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Abstract. Development of low-cost and inter-operable home sensing
products in recent years has motivated the development of consumer-
level energy and home monitoring software solutions to exploit these new
streams of data available to end-users. In particular, this opens up the
home energy space as an area of high potential for the use of consumer-
level energy optimisation with home-owners actively engaged with data
about their energy use behaviour. We describe the development of a
tablet-based home energy cost saving and appliance scheduling system
which calculates behaviour change suggestions that save occupants on
their energy bills while avoiding disruption to their regular routines. This
system uses a Constraint Satisfaction Problem Solver to compute savings
based on real-world sensor data, and to generate revised schedules in a
user-friendly format, operating within a limited computing environment
and achieving fast computation times.

1 Introduction

In-home networked sensing has, in recent years, reached a level of cost, reliability
and protocol maturity that enables consumer-level home sensing to a degree
not possible before. The increasing variety and availability of Zigbee-compatible
wireless sensing allows for rich sensor coverage of homes with minimal impact or
installation, providing rich data streams from around the home, monitoring use
of space, appliance use, temperature and more. Providing these data streams in
an easy to understand format is of substantial benefit to home-owners to help
understand inefficient heating of spaces, electricity efficiency and overall energy
costs [24].

Furthermore, developments in energy infrastructure and generation have lead
to a greater variety of energy production sources and tariff schemes, leading to a
greater incentive (both in terms of cost and in environmental impact) for home-
owners to take pay attention to their energy consumption over different time
periods. Some regions use variable tariffs based on the time of day [25], and



some schemes feature time-variable peak-demand limits with punitive charges
incurred where total concurrent energy use exceeds a limit at a particular time
of the week [1].

In this work we describe a Constraint-based system that recommends adjust-
ments to energy use patterns to provide targetted cost savings in the home, based
on historical and current observation of appliance use patterns in that home. The
data is obtained from a deployed sensor network and energy monitoring system.
The adjusted appliance use pattern accepted by the home-owner then forms the
basis of a appliance use scheduling application, which recommends a set of acti-
vation times that correspond to observed historical behaviour while respecting
limits of overall capacity and variable demand pricing schemes. This system op-
erates on a low-power Android tablet device, as part of a Reporting Tool app
which provides robust, easy-to-understand feedback to home-owners from the
data streams provided by the home sensor deployment.

2 AUTHENTIC Smart home project

AUTHENTIC is a multi-institutional initiative to design and deliver a Home
Area Network (HAN) infrastructure capable of supporting opportunistic decision
making for effective energy management within the home.

The Authentic HAN consists of a collection of Zigbee wireless sensors commu-
nicating over a multi-hop wireless network with a low-power gateway Linux PC.
This hub stores the sensor readings in a MySQL database. The readings are re-
trievable through a REST (Representational State Transfer) interface [19] in the
form of JSON (Javascript Object Notation) Objects [6] which are transformed
and can be displayed to the users via a reporting tool (discussed below). The
first phase of deployments included smartplug sensors attached to power sock-
ets which report appliance activations and energy consumption, passive infrared
motion detectors reporting space occupancy, temperature, light and humidity
sensors, and contact sensors reporting when doors and windows are opened or
closed (Figure 1). Future phases include wireless smart meters for measuring
total electricity, gas and oil consumption, sensors for monitoring the use and
settings of heating, ventilation, air conditioning and water heating, and sensors
and meters for monitoring the available of energy from renewable sources.

In order to assist the users to monitor and change their energy consumption,
and to track their energy bills, a Reporting Tool app has been developed for
Android tablets. The app provides direct and instant feedback, converting com-
plex sensed data into customisable human-readable reports; sample screenshots
are shown in Figure 2. Responding to user queries for specified time periods, the
app can create visualisation of, for example, total energy consumption, consump-
tion by room, consumption by appliance, room occupancy patterns, correlations
between room occupancy and temperature or appliance use, and comparisons be-
tween different appliances and different time periods. The app includes a facility
for real-time alerts when specified or anomalous patterns occur (e.g. windows
opening in a heated room, or instantaneous consumption above a threshold). Fi-



Fig. 1. AUTHENTIC sensors (movement, light, humidty, contact and smartplug sen-
sors)

nally, the app provides facilities for guiding the user to change their behaviour.
At a basic level, the app allows the user to set annual energy goals, and to
track progress towards those goals. More sophisticated feedback, including ad-
vice on how to achieve specified reductions, is the main topic of this paper, and
is discussed in the remaining sections.

3 Requirements

Users need guidance to help change their energy consumption patterns in accor-
dance with their own goals and preferences. We consider two high level goals:
reducing cost, and reducing total energy consumption1. The first steps are un-
derstanding how much energy is consumed by each activity and what cost is
incurred by those activities at different times. Reducing consumption itself is
easy – appliances can simply be switched off – but the difficulty is in balancing
the reduction in consumption with the users’ preferences for safe and comfort-
able living. Lowering a heating thermostat by 2 degrees may be unsafe in winter,
while switching off an entertainment console may be impractical.

The aim is to propose changes to a user’s behaviour which achieve their
energy goals, while still being acceptable for their health, comfort and enjoyment.
Further, those proposed changes should be personal, tailored to the users in
a specific home. Thirdly, the interaction load imposed on the users must be
manageable: systems which require extensive elicitation of preferences and utility
functions under different scenarios before any proposal can be made are simply
impractical in most domestic settings. Finally, the system should respect the
privacy of the users, and should be capable of operating entirely within the home,
on devices with limited computing power, without releasing data or relying on
data obtained from other users outside the home.

1 Additional goals of reducing carbon footprint and reducing energy consumption from
non-renewable sources are being developed.



(a) Appliance Use History

(b) Plan Recommendation (number of appliance acti-
vations)

Fig. 2. Android reporting tool.

Our intention is to guide the users based on the observed behaviour of those
users in their home. The data streams from the sensors and smart plugs provide
a history of appliance use, from which we can extract daily and weekly patterns.
Given a goal (e.g. reduce the energy bill by 10%), we will then search for minimal
changes to those patterns which satisfy the goal. Our proposals will be on two
levels. The first level will recommend the total number (or duration) of activa-
tions for each appliance over a specified period, and if differential tariffs are in
use, the total number of appliance activations in each price band.

The second level will propose a schedule of use for each day, ensuring the
total simultaneous load is within any threshold, again representing a minimal
change to observed behaviour patterns. Thus in each case an initial proposal is
tailored to each home, without requiring any interactive preference elicitation
apart from setting the initial high level goal. In each case, the users should then
be able to interact with the system, imposing new constraints or objectives if
the proposal is not satisfactory, and requesting a new recommendation. Further,



the system will then monitor energy consumption within the home, alerting the
user when targets are not going to be met, and offering recomputation of the
schedules or activation levels.

Our problem thus involves multiple levels of decision support and optimisa-
tion, over constrained variables. The problems range from relatively simple linear
assignment problems to constrained scheduling, and in each case the problems
may be extended by additional user constraints. Thus we choose to use constraint
programming as the single technology for all problem variants because of the
dedicated support for modelling cumulative scheduling problems and because
of its flexibility in adding what ultimately could be arbitrary side constraints
and preferences. The Authentic system also imposes some technical limitations,
which influence our choice of solver. The Reporting Tool app (Section 2) runs
under Android, and is limited to JDK 1.6 for library compatibility issues. Thus
we model and solve the decision and optimisation problems using the Choco
2.1.5 Java library, as it is also JDK1.6 compatible. This places a restriction on
the variable types and constraints we use.

4 Constraint-based Recommender System

4.1 System Overview

The overall system is structured as follows. The Authentic HAN produces a
database of sensor readings for the home. This data is transformed into appli-
ance activation reports. Information is presented to the user, who specifies an
energy or cost goal for the next period. From the appliance reports, the system
constructs a constraint optimisation model, and proposes a high-level energy
consumption plan to the user. It iterates with the user until an acceptable plan
is agreed. From the high-level plan, the system then creates a scheduling problem
and proposes a schedule to the user that respects the plan and requires a minimal
change to previous behaviour. Again, the user iterates with the system until an
acceptable schedule is agreed. The user is in control of all activations, and the
system monitors compliance, alerts the user when targets are to be missed, and
propose new plans or schedules in response. We describe the constraint-based
modules in Sections 4 and 5, and evaluate performance in Section 6.

4.2 Data Preprocessing (Data Analysis Module)

To pre-process the sensor data, we developed a Data Analysis module which
interfaces with the Authentic RESTful API [2] [18] to retrieve home sensor data
which it discretises into forms more amenable to analysis and optimisation.
Sensor readings and events are retrieved in the form of JSON Objects which are
then parsed by the module. By parsing the sensor information, data manipula-
tion can be performed to convert this information into alternative forms more
suitable for optimisation problems or efficiency analysis. In general, the facility
is provided to convert Occupancy, Temperature, Light, Humidity and Appliance



Activation information into arrays of samples (at a user-configurable sampling
rate). This allows for the like-for-like comparison of readings between arbitrary
timepoints and aribtrary sensing types (e.g. plotting Occupancy vs Television,
Light vs Lamp, or Humidity vs Dryer).
An additional function provided by this module is the generation of ”Activation-
Tuples”, data objects representing the usage pattern for appliances in the home
which we use as input for the Appliance Use Optimisation Module (Section 4.3).

ActivationTuples contain the following information:

– Appliance Name
– Average Consumption Per Activation (Watt-Hours)
– Number of Activations per Tariff (in the case of Day/Night or other variable

tariffs)
– Power Draw Profile (time series, Watts)

Activations are considered from the time an appliance sensor reports instan-
taneous demand above a minimum threshold until the instantaneous demand
returns to below that threshold. The average consumption is based on the watt-
hour (WH) consumption per activation period. In the case of appliances with
variable activation profiles (for example, different washing machine settings), we
can subdivide the appliance into seperate sub-appliances, one for each setting
or pattern. The Power Draw Profile represents the instantaneous power demand
in watts over a time series with configurable sampling rate (e.g. 5 minutes).
The Power Draw Profile is used with the Scheduling Module to ensure that the
total concurrent power load in a home or on a circuit at a given time can be
accounted for in the constraint satisfaction problem. As the reporting interval of
the smart-plug sensors is generally 5 minutes, higher resolution sampling rates
are not required.

4.3 Appliance Use Optimisation module (Solver)

The aim of the Appliance Use Optimisation module (”Solver”) is to propose
high-level patterns of appliance use which will achieve desired cost or energy
savings while minimising disruption to the household. These patterns are simply
counts of each appliance use in each price tariff. The module retrieves usage
patterns from the analysis module in the form of activation tuples, and uses
these to create a constraint satisfaction or optimisation problem. In this work
we consider three tariffs (high, medium, low) available each day, although the
solver is flexible and any number of price bands can be represented. The solver
then searches for a modified pattern of use, by moving activations to lower
price bands or reducing the number of activations, with a constraint on total
cost. To avoid disruption, and to promote acceptance of the plan, we include an
objective to minimise the deviation between the historical activation use pattern



and the proposed pattern, represented as the sum of the squared differences of
the appliance use counts). The constraint model is shown in Tables 1 and 2.

The only input required from the user for the first solution is to specify the
required energy or cost reduction, and thus the interaction load on the user is
minimal. However, it is likely that the proposed changes may not satisfy the
user’s requirements. Thus after the first schedule is proposed, the user is invited
to specify additional constraints. The main type of user constraint is a domain
restriction, specifying for a single appliance the acceptable range of activations in
any price band or in total. Additional constraints, including for example, that the
total number of activations for one appliance must be not less than the number
for another can easily be handled by the solver, but are not yet implemented in
the interface. The intention is to regard these user constraints as critiques of the
proposed solutions, and thus the user is not required to specify any preference
that is already satisfied. However, the added user constraints are stored, and
will be applied to future solving instances (and the user is invited to remove any
constraints that no longer apply).

5 Scheduling Module

The output from the optimisation module is a high level plan specifying the
number of activations of each appliance in each price band over a specified period.
The user is in control, and will choose when to activate an appliance. However,
as discussed above, the system will monitor the activations and alert the user
if the observed activations are not on track to meet the goals at the end of the
period. In cases where there are multiple price bands during a day, or where
there are peak power thresholds which invove a higher price, it may be difficult
for the user to balance their appliance use appropriately. Thus, we also provide a
task scheduler, which recommends start times for appliance use over a number of
days in order to respect the cost constraints. As with the high level plan, there
is an objective to find appliance start times which are as close as possible to
the observed historical patterns for the user. The system allows users to modify
aspects of the schedule, by adding or modifying tasks and constraints. The user
is in control, but as before, the system will monitor appliance use compared to
the schedule and alert the user when thresholds are likely to be breached, and
offer the option of rescheduling.

The first aim is to generate a schedule which respects the cost constraints.
The number of activations for each appliance is obtained from the high-level plan,
and the required number of task instances are generated. In order to handle the
time granularity for different constraints, each task instance is then broken up
into multiple sub-tasks each of fixed duration, and sequencing constraints are ap-
plied between the subtasks. Disjunctive constraints[8] are imposed on multiple
instance of the same appliance, to ensure that they cannot be scheduled to oper-
ate simultaneously. The high level plan also specifies the number of activations
to take place under each tariff, and so for each task instance, we designate its
highest permissible tariff and impose constraints preventing that task running



Variable
Name

Description

Constants
InputCost Cost of the historical period
Target Reduction in cost required (e.g. 0.9 of the previous cost)
H,L,M Price per unit(wH) of electricity at High, Medium and Low tar-

iffs
AiInputAct Original Number of activations of Appliance i in input
AiCons Average Consumption of Appliance i (wH) per activation
AiInputH Original number of activations at High tariff for Appliance i in

input
AiInputM Original number of activations at Medium tariff for Appliance i

in input
AiInputL Original number of activations at Low tariff for Appliance i in

input

Variables
AiHAct Number of activations of Appliance i at High tariff times
AiMAct Number of activations of Appliance i at Medium tariff times
AiLAct Number of activations of Appliance i at Low tariff times

Auxilliary Variables
AiHDiff The difference between historical High use and the new plan for

Appliance i
AiMDiff The difference between historical Medium use and the new plan

for Appliance i
AiLDiff The difference between historical Low use and the new plan for

Appliance i
AiHCost Total Cost for Appliance i at High tariff
AiMCost Total Cost for Appliance i at Medium tariff
AiLCost Total Cost for Appliance i at Low tariff
AiTotalCost Total cost for Appliance i
AiTotalDiff Sum of the squared differences for Appliance i
TotalCost Total cost of the new plan
TotalDiff Objective variable. Sum of squared differences
AiAct Total Number of activations of Appliance i

Table 1. Appliance Use Optimisation variables

in a higher tariff’s time period. Note that this is a permissive approach, allowing
the solver to find schedules with a lower cost than expected.

The next constraint to be considered is the peak power threshold. We handle
this by imposing a cumulative constraint [3] over all tasks. We associate heights
with each appliance task relative to their power demand (and in cases where
the power demand varies over the activation cycle, the heights vary across the
different sub-tasks). The cumulative constraint height parameter is set to to
the maximum power threshold, and in the case of variable maximum demand
schemes we create dummy tasks with appropriate heights to represent temporary
lower thresholds over appropriate time periods.



Constraints Description

AiHCost = AiHAct ∗H Set the cost at H for Appliance i

AiMCost = AiHAct ∗M Set the cost at M for Appliance i

AiLCost = AiHAct ∗ L Set the cost at L for Appliance i

AiHDiff = (AiHAct−AiInputH)2 Set the Squared Difference in H.

AiMDiff = (AiMAct−AiInputM)2 Set the cost at Squared Difference
in M

AiLDiff = (AiLAct−AiInputL)2 Set the cost at Squared Difference
in L

AiTotalDiff = AiHDiff +AiMDiff +AiLDiff Set the sum Difference for Appli-
ance i

AiTotalCost = AiHCost + AiMCost + AiLCost Set the total cost for Appliance i

AiAct = AiHAct + AiMAct + AiLAct Set the total number of activa-
tions for Appliance i

TotalDiff =
n∑

i=1

(AiTotalDiff) Set the total sum of Differences

TotalCost =
n∑

i=1

(AiTotalCost) Set the total Cost

TotalCost ≤ InputCost ∗ Target Ensure the TotalCost is below the
target price

Minimise(TotalDiff) Objective is to minimise the sum
of squared differences

Table 2. Appliance Use Optimisation constraints

To ensure each schedule mimics prior behaviour, we analyse historic usage
patterns and infer a time series of the frequency with which an appliance was
active at a given time. The aim is then to minimise the abnormality of appliance
activation times; that is, to avoid recommending appliance use at times with
very low historic use frequency. To achieve this, we divide each day of the week
into timeslots based on the sub-task time granularity (in this work, 5 minutes).
For each appliance activation in the historical data, we increment a count in each
timeslot that matches the day and time (e.g. for a 15-minute activation we might
increment Tuesday 4:00. Tuesday 4:05 and Tuesday 4:10). Having done this for
several weeks worth of historical data, we now have a time series representing the
frequency any appliance was in use at any given time during the 7-day week. We
invert this time series (where F = the highest frequency in the series, all entries E
are changed to F-E, Figure 5) which we use to produce a set of dummy constant
Task Variables (each of height equal to the appropriate inverted frequency) for
use with another cumulative constraint.

The peak value for the cumulative constraint is then a variable, with the aim
being to minimise that peak, subject to the lower bound equal to the maximum
height of the inverse frequencies. For each appliance activation, the height of
all of its sub-tasks are scaled to be the gap between the highest and lowest



Fig. 3. Frequency Time Series and inversion to produce Masking Gradient

frequencies for that appliance, and the sub-tasks are added to the cumulative
constraint (Figure 5). Thus, if we schedule a task so that the full duration of
a task (i.e. each of its sub-task components) is at a time of highest frequency,
the cumulative height variable is set to the lower bound; if the appliance task is
scheduled so that it is active at the time of lowest historic frequency, then the
cumulative height is at its maximum. All appliances are then normalised, and
the optimisation objective is to minimise the sum of the appliance cumulative
heights; that is, we minimise the sum of the ’abnormalities’ of the activation
times over each appliance use.

The initial solution to the scheduling can now be generated and displayed to
the user. Although it may seem counter-intuitive to schedule uses of appliances
like televisions or games consoles, it is important to account for their expected
use, in order to manage the use of other appliances around that time. Thus we
learn when those devices are most often used, and build that expected usage
into the schedule. This initial solution does not require any interaction with the
user to elicit preferences or objectives. We then allow the user to interact with
the scheduler to improve the schedule, if necessary. The user can add new tasks
or delete existing tasks for a particular day, can extend the duration of a task,
can fix the start time of a task (by sliding the task position on the displayed
schedule), and can add limited temporal constraints between tasks (for example,
a specific dryer task must start within 30 minutes of the completion of specific
washing task, or that the shower and washing machine cannot be active at
the same time), and then can request a rescheduling. For new tasks, the same
historical frequency pattern is applied; for user task time changes, the start time
is fixed, and the frequency mask is adjusted to that no penalty is applied.



Fig. 4. Scheduling appliances using Masking Gradient

Fig. 5. Scheduling three appliances accounting for concurrent power demand

6 Performance Evaluation

A series of experiments were performed to determine the performance of the
optimisation module on an Android tablet (Samsung Galaxy Tab 4 , Android
version 4.4.2). Three months of data from a real-world home deployment formed
the basis for the historical appliance use in these experiments, and the computa-
tion time taken for the Savings module was typically approximately 900ms and
the Scheduler completed its task in approximately 17 seconds (using 30 minute
time slots). These timings are well within the limits for acceptable response
time, and demonstrate the success of the constraint programming formulation
of the problems. As there is the facility for users to influence the savings prob-
lem through the addition of constraints on the number of appliance activations



at different tariffs (i.e. the user can specify more limited ranges for the number
of activations of appliances during particular tariffs, or to specify limits on the
amount of adjustment made), we investigated the impact of the introduction of
preferences on the running time and solvability of the savings problem. We also
investigate the impact of larger and smaller time-slots on scheduler performance,
with and without some user constraints applied.

6.1 Solver Performance

To investigate performance on the extreme end of user interaction with the ap-
pliance savings module, we performed experiments where we gradually restrict
the scope of adjustment available to the solver. From savings targets of 10%
through to 60%, we performed the savings routine while gradually restricting
the range of acceptable values (or “freedom”) for appliance activations at each
tariff. For instance, at “40%” freedom, the solver is free to adjust the number
of activations for appliances at any particular tariff band to within 40% of the
historical values. As the freedom is reduced, solutions at high savings targets
become unavailable, and eventually when the scope for adjustment is very low
(low freedom value) no solutions can be found at any savings target, as shown
in Figure 6. In these results, we observe that the imposition of user-specifiable
restrictions on scope for adjustment to appliance use has little-to-no impact on
the computation time (all solutions found took between 900 and 1150ms to dis-
cover), with solutions unavailable where the limits on value adjustment imposed
by preferences prevent the discovery of solutions in the range of the target sav-
ings amount. Where no solution is available, the solver takes a consistent 780ms
to determine this.

6.2 Scheduler Performance

To evaluate the performance of the scheduling module, we took the output of
the activations saving module (without preferences) as the basis for scheduling
the next week of appliance activations. In this evaluation, we schedule using a
range of time-slot resolution values, from 5 minutes up to 60 minutes, and ob-
serve the computation time. As the users can introduce custom constraints to the
scheduler, we re-perform the scheduling preocedure at each time-slot resolution
level with the addition of an Inter-Appliance Disjunction constraint between two
appliances (two particular appliances cannot operate simultaneously), and the
further addition of a temporal link between two appliances (wherever one ap-
pliance ends, a particular other appliance should start shortly afterwards). The
results of these experiments are shown in Figure 7. We observe that the perfor-
mance with the addition of user-specified constraints remains approximately the
same as without (“Default”), and that while computation time for small time-
slot resolution is extreme (up to 400 seconds), with timeslots of 20 minutes or
larger the computation time is much more reasonable (from around 30 seconds
computation time at 20-minute slots down to 5 seconds at 60 minute slots).



Fig. 6. Savings module performance under restricted scope

Fig. 7. Scheduler Results



7 Related Work

A number of examples of work in optimisation of energy use to balance demand
and reduce costs exist intended to operate at the supply side. These approaches
are typically intended to integrate with “smart” appliances in the home to allow
for load balancing across the so-called “smart grid”. As these approaches typi-
cally operate centrally at the utility, Mixed Integer Linear Programming (MILP)
is commonly used to compute power use schedules based on energy availability
[23,4,22,5,13,14]. MILP approaches take some time to compute (several min-
utes generally), and as they are solving over several homes and with respect to
the utility company’s energy supply requirements, there is limited scope for the
home-owner to understand their personal energy use.

While not applicable to operating on tablets, Lim et al [17] describes a mixed-
integer programming approach to air conditioning scheduling based on scheduled
meetings in buildings, demonstrating the integration of energy-based require-
ments with real-world user requirements in scheduling. Scott et al [21] present
a MILP-based framework featuring the concept of “comfort” in addition to the
consumption and demand considerations that we also consider.

Felfernig & Burke[12] investigated the position of constraint-based models
as the basis of Recommender Systems, noting that limited attention or under-
standing of complex recommender systems on the part of the user is a major
consideration in the design of recommender systems. In our work, we use a
simple-to-understand tablet-based interface to allow users to enter a dialogue
with the system, introducing requirements which are interpreted as constraints,
but without requiring particular expertise on the part of the user. Like our work,
Ha et al [15] proposed a constraint-based approach for demand-side appliance
scheduling, though this work was demonstrated using randomly generate syn-
thetic data and compution time was in the order of minutes.

He et al [16] consider the case where electricity pricing is highly variable in
time and the active use of energy by homes impacts the pricing, a potential fu-
ture direction for energy production. They developed a market model combined
with optimisation of community electricity use (using both constraint program-
ming and mixed integer programming) for demand management and cost saving.
Tushar et al [26] described a game-theory-based approach to demand-side en-
ergy management, modeling the interaction between home-owners and utilities
through the trade and consumption of variable energy supplies and costs.

Darby et al [11] and Carroll [9] note that end-user perception has a significant
role to play in motivating changes in energy use behaviours, with greater engage-
ment and savings achieved simply through making more information available to
the homeowner as found in smart-metering, from variable tariff trials in Ireland
[10]. Bu et al [7] presented an MILP-based adaptive home energy scheduling ap-
proach with an initial discretisation step similar to the role of data pre-processing
model in our work, though using synthetic test data rather than real-world data
streams, and with relatively high computation time and resources compared to
our approach. De Sá Ferreira et al [20] investigate highly variable tariff design at
the utility level, generating optimised tariff pricing on a day-to-day basis. Highly



variable tariffs generated through such a scheme could function well combined
with the energy saving and scheduling described in our work, allowing for dy-
namic schedule generation on a daily basis while respecting the home-owner’s
typical behaviour patterns.

8 Conclusions and Future Work

We presented a constraint-based energy saving recommender system which uses
real-world appliance energy use data to generate recommended behaviour changes
to achieve energy saving goals in the home. The system is computationally ef-
ficient and operates on a low powered tablet. Integrating user preferences al-
lows for a continuous, interactive optimisation process with users introducing
additional requirements as constraints in the problem, and through periodic re-
calculation of solutions when the sensor-observed energy use behaviour differs
from the suggested adjustments. This aspect allows for users to interact with the
model and solutions without any special knowledge, and could lead to greater
understanding on the part of the home-owner as to their energy use habits and
their impact on costs and emissions.

In future we will expand the deployments and models, incorporating add
room and water heating sensing, and the capacity to remotely actuate appli-
ances attached to smart-plugs. Remote actuation would allow for the optimised
schedules to be automatically implemented in the home without requiring the
users to physically attend the devices, and would substantially ease the burden
on the occupant to conform to the scheduled plans. As the AUTHENTIC project
expands, further home deployments and long-term feedback from users will mo-
tivate expansing the range of user-specified constraints and further investigation
into the performance of the scheduler in these scenarios. We will expand on the
peak-load model for cases where temporally-restricted renewable energy or home-
energy-storage is a feature. In the case that a home has a large energy storage
solution (e.g. an electric car battery), a limited capacity of cheap energy could
be stored overnight and used to power appliances the next day during higher
tarriff times. Similarly, solar panels could augment the energy supply depending
on the weather, and this could motivate opportunistic appliance scheduling in
reaction to volatile cheap energy availability.
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21. Scott, P., Thiébaux, S., Van Den Briel, M., Van Hentenryck, P.: Residential de-
mand response under uncertainty. In: Principles and Practice of Constraint Pro-
gramming. pp. 645–660. Springer (2013)

22. Sou, K.C., Kordel, M., Wu, J., Sandberg, H., Johansson, K.H.: Energy and co 2
efficient scheduling of smart home appliances. In: Control Conference (ECC), 2013
European. pp. 4051–4058. IEEE (2013)

23. Sou, K.C., Weimer, J., Sandberg, H., Johansson, K.H.: Scheduling smart home
appliances using mixed integer linear programming. In: Decision and Control and
European Control Conference (CDC-ECC), 2011 50th IEEE Conference on. pp.
5144–5149. IEEE (2011)

24. Sweeney, J.C., Kresling, J., Webb, D., Soutar, G.N., Mazzarol, T.: Energy saving
behaviours: Development of a practice-based model. Energy Policy 61, 371–381
(2013)

25. Torriti, J.: Price-based demand side management: Assessing the impacts of time-
of-use tariffs on residential electricity demand and peak shifting in northern italy.
Energy 44(1), 576–583 (2012)

26. Tushar, W., Zhang, J.A., Smith, D.B., Thiebaux, S., Poor, H.V.: Prioritizing con-
sumers in smart grid: Energy management using game theory. In: Communications
(ICC), 2013 IEEE International Conference on. pp. 4239–4243. IEEE (2013)


	Design and Evaluation of a Constraint-based Energy Saving and Scheduling Recommender System

