
Learning market prices in real-time supply

chain management

David A. Burke, Kenneth N. Brown, S. Armagan Tarim,

Centre for Telecommunications Value-chain Research and
Cork Constraint Computation Centre,

University College Cork,
Ireland

Brahim Hnich

Faculty of Computer Sciences,
Izmir University of Economics,

Turkey

NOTICE: this is the author’s version of a work that was accepted for publication
in Computers and Operations Research. Changes resulting from the publishing
process, such as peer review, editing, corrections, structural formatting, and other
quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive
version will be published in a future issue of Computers and Operations Research.

Abstract

This paper proposes a model for dynamic pricing that combines knowledge of pro-
duction capacity and existing commitments, reasoning about uncertainty and learn-
ing of market conditions in an attempt to optimise expected profits. In particular,
the market conditions are represented as a set of probabilities over the success rate
of product prices, and those prices are learned online as the market develops. The
dynamic pricing model is integrated into a real-time supply chain management agent
using the Trading Agent Competition Supply Chain Management game as a test
framework. We evaluate the agent experimentally in competition with other supply
chain agents, and demonstrate the benefits of incorporating more market data into
the dynamic pricing mechanism.

Email addresses: d.burke@4c.ucc.ie (David A. Burke), k.brown@cs.ucc.ie
(Kenneth N. Brown), at@4c.ucc.ie (S. Armagan Tarim),
brahim.hnich@ieu.edu.tr (Brahim Hnich).

Preprint submitted to Elsevier Science 29 January 2007

1 Introduction

Supply chain management involves planning and coordinating a range of activ-
ities across the supply chain, from raw material procurement to finished goods
delivery. Shorter product life cycles, changing and uncertain market trends,
and the emergence of e-market places is resulting in a shift in how supply
chains are managed. Today’s supply chains are generally based on long-term
relationships between key trading partners. Introducing more flexible and dy-
namic mechanisms offer the possibility of more efficient relationships between
suppliers and customers that respond to changing market conditions. In a dy-
namic supply chain, the market is the driving force, and there is less emphasis
on relationships with supply chain partners. In this paper, we take the per-
spective of a single self-motivated trading agent in a market-oriented supply
chain.

In a typical supply chain environment, the procurement costs and availability
of raw material change over time. The demand is typically uncertain and thus
changes over time. Consequently, as competitors enter or leave the market and
improve their processes, the market price for finished goods will also change
over time. One of the key enablers for an effective supply chain trading agent is
the ability to change prices in response to changing market and supply chain
conditions. The price offered to a potential customer must be high enough
to make a profit over the cost of procurement, inventory, production and
delivery, but must be low enough to be profitable to the customer, and must
be lower than comparable offers from competitors. In improving inventory
management practice and balancing demand and supply, the determination of
the optimal price to charge a customer over time for a product whose demand
is uncertain and whose supply is limited is a complex task, known as the
dynamic pricing problem. Charging travellers different fares for the same flight
and the pricing of hotel rooms, fashion goods, and discontinued or left over
products are examples of dynamic pricing. While the types of pricing policies
and methods used in the exchange of goods and services vary greatly, they
fall into two broad categories: posted-price mechanisms and price-discovery
mechanisms (bidding processes such as auctions) [1]. Under a posted-price
mechanism, goods are sold at take-it-or-leave-it prices determined by sellers.

Much of the dynamic pricing literature deals with maximising expected rev-
enue on sales of perishable goods. In this context [2] investigates the use of
dynamic programming with incomplete state information to jointly estimate
demand and set prices as time evolves. Parameters for a demand function are
learned over time using least squares estimates applied to observed demand
and prices. A similar problem is investigated in [3] where a probability dis-
tribution is used to model customer demand relative to prices offered and is
updated using real-time sales data. They show that their strategy is also ro-

2

bust when the demand predictions are inaccurate. [4] examines the robustness
of dynamic pricing models in greater detail. [5] looks at dynamic pricing in the
context of learning customer demand for information goods sold on the Inter-
net. They use a Bayesian model of demand uncertainty and provide a number
of algorithms for updating this model after observing sales data. An exam-
ple of dynamic pricing in the context of prices posted online by e-businesses
is [6], where a number of algorithms incorporating game theory and machine
learning are evaluated. The effect that production strategies have on pricing
is investigated in [7], where they examine how the range, choice and design
of products offered plays a part in determing the prices charged for products.
The reader is also referred to Elmaghraby and Keskinocak [1] for a more com-
prehensive review of dynamic pricing with inventory considerations as well as
a general review of dynamic posted pricing literature.

In this paper we employ the dynamic posted-price mechanism approach for
dynamic pricing. Our key idea is to combine reasoning about the probability of
acceptance with reasoning about supply, inventory and production constraints.
We represent market conditions implicitly, creating a probability distribution
over the prices acceptable to the customers. This price information is then fed
into a production/inventory planning model. The aim of this model is to select
a subset of tenders and assign one of those prices to each one, to maximise the
expected profit, while ensuring that the expected set of accepted offers can be
produced by obeying all inventory and production constraints. This abstract
model allows us, in principle, to participate in a variety of sealed-bid markets,
whether there is one customer or many, one encounter or many, one product
or many, and one agent or many competitors. We can then learn these prob-
ability distributions as we participate in the market, observing the success or
failure of our bids. Specifically, we fix target probabilities, and learn the prices
which would be accepted with those probabilities. We study four dynamic
pricing strategies of increasing complexity, making more informed decisions
about the selected tenders and the prices we offer. To verify our approach, we
implement an agent to participate in the Trading Agent Competition Supply
Chain Management (TAC–SCM) [8] game, and we show that in competition
with a portfolio of third-party agents, the most informed model increases the
average profits over a series of simulations.

Note that procuring contracts through dynamic posted prices can be modelled
using game theory (e.g. [9]), and it has been shown that approximating the
behaviour of competitors in such games can mean that the Nash equilibria are
not achievable [10]. However, the nature of real-time dynamic supply chains
means much significant information will be unavailable. For example, in a
single tender process, the identity of competitors, their cost structures and
reward functions, and the number of competitors may all be unknown. Further,
a supply-chain agent may not even know its own cost structures, since the
availability and price of components may be unknown. If we regard each tender

3

process as a round in a larger game, then decisions taken in a single round
directly affect costs and capabilities in future rounds, but the game parameters
for future rounds are unknown (i.e. customer demand), and the actions of
competitors in previous rounds may also be unknown. For all these reasons,
we suggest that any game-theoretic approach applied to realistic dynamic
supply chains will be forced to rely on many approximations. In this paper,
we take an alternative approach, and use the repeated rounds to approximate
the missing information. The only aspect of the market that we can be sure of
is the result of our previous actions (i.e. the successes or failures of our previous
bids), and thus we use this as the basis of our approximation, learning prices
that have given probabilities of being accepted.

The TAC–SCM competition was staged for the first time in 2003. There have
been many different approaches to pricing strategies in the competitions to
date. Game theory and a variation of the Cournot game is used in [11] to
model the customer market. They investigate the relationship between mar-
ket demand and product price and use this as a way to predict market-clearing
price. Kiekintveld et al. [12] perform game theoretic analysis to factor out the
strategic aspects of the environment and to define an expected profitable zone
of operation. They then use feedback from the market to dynamically adjust
both their sales, procurement and production strategies in an attempt to stay
within this zone. A mathematical model similar to that which we propose in
this paper is used in [13]. Their model tightly couples the bidding and pro-
duction scheduling decisions of the agent while trying to maximise expected
revenue. However, they do not consider component costs which could lead to
below cost selling. As with our approach, they also include the probability of
being successful with a bid as an input into their model - the probability distri-
bution is derived using linear regression on recent information gained from the
market place. A particularly interesting approach is used in [14] where the sales
task is looked at as a multi-period optimisation problem. Both multi-stage sto-
chastic programming and Markov Decision Processes are used to consider the
impact of current decisions in future periods. Many agents also include some
method for estimating the probability of offer acceptance in their algorithms.
Ketter et al. [15] examine two different strategies. An attempt to use online
learning was not successful due to the lack of available online information (an
issue which we address in this paper). A second technique in the same paper
assumes that the shape of the probability curve remains the same and uses
information learned from the market to shift the probability curve as a whole.
Daily market price reports, containing the day’s low and high prices, are used
in [16] for probability estimates. These probability estimates just consider
product type, which is considered to be the most important parameter affect-
ing price. This is extended to also consider the due date of customers requests
by introducing multipliers which are learned online comparing predicted and
actual orders received for different due dates. Several machine learning ap-
proaches to estimating the probability of bid acceptance are compared in [17].

4

Fig. 1. Timeline of our agent’s daily reasoning.

Here, purely historical data is used to learn the probability of acceptance and
the impact of different techniques is measured on agent performance.

2 A generic real-time supply chain management model

We consider an intermediate agent in a dynamic supply chain. We assume
that the problem involves a series of sealed-bid first-price auctions, in which
one or more customers request quotes, the agent selects a subset of the re-
quests and offers a price on each one, and then discovers which of them have
been successful. The agent must then supply finished products by a stated
due-date. The agent must procure components, arrange for their storage, pro-
duce the finished goods, and deliver them. In this general scenario, we make
no assumptions about the number of customers, the number of competing in-
termediate agents, the production process, the inventory management, or the
procurement problem. The aim of the agent is to determine the best prices for
the best subset of tenders over a predefined period, with the ultimate aim of
maximising expected profit. Figure 1 outlines an agent’s behaviour in choosing
prices in such a scenario.

We now present a general mixed integer linear programming model that will be
executed each day to decide what customer requests to bid on and what prices
to offer for these requests. This bid set will result in an uncertain number of
accepted offers, affected by the actions of the customers and on the actions
of any other producers that may be competing for the contracts. We assume
no knowledge of how many other producers are bidding, and we assume no
information on their cost structures, their objectives, their order books, their
supply contracts or their production processes. We do, however, assume that
we have a history of our own previous offers and their outcomes, and that from
that history we could derive a simple probability distribution over the success
of individual bids. We can use this distribution to determine the expected
number of accepted orders for each product. Our model is thus based on the

5

expected orders. The constraints will ensure that we only consider bid sets
which give expected orders that could be produced (based on our order book,
our inventory state, our expected inventory replenishment, and our production
ability), and will compute the profit on the expected orders. The objective
function is then to select the bid set such this expected profit is maximised.

The intention is that any specific model will include integrated production
and supply constraints. However, the form of the reasoning about prices is
independent of the details of those constraints, and could be applied to many
different production models. Therefore, for clarity, we concentrate here only
on the pricing model; we do not include details of the production and supply
constraints in this discussion, giving instead abstract statements. In section 4,
we will show how to instantiate the model with specific production constraints
for one specific problem.

Note that the result of the model will be an (approximated) expectation. If we
receive fewer orders than expected, we will simply make less profit. If we re-
ceive more orders than expected, however, or a different distribution of orders,
then we might not be able to produce all the products by the due dates speci-
fied in the original requests. We assume late delivery would result in penalties
that again reduce the profit on that day’s trading. The basic pricing model
does not include any explicit provision for risk management; instead we as-
sume the specific inventory policy and production constraints include buffers
that are set each day before running the model. In our implementation, we do
this using the newsboy model [18]. As we are interested in analysing pricing
strategies, we construct a model that is only intended for making pricing deci-
sions: procurement, inventory management and production schedules should
be based on a different model. Finally, the pricing model is executed each
day with a rolling horizon, and thus the results of over-bids or under-bids will
be fed into the next day’s model as an updated order book, will inform the
probability distribution, and may trigger short-term procurement actions.

The details of the model are given in figure 2. The input parameters Bij

define a bill of materials for each product, and we assume they do not change
over the time horizon. The parameters cj represent the average unit cost of
component j in inventory. The parameters Dir, dr and sr are obtained from
the set of requests made by customers; sr is the maximum price the customer
will pay for the product. The key to the model is the matrix of prices, P ,
and the vector of probabilities, p, such that Pik is the price for product i that
we believe will be accepted with probability pk

1 . In section 3, we discuss

1 An alternative model could have a function mapping prices to probabilities for
each product. This would remove the need for the integer variable brk, but would
introduce a non-linear term in the objective function. We choose to use a linear
MIP rather than a non-linear program, and we demonstrate in later sections that
the MIP can be used successfully in real-time decision making.

6

Problem parameters
Bij : the number of components j needed to produce one unit of product i,
cj : the cost of component j,
Dir : the amount demanded for product i in request r,
dr : the due date in request r,
sr : the reserve price in request r,
pk : the k’th element of the probability vector,
Pik : the offer price for product i with acceptance probability pk,
or : the price offset multiplier for request r,
Sjt : the existing supply agreements: quantity of component j for delivery on day t
Oit : the order book: number and price of product i for delivery on day t

Decision variables
brk : a {0,1} variable that takes the value of 1 if an offer is made for

request r using the price corresponding to probability pk

Auxiliary variables
θ : the expected total profit,
qit : the expected quantity of product i for delivery on day t, qit ∈ R0,+

maximize

θ =
∑
∀r

∑
∀k

∑
∀i

Dir

Pikor −
∑
∀j

Bijcj

 pkbrk (1)

subject to∑
∀k

brk ≤ 1 ∀r (2)

Pikorbrk ≤ sr ∀r,∀i,∀k|Dir>0 (3)∑
∀r

∑
∀k

Dirpkbrk = qit ∀t,∀i|dr=t (4)

supply, inventory and production constraints(S, O, B, q) (5)

Fig. 2. Generic optimisation model.

methods for acquiring and updating this matrix and vector. or is a multiplier
which we may apply to the prices in P , to adjust for significant features
in particular requests. Details of how we derive and use this parameter are
given in sections 3 and 4. The remaining (abstract) input parameters are
an order book O, which records the details of all previously accepted orders
that have still to be delivered, and finally, the existing supply agreements
S, which records what components will be arriving from suppliers over the
coming horizon. The decision variables brk indicates whether or not an offer
is made for request r at the price with acceptance probability pk. θ is the
total expected profit, and is the quantity to be maximised. The variables
qit represents the expected number of product i to be delivered on day t.

7

Equation (2) ensures only one offer can be made for each request, while (3)
ensures any offer made meets the reserve price constraint. For each day t and
product i, equation (4) computes qit, the expected number of units of i to be
delivered on that day, from the expected bid success on each request that had
t as a due date. Abstract equation (5) models the details of our production
process, supply contracts, and inventory management, constraining the value
of qit (and hence implicitly the bids) to ensure that the expected orders can
be produced in addition to the existing orders specified by the order book
O. These equations could include any buffers to mitigate against risk. The
aim is to optimise the expected profit (1), where the profit on a product is
calculated by subtracting the cost of components from the chosen selling price,
and multiplying this by the probability that the bid will be accepted.

3 Pricing strategies for a real-time supply chain

In each time period of our dynamic supply chain environment, the agent must
determine what prices to offer for the requests. Thus the agent must specify
the input to our model, setting appropriate values for the parameters. In
particular, the agent must specify the entries for the price matrix, P , from
which the model will select the prices. We present four different strategies,
making increasing use of information about the market.

Fixed Price: As a baseline to test against, we propose a simple initial strat-
egy, FixedPrice, where we will use a fixed price for each product. The fixed
price can be chosen based on past market prices as well as expected future
prices and will remain constant over all time periods. The probability of
acceptance of this price is set to 1, as is each request multiplier. Specifically,
we restrict the basic model by setting |p| = 1, p1 = 1.0, and ∀r or = 1.

Dynamic Price, Fixed Margin: The previous strategy used a fixed price
and although it may function reasonably well, it is not capable of reacting
to changing market prices. The most basic problem is that the price makes
no allowance for changes to the cost of components. If costs increase, the
agent’s price may no longer be profitable. To deal with this we define a
second strategy, FixedMargin, that sets the price of products to include
a specific margin, m, over the cost price. The agent can then dynamically
adapt the price to reflect changing costs by updating the price in each time
period. Again, acceptance probability and request multipliers are set to 1
in the basic model: |p| = 1, p1 = 1.0, ∀i Pi1 = m ∗ ∑

∀j Bijcj and ∀r or = 1
Dynamic Price, Online Learning: The previous strategy guarantees a cer-

tain margin on any sold products, but there are still a number of potential
weaknesses to our approach:
• if the market is very competitive prices will drop and the agent may be

undercut and priced out of the market;

8

• if the market is booming with high demand then the agent may be better
off with higher prices in order to maximise its expected profit;

• the strategy assumes that all offers are accepted and if this is not the case,
then both factory capacity and supplies are left unused.

In the market, we may be competing against other agents, each with in-
dividual strategies. The pricing strategy that we adopt should reflect the
current market state and dynamically adapt to changes. As indicated pre-
viously, we consider a strategy which maintains a set of target probabilities,
and maintains a set of prices for each product which we believe will be
accepted by the customers with those probabilities. If we can successfully
predict these prices, then we can increase the number of offers we make,
and choose a set of offers that will maximise our expected profit. The only
restriction we now place on the basic model is to set or = 1 ∀r.

To learn a price, w, that has a certain target probability, ptarget, of being
accepted, we keep track of the ratio of offers accepted, a, to those made, o,
and periodically update the price based on this information using an online
learning algorithm (algorithm 1 2). If the actual probability, a/o, is greater
than the target then we increase the price, and if the actual is less than the
target we reduce the price. The update size is set relative to the distance
between the target and actual value meaning that the further away from
the target the actual value is, then the larger the update. This value is
multiplied by a step-size factor, α, which decreases over time by a factor of
γ. This allows us to learn quickly initially by allowing larger jumps while
progressively smaller jumps are allowed as time progresses until we reach
a relatively stable price value. A lower limit can be placed on α to ensure
it does not become too small. Prices that reach a level where they are no
longer considered profitable, and so will have no offers made on them will
gradually be increased (pactual = ptarget + ε), resulting in them reaching a
level where they can be tested once again.

Dynamic Price, Online and Historical Learning: For an autonomous
agent, working in a real-time supply chain, lack of information about the
market is a potential problem that may result in inaccurate price/probability
combinations. Up to now, we have considered learning prices for different
products but that ignores the price variations that would be caused by other
factors such as different lead times or different quantities etc. It is difficult
to learn online at such a detailed level because, as we increase the number
of maintained prices, we begin to spread the offer/order information more

2 This algorithm is based on the delta rule [19] (also known as Widrow-Hoff
rule [20]), which has successfully been used in online reinforcement learning al-
gorithms and neural networks [21]. The rule is derived by expressing the rate of
change of prediction error with respect to the parameter w and then moving the
parameter in the direction of decreasing error. This algorithm should be applica-
ble under the assumption that prices are roughly correlated from day to day with
gradual shifts rather than drastic changes.

9

Algorithm 1 Updating prices
if a == 0 then

pactual = ptarget + ε
else

pactual = a/o
δ = pactual − ptarget

w = w + (α ∗ δ)
α = (α ∗ γ)

thinly across all the prices, which means less information to learn from for
each individual price. To improve the prediction accuracy we complement
the online learning with trends or patterns observed from historical data,
DynamicHistoric. By analysing the impact that different parameters have
on product prices, we can learn different multipliers that can be applied to
the learned prices to tailor them for specific requests. For example, historical
trends may tell us that orders for lower quantities may attract a premium
on the price, as fewer competitors bid for the work; in which case we may
apply an offset multiplier, or which raises the predicted price for low quan-
tity requests and lowers the price for high quantity requests. Examples of
such trends and multipliers will be given in section 4.2. This strategy now
uses the full basic model.

4 Experimental setup: TAC–SCM

To evaluate our algorithms, we have developed an agent to compete in the
international Trading Agent Competition Supply Chain Management (TAC–
SCM) game [8]. TAC–SCM is based on a simulated supply chain in which
agents must win contracts, obtain supplies, and produce goods, in competi-
tion with five other agents. Multiple customers issue requests for quotes for
the sale of PCs, including a quantity, a due date, and a penalty cost. A num-
ber of production agents make bids for the contract, and for each request, a
winning bid is selected. The winning agent must then manufacture the PCs,
or provide them from stock, and ship them to the customer by the due date.
In order to manufacture the PCs, the agent must procure raw material from
suppliers. Again, requests for quotes are issued by the agent, the suppliers
respond with offers, and an appropriate offer is selected. Each agent is limited
by the capacity of its assembly line, and must select each day which set of
products are to be manufactured. An agent has unlimited storage capacity,
but must pay an inventory holding cost for each component and each finished
PC. Failure to meet a due date on an order results in financial penalties.

The game is dynamic and it involves significant uncertainty. There are in

10

total 16 different PC configurations possible, each with a different set of com-
ponents, and each requiring a different number of production cycles. The con-
figurations are divided into three categories or ranges (low, medium and high)
based on their expected price. Customer demand is uncertain - each day, the
demand for configurations in each of the three categories varies based on a
Poisson distribution around a target which is varied as a random walk. The
due dates and penalties (and reserve prices) are selected uniformly at random
over an interval. Daily reports on the maximum and minimum prices paid for
each configuration are available. Every twenty days, the agent receives a mar-
ket summary report, detailing the average prices. The game runs in real-time
and simulates a full trading year, with each day lasting 15 seconds.

4.1 Agent setup

To implement our dynamic pricing strategies in the TAC–SCM environment,
we first require basic handling rules for the supply and production side of the
agent. Our customer pricing model requires as input the cost of components
and the number of components available for use.

For procurement, we use a simple strategy of ordering components in advance
and maintaining an inventory. The agent aims to get at least 1/(# of agents)
of the total market demand so its estimated daily component need is calculated
to be the components needed to meet the maximum of this and the agent’s
own recent average daily market share. The replenishment quantities are based
on this daily estimate, allowing orders to be tailored to demand. When making
requests for components the agent sets a maximum price to be equal to the
average market price of the components, which is obtained from the market
reports. Although there is a small amount of uncertainty in the delivery dates
of supplies, this strategy essentially provides the known inventory levels and
component costs needed by the pricing model. However, although our bidding
is based on those levels, there is obviously demand uncertainty, caused by
the uncertain behaviour of the customers and the unknown behaviour of the
other agents, and thus there is a risk that we will receive orders that exceed
our inventory capacity. To cater for this risk, we maintain buffer stock, the
amount of which is calculated daily according to the newsboy model [18],
using the holding and penalty costs provided in the game. This buffer stock
will be implemented through a reduced opening inventory given as input to
the model. For the occasions where we still exceed the inventory levels, we
issue short-term procurement orders to top-up the inventory at short notice.

Production in the game is based on a predefined number of cycles required
for each product, with a daily limit in the factory. In order to ensure that
the expected number of bids can be scheduled, the pricing model must build

11

a provisional schedule for the existing and expected orders. Again, to guard
against the risk of excessive orders, we keep a buffer of production cycles,
implemented by stating the number of usable cycles each day as an input pa-
rameter to the pricing model. Actual production is separate from the bidding
strategy, and is done daily using a make–to–order strategy. Confirmed orders
are ranked by due date, tie-breaking on which order has the largest penalty.
Production is then scheduled for the orders if the components exist for them
until all the day’s available production capacity is used up. If we receive more
orders than can be produced on time, this heuristic chooses to delay the ones
with the smallest impact on profits.

The full optimisation model for choosing offers to make to customers is an
extension of the general model described in section 2. For completeness, we
provide the full model in figure 3. The new input parameters which replace
the order book and supply agreement parameters from the general model are:
li, the number of cycles required to produce a single unit of product i; Ct,
the maximum production cycles available on day t; and Ajt, the number of
components of type j scheduled to arrive in inventory on day t, where Aj0 is
the opening inventory level. There are four new auxiliary variables, describing
the provisional schedule and inventory levels. fjt is the number of units of
component j to be used at time t. mit is the number of units of product i to
be manufactured at time t. Ijt is the closing inventory level for component j
at period t, and Yit is the closing inventory level for product i at period t. Four
new constraints on the provisional production schedule and inventory levels
replace the abstract constraint from the general model. Equation (10) ensures
production does not exceed factory capacity. The expected component need
is calculated in (11), and supply constraints are enforced by ensuring that the
closing component inventory for any day is non-negative (12). Finally, (13)
ensures that the closing product inventory level for each day is non-negative.

4.2 Implementing pricing strategies

We now describe the details of the four pricing strategies adapted for the
TAC–SCM game.

• To implement FixedPrice, a fixed price for each product, set to 75% of
the nominal price 3 , is defined and used every day in the game. This value
is based on observations that this price is generally both competitive and
provides good margins.

• In FixedMargin, the input price for each product is dynamically updated
each day, set to be the cost of the product plus an arbitrarily chosen margin
of 10%.

3 Nominal prices for each product are provided in the game description.

12

Problem parameters
Bij : the number of components j needed to produce one unit of product i,
cj : the cost of component j,
Dir : the amount demanded for product i in request r,
dr : the due date in request r,
sr : the reserve price in request r,
pk : the k’th element of the probability vector,
Pik : the offer price for product i with acceptance probability pk,
or : the price offset multiplier for request r,
li : the number of processing cycles required to build product i,
Ct : the factory capacity available at day t,
Ajt : the number of component j arriving at period t,

Decision variables
brk : a {0,1} variable that takes the value of 1 if an offer is made for

request r using the price corresponding to probability pk

Auxiliary variables
θ : the expected total profit,
qit : the expected quantity of product i for delivery on day t, qit ∈ R0,+

fjt : the number of component j used at time t, fjt ∈ R0,+,
mit : the number of product i manufactured at time t, mit ∈ R0,+,
Ijt : the closing inventory level for component j at period t, Ijt ∈ R0,+,
Yit : the closing inventory level for product i at period t, Yit ∈ R0,+

maximize

θ =
∑
∀r

∑
∀k

∑
∀i

Dir

Pikor −
∑
∀j

Bijcj

 pkbrk (6)

subject to ∑
∀k

brk ≤ 1 ∀r (7)

Pikorbrk ≤ sr ∀r,∀i,∀k|Dir>0 (8)∑
∀r

∑
∀k

Dirpkbrk = qit ∀t,∀i|dr=t (9)∑
∀i

limit ≤ Ct ∀t (10)∑
∀i

Bijmit = fjt ∀t,∀j (11)

Ijt = Ijt−1 + Ajt − fjt ∀t,∀j (12)

Yit = Yit−1 + mit − qit ∀t,∀i (13)

Fig. 3. Optimisation model for TAC–SCM.

13

• Multiple prices and probabilities are introduced in DynamicOnline. The
agent learns weights that will be multiplied to the nominal prices of each
product. Weights are learned for each product range and for 3 target prob-
abilities representing low, medium and high success rates, arbitrarily set
to 0.3, 0.6 and 0.9 respectively. Attempts to learn more detailed weights
or a larger number of probabilities proved unsuccessful due to the limited
amount of available information, i.e. a limited number of customer requests
to issue offers to. Each day in the game, the three probabilities along with
the current learned prices for each product corresponding to these proba-
bilities are input to the model, which then selects one for each offer made.

• To implement DynamicHistoric, an analysis was carried out on each game
in the seeding round of the 2005 competition and the effect that individual
customer RFQ parameters (product type, quantity, due date, reserve price
and penalty) had on the sale price was examined. For each day of each game,
for each RFQ parameter we calculate the average weights of winning prices
for different values of that parameter. Then, we compare the average weights
for different values to see how the values relate to each other (a relative
comparison is used because the weights themselves will vary depending on
the market conditions). E.g. for the reserve price, we divide the possible
values into 5 categories: 75-85% of nominal price; 85-95%; 95-105%; 105-
115%; 115-125%. We then calculate the average weights of winning bids for
each of these categories. We use the weight of the first category as a base
measure and then express all other weights relative to this, which resulted
in the following multipliers : [1, 1.074, 1.121, 1.141, 1.147]. To use these
multipliers, the agent learns a single weight per probability per product
range as before. Now, let us assume that a weight of w has been learned
that has a certain probability p of being accepted. If the agent wishes to
bid a price that has probability p of being accepted taking into account
the reserve price multiplier, then, it will bid the nominal price ×w × 1 if
the reserve price in the RFQ is less than 85% of the nominal price. It will
bid nominal price ×w × 1.074 if the reserve price is between 85-95% of the
nominal price etc. I.e. we expect that the winning price of an RFQ with a
reserve price in the 85-95% range will be 1.074 times greater than that of
an identical RFQ that has a reserve of less than 85%.

Patterns emerged for each RFQ parameter from our data analysis and
were consistent across games with different market conditions. The full ta-
ble of multipliers is given in Figure 4. The reserve price appears to be the
parameter that most significantly affects the price of products. As the re-
serve price increased, so too did the average selling price. The lead time
and quantity parameters also showed clear trends although with only mi-
nor impact on the weights. DynamicHistoric makes use of all of these
multipliers, adjusting prices to tailor them for specific requests. The price
used for bidding for an RFQ is multiplied by or which is a product of the
multipliers that apply to that request.

14

Lead time 3 4 5 6 7 8 9 10 11 12

Multiplier 1 1 1 1 0.999 0.997 0.995 0.992 0.989 0.986

Quantity 1 2 3 4 5 6 7

Multiplier 1 1.005 1.008 1.011 1.012 1.013 1.015

Quantity 8 9 10 11 12 13 14

Multiplier 1.015 1.015 1.016 1.017 1.016 1.017 1.017

Quantity 15 16 17 18 19 20

Multiplier 1.016 1.015 1.015 1.014 1.013 1.011

Reserve price 75-85% 85-95% 95-105% 105-115% 115-125%

Multiplier 1 1.074 1.121 1.141 1.147

Penalty 5-8% 8-12% 12-15%

Multiplier 1 1 1.001

Product (low) 1 2 9 10 11

Multiplier 1 1.015 1.008 1.023 1.027

Product (mid) 3 4 5 12 13 14

Multiplier 1 1.004 0.981 1.009 0.980 0.992

Product (high) 6 7 8 15 16

Multiplier 1 1.003 1.006 1.003 1.006

Fig. 4. Multipliers calculated for each request parameter. Each table shows the
multiplier, relative to the first column in the table. To tailor a price for a specific
request, the nominal price of the product is multiplied by both the learned weight
and the multipliers that apply to the request.

4.3 2005 TAC–SCM competition

An initial implementation of this agent, using the name Foreseer, competed
in the 2005 TAC–SCM competition. The version of the agent that took part
was similar to DynamicOnline, but with a more naive method of setting
buffer levels. Despite this and despite the simple algorithms for both procure-
ment and production, Foreseer finished 14th out of 32 agents in the seeding
round, and qualified for the quarter finals, but then missed qualification for

15

the semi-finals by one place. This performance is evidence that our procure-
ment, buffering and production algorithms, although simple, provide a solid
basis for our investigation of dynamic pricing, and that at least one of our
dynamic pricing strategies is sufficient to provide creditable performance.

5 Experiments

Our hypothesis is that pricing strategies which make use of more informa-
tion about the supply chain and the market will show, on average, increased
profits. To test this, we run experiments in the TAC-SCM framework, as de-
scribed above, competing against four independently designed agents down-
loaded from the TAC agent repository. Those agents are listed in table 1, also
showing the positions in which they finished in the TAC-SCM 2005 seeding
rounds and finals (although the downloaded agents may have been modified
since the competition).

We performed a set of pair-wise comparisons of our different strategies com-
peting against those four agents. We used this method for two main reasons:

(1) it is undesirable to have too many of our own agents in any one game,
since they share many features, and so is not comparable to competing
against a set of unique agents, each with their own strategies;

(2) it is currently not possible to recreate exact game scenarios, and since
game conditions can vary significantly this makes it impractical and un-
reliable to compare each of our strategies individual performance against
the other agents.

We ran three sets of 25 games, comparing FixedPrice against FixedMar-
gin, FixedMargin against DynamicOnline, and DynamicOnline against
DynamicHistoric. We expected to see a steady increase in profits as we
move from FixedPrice to DynamicHistoric.

Figure 5(a) shows how the average profit changes with each advance in the

Table 1
TAC–SCM agents that were used as competitors in experimental evaluation, all
obtained from http://www.sics.se/tac.

Name Seeding Round Position Final Position Reference

GoBlueOval 2 4th in quarter-final

Mertacor 10 3rd in final [22]

CrocodileAgent 12 4th in quarter-final [23]

GeminiJK 19 5th in quarter-final

16

(a) Profit difference (b) Actual profits

Fig. 5. Comparisons of profits from different models.

pricing model, while 5(b) shows the average profits obtained in each pair-
wise comparison. As expected, the poorest model is the one with fixed prices
- reasoning about the cost of production for individual orders (as we do in
FixedMargin) gives a clear benefit. The most significant increase is the in-
troduction of the learning mechanism over the fixed margin model, which is
our first use of truly dynamic pricing. The ability to reason about the over-
all market conditions, and to use this reasoning to determine prices for each
order produces a dramatic increase in profits. Note that this reasoning about
the market involves no knowledge of how many customers there are, nor of
the number of competitors or their bidding or production decisions. The third
pair-wise comparison gave an initially surprising result - adding the extra in-
formation gained from analysis of the TAC–SCM 2005 seeding rounds over all
32 agents actually produced a slight decrease in profits (although at 0.5%, not
a significant one). We discuss the reasons for this below.

Figure 6 shows the revenue, market share and factory utilisation data for
the three comparisons. Each of these measures increases as we include more
information in the pricing models, with again the most significant increase
coming when we first introduce reasoning about the current market state.
Note, however, that increased revenue and increased market share does not
always correspond to increased profit: DynamicHistoric shows an improve-
ment in these secondary measures over DynamicOnline, despite getting no
improvement in profit. It has a 40% increase in market share, but this is at
reduced margins.

Why does the incorporation of historic information not lead to increased av-
erage profits? Analysis of the probability estimates of both models (Figure 7)
showed that DynamicHistoric has a 92% accuracy rate compared to Dy-
namicOnline’s 79%. This improved accuracy leads to more accurate pre-
diction of factory (Figure 8) and raw materials usage, and we expected this
improvement to be reflected in the profits of the agents. However, Figure 7
reveals that both models are, on average, too cautious, and set prices that are
too high to win the expected number of orders. In all scenarios DynamicOn-

17

Fig. 6. Comparisons of pricing models showing the increase of each model compared
to the previous one. E.g. DynamicHistoric has a market share which is a 40%
increase on the market share of DynamicOnline.

Fig. 7. Comparison of actual with target acceptance probabilities.

line chooses prices that on average undercut the competitors by less (and thus
are higher prices) when an order is won (Figure 9 (a)), leading to higher profits
on the accepted offers. However, Figure 9 (b) shows that DynamicHistoric
maintains a higher market share in all market scenarios, while DynamicOn-
line has a particularly low market share when the demand is lower. In scenarios
with high customer demand, DynamicOnline is able to win enough orders
even with its high prices, and these high prices then translate to larger profits
from fewer orders. In low demand scenarios, or in scenarios where the other
agents are more competitive, then there are fewer possibilities for high prices
to be successful and DynamicHistoric outperforms DynamicOnline. We
confirm this in figure 10(a), which shows the average profits of the two agents
and figure 10(b), which shows the frequency that one agent finished ahead
of the other, both plotted against the level of demand. Of the 25 scenarios
involving the two agents, DynamicOnline finished ahead in 13, and the av-

18

(a) Absolute Capacity Error (b) Capacity Over/Underestimate

Fig. 8. Comparison of (a) average absolute capacity prediction error for different
learning techniques and (b) over/underestimated capacity error. The absolute ca-
pacity error is the difference between the predicted and actual capacity needed to
process orders. Overestimates occur when less orders are received than expected,
and underestimates is the opposite.

(a) Price undercut (b) Market share

Fig. 9. DynamicOnline chooses prices that on average undercut the competitors by
less, leading to higher profits on orders won. However, DynamicHistoric maintains
a steady market share across all types of market conditions while DynamicOnline
loses market share in low demand scenarios.

erage daily number of RFQs in those scenarios was 196. In the 12 scenarios
that DynamicHistoric finished ahead, the average number of RFQs was 169.
The overall average number of RFQs was 183: in scenarios with fewer RFQs
than the average, DynamicOnline made approximately 134% greater loss
than DynamicHistoric, while in scenarios with more RFQs than the aver-
age, DynamicOnline took approximately 27% greater profit. This confirms
that incorporating historical information about the way market trends relate
to profitable prices is important in competitive markets. But it also suggests
that an agent should adapt its strategy in times of high demand, since higher
profits can be made.

19

(a) Average profits (b) Winning games

Fig. 10. DynamicHistoric is more successful than DynamicOnline in low de-
mand scenarios making more profit on average. The opposite is the case for high
demand scenarios.

6 Conclusion and future work

In this paper, we propose a simple approach to the dynamic pricing problem
in real-time supply chain management. The main feature is that we represent
the market conditions as a set of bid prices which have a certain probabil-
ity of being accepted, and that these price/probability pairs can be applied
without any knowledge of the number of customers, or the number, identity,
costs or strategy of competitors. In particular, we learn approximations to
these prices using both online and historical information, and we update our
approximation after each day of trading. Experimental results in a complex
real-time stochastic supply chain simulation show that the incorporation of
up-to-date market information in the form of our approximated probability
distributions gives a significant increase in average profits tested against a
portfolio of third-party agents. We have also shown that incorporating his-
torical information on the relevance of particular parameters in the calls for
tenders provides an increase in profits when the market is competitive and
when the demand is relatively low.

There is plenty of scope for continuing this research into dynamic pricing. Fur-
ther analysis on the impact of different customer demand levels on prices and
further experimentation on algorithm parameter settings provide the poten-
tial for increased accuracy in the probability predictions for winning customer
bids. Another important issue is to consider expected future demand when
making today’s decisions. Our current models attempt to optimise today’s ex-
pected profit, even though it might be wiser to ignore some of the lower profit
requests and reserve some inventory and factory capacity in anticipation of
winning bids with higher profits tomorrow.

The supply chain trading agent as a whole offers even greater potential for
research. To date we have developed an effective trading agent by focusing

20

primarily on the demand side of the supply chain. We have implemented only
basic strategies for procurement and production. These areas are critical to
the overall performance of the supply chain agent and efficient strategies need
to be developed and integrated with the dynamic pricing mechanism.

Acknowledgements

We would like to acknowledge the creators of the TAC–SCM competition and
software, who have provided a very useful test-bed for experiments, and an
excellent environment for competitive comparison of implemented research.
We would also like to thank the people whose agents we have used in our
experiments, namely, the teams responsible for CrocodileAgent, GeminiJK,
GoBlueOval and Mertacor. Finally, we would like to express our gratitude
to Onur Koyuncu for his help implementing the model, to Chris Beck for
his ideas on production scheduling, and to the anonymous referees for the
suggestions on how to improve the paper. This work is supported by Science
Foundation Ireland under Grant No. 03/CE3/I405 as part of the Centre for
Telecommunications Value-Chain Research (CTVR).

References

[1] W. Elmaghraby, P. Keskinocak, Dynamic pricing in the presence of inventory
considerations: Research overview, current practices, and future directions,
Management Science 49 (10) (2003) 1287–1309.

[2] D. Bertsimas, G. Perakis, Dynamic Pricing; A Learning Approach, Vol. 101 of
Applied Optimization, Springer, 2006, pp. 45–80.

[3] K. Y. Lin, Dynamic pricing with real-time demand learning, European Journal
of Operational Research 174 (1) (2006) 522–538.

[4] A. E. Lim, J. G. Shanthikumar, Relative entropy, exponential utility, and robust
dynamic pricing, Operations Research. Forthcoming.

[5] E. Cope, Dynamic pricing of information goods under demand uncertainty,
in: INFORMS Revenue Management and Pricing Section Conference, 2004,
http://web.mit.edu/orc/informs/Presentations/Day1 Revenue%
20Management%20in%20Information%20Services/Cope.ppt.

[6] J. O. Kephart, J. E. Hanson, A. R. Greenwald, Dynamic pricing by software
agents, Comput. Networks 32 (6) (2000) 731–752.

[7] W. J. Hopp, X. Xu, Product line selection and pricing with modularity in design,
Manufacturing and Service Operations Management 7 (3) (2005) 172–187.

21

[8] J. Collins, R. Arunachalam, N. Sadeh, J. Eriksson, N. Finne, S. Janson,
The supply chain management game for the 2005 trading agent competition,
Tech. Rep. CMU-ISRI-04-139, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, http://www.sics.se/tac (2005).

[9] E. Rasmusen, Games and Information, Blackwell, 2001.

[10] K. K. Haugen, S. W. Wallace, Stochastic programming: Potential hazards when
random variables reflect market interaction, Annals of Operations Research
142 (1) (2006) 119–127.

[11] D. Zhang, K. Zhao, C.-M. Liang, G. B. Huq, T.-H. Huang, Strategic trading
agents via market modelling, SIGecom Exchange 4 (2004) 46–55.

[12] C. Kiekintveld, M. P. Wellman, S. P. Singh, J. Estelle, Y. Vorobeychik,
V. Soni, M. R. Rudary, Distributed feedback control for decision making on
supply chains., in: Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS), 2004, pp. 384–392.

[13] M. Benisch, A. Greenwald, I. Grypari, R. Lederman, V. Naroditskiy,
M. Tschantz, Botticelli: A supply chain management agent, in: Proc. Third
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2004, pp. 1174–1181.

[14] S. Bell, M. Benisch, M. Benthall, A. Greenwald, M. C. Tschantz, Multi-period
online optimization in tac scm: The supplier offer acceptance problem, in: Proc.
Workshop on Trading Agent Design and Analysis at the Third International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2004, pp. 21–27.

[15] W. Ketter, E. Kryzhnyaya, S. Damer, C. McMillen, A. Agovic, J. Collins,
M. Gini, Analysis and design of supply-driven strategies in TAC-SCM, in: Proc.
Workshop on Trading Agent Design and Analysis at the Third International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2004, pp. 44–51.

[16] D. Pardoe, P. Stone, Tactex-03: A supply chain management agent, SIGecom
Exchange 4 (2004) 19–28.

[17] D. Pardoe, P. Stone, Bidding for customer orders in tac scm: A learning
approach, in: Proc. Workshop on Trading Agent Design and Analysis at the
Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2004, pp. 52–58.

[18] E. L. Porteus, Foundations of Stochastic Inventory Theory, Stanford University
Press, 2002.

[19] S. Russell, P. Norvig, Artificial Intelligence, a Modern Approach, Prentice Hall,
1995.

[20] B. Widrow, M. Hoff, Adaptive switching circuits, in: IRE Western Electric Show
and Convention Record, Part 4, 1960, pp. 96–104.

22

[21] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[22] P. Toulis, D. Kehagias, P. A. Mitkas, Mertacor: a successful autonomous trading
agent, in: Proc. Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2006, pp. 1191–1198, http://danae.ee.
auth.gr/mertacorweb.

[23] A. Petric, V. Podobnik, G. Jezic, The crocodileagent: Analysis and comparison
with other tac scm 2005 agents, in: Proc. Joint Workshop on Trading Agent
Design and Analysis & Agent Mediated Electronic Commerce at the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2006, pp. 202–205, http://www.tel.fer.hr/index.php?option=
com content&task=view&id=1069&Itemid=869.

23

