX.

7 Conclusions and future work

We have introduced two approaches for designing value ordering heuristics for
backtracking search in QCSPs. The first is solution-focused, and is a general approach
derived from the minimax algorithm for adversarial search: for existential variables,
choose values that maximise the chance of leading to a solution, and for universal
variables, choose values that minimise the chance of leading to a solution. The
chances of finding a solution are estimated by counting the number of supporting
values in the future domains. The second approach is verification-focused, and aims
to reduce the search effort required to show whether or not a partial assignment
leads to a solution. We implement this approach for one particular solver, QCSP-
Solve, by minimising the size of the universal domains through targeting the QCSP-
Solve Pure Value Rule. The heuristics show a 50% improvement in runtime over a
lexicographic ordering on different classes of problem: the pure value heuristics are
best suited to sparse loose problems, while the adversarial heuristics are best suited
to dense problems. Finally, on dense interleaved problems both types of heuristic are
up to 50% faster than lexicographic ordering, with one of the pure value heuristics,
LPFPV, approaching an order of magnitude improvement. In future work, we plan
to investigate enhanced use of the pure-value rule in heuristics for QCSP-Solve, and
to investigate other implementations of the verification-focused approach for other
solvers, which will depend on how they handle the universal variables.

Our work has shown that the ideal QCSP heuristic should do two things: it
should make choices which will lead to a solution and it should make choices which
minimise the search effort needed to show whether a partial assignment leads to
a solution. The current two approaches each focus on only one of these aspects.
The solution-focused approach seeks to make choices which lead to a solution,
but may favour choices which require significant search effort to verify them. The
verification-focused approach tries to reduce the search effort required to verify
a partial assignment, but may do so by concentrating on existential choices which
cannot be extended to a solution, and thus requiring more search. As future work,
we will look for a hybrid heuristic which combines both approaches, making choices
which lead to solutions, but favouring solutions which require less verification effort.
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The graphs of the nodes explored by the Full Pure Value heuristics show that there
is a huge potential on many of the problem types for improving the search space
reduction we can achieve, through the use of more intelligent value selection.
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