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Abstract. Distributed constraint satisfaction (DisCSP) models decision prob-
lems where physically distributed agents control different decision variables, but
must communicate with each other to agree on a global solution. Most DisCSP
research assumes an abstract communication layer based on a peer-to-peer wired
network. However, many practical applications of distributed reasoning require to
be implemented over wireless networks, which impose different communication
costs, and may affect the performance of DisCSP algorithms. We study the im-
pact of wireless network topology and routing on two leading DisCSP algorithms
– ABT and AFC-ng. We introduce a new framework for experiments which mod-
els different communication layers. We show that the communication layer has
a significant impact on the messaging costs, which can vary by over an order of
magnitude. We also show the impact on computation time, where the equivalent
non-concurrent constraint checks can vary by a factor of 6. Finally, we show that
given a fixed agent ordering, changing the communications topology can increase
the number of messages by up to 50%.

1 Introduction

Distributed Constraint Satisfaction (DisCSP) models constrained decision problems
where different variables are controlled by physically distributed agents. The agents
must communicate with each other to reach a global assignment which satisfies all con-
straints. The main algorithms and protocols include synchronous [37, 23, 33] and asyn-
chronous [38, 2] search, backtracking, local search [13, 39] and dynamic programming
methods [26], and algorithms which respect privacy and autonomy [34, 4, 18] versus
those which partially centralise the decision making [20]. The main metrics are non-
concurrent constraint checks (#ncccs) [21], which measures the longest sequence of
computation among the agents as a proxy for elapsed time, and messages (#msg)[19],
which counts the total number of messages exchanged between agents. Communica-
tion delays can be modelled by adding extra increments to get #encccs, the equivalent
non-concurrent constraint checks [5]. Most research assumes an abstract model of the
underlying communication network [41, 30, 17, 32, 11], equivalent to essentially a peer-
to-peer wired network. This model works well for applications operating over standard
internet architectures.

There is a rich domain of application problems for DisCSP which assume wire-
less communication, including, for example, dynamic coordination of missions in un-
manned aerial vehicles (UAVs) [28], mobile robot coordination [6], decision making in



wireless sensor networks (WSNs) [1, 15, 36, 3], and dynamic channel selection [25]
and time-division scheduling for the self-configuration of ad hoc wireless networks.
However, the standard communication layer for DisCSP does not account for all the
relevant details of wireless communication, and so algorithms may behave radically
differently when implemented on physical devices. For example, in wireless communi-
cation, each radio transmission consumes energy, and so the number and size of individ-
ual transmissions required to deliver a message is significant, as opposed to the num-
ber of end-to-end messages. This is particularly important in remote operation (e.g.,
UAVs or WSNs) where the agents have limited battery power. In addition, there are
many different protocols for exchanging information in a wireless network, ranging
from peer-to-peer unicast to one-to-many local broadcast, and from static routing to
dynamic routing based on flooding the network. Thus, the communications layer may
significantly change the number of individual message transmissions required. More
message transmissions means longer delays, and it is known [5, 7] that delays in ex-
changing messages adversely affects the #encccs metric in some DisCSP algorithms.
To establish DisCSP for wireless applications, we require a better understanding of how
the underlying communication layer affects the performance of different algorithms.

In this paper, we propose a new framework for analysing wireless DisCSP, based
on wireless communication networks. The framework distinguishes between the con-
straint graph and the communications graph, which may be different. Direct communi-
cation is only possible between adjacent nodes in the communication graph. Exchang-
ing messages between neighbours in the constraint graph thus may require multiple
transmissions in the communications graph. We use the framework to re-evaluate the
asynchronous ABT algorithm [38, 2] and the partially synchronised AFC-ng [7, 33]
algorithm. We consider a range of different communication network topologies, from
linear chain trees to complete graphs. We consider the abstract source routing proto-
cols N-way unicast, multicast and multicast* (multicast with local broadcasts), which
vary in the number of individual transmissions required to send messages to a set of
recipients. We show that changing the topology has a significant impact on the number
of message transmissions, sometimes causing an order of magnitude increase for the
same algorithm and routing protocol. Similarly, we show that the topology and routing
protocol also combine to affect messaging, with N-way unicast on linear topologies re-
quiring significantly more messages than the standard DisCSP model assumes, while
multicast* on complete communication networks reduces the number of messages com-
pared to the standard model. Varying the communications layer also has an impact on
#encccs, increasing it in the worst case by a factor of six. The performance of static
DisCSP ordering heuristics is also influenced by the communication layer, with differ-
ent topologies increasing the message count by up to 50%. Finally, we propose future
directions for wireless DisCSP research, with the eventual aim of modifying the algo-
rithms and ordering heuristics to adapt to different communication layers.

2 Background

The Distributed Constraint Satisfaction Problem (DisCSP) is a 5-tuple (A,X ,D, C, φ),
where X is a set of variables {x1, . . . , xn}, D = {D1, . . . , Dn} is a set of domains,



where Di is a finite set of values from which one value must be assigned to variable xi,
C is a set of constraints,A is a set of agents {A1, . . . , Aa}, and φ : X → A is a function
specifying an agent to control each variable. During a solution process, only the agent
which controls a variable can assign it a value. A constraint C(X) ∈ C, on the ordered
subset of variables X = (xj1 , . . . , xjk), is C(X) ⊆ Dj1 × · · · ×Djk , and specifies the
tuples of values which may be assigned simultaneously to the variables in X . For this
paper, we restrict attention to binary constraints. We denote by Ci ⊆ C all constraints
that involve xi. A solution is an assignment to each variable of a value from its domain,
satisfying all constraints. Each agent Ai knows all constraints relevant to its variables
(Ci) and the other variables involved in its constraints (its neighbours in the constraint
graph). Without loss of generality, we assume each agent controls exactly one variable
(a=n), so we use the terms agent and variable interchangeably and do not distinguish
between Ai and xi. A variety of problems have been tackled using DisCSP, including
tracking in sensor networks [1], resource allocation [27] and meeting scheduling [22].

Asynchronous Backtracking (ABT) [38, 2] is an asynchronous algorithm executed
autonomously by each agent in the problem, and is guaranteed to compute a global con-
sistent solution (or detect inconsistency) in finite time. Each agent proposes values for
its own variable to other agents, and reports no-goods. Agents operate asynchronously,
but are subject to a known total priority order, o.

Nogood-Based Asynchronous Forward Checking (AFC-ng) [33] is a partially syn-
chronised algorithm that uses no-goods as justification for value removals. Following
a total priority agent ordering o, agents assign their variables one by one, recording
assignments in a data structure called the Current Partial Assignment (CPA). Once an
agent adds its variable assignment to the CPA, it sends the CPA to its unassigned neigh-
bours to perform forward checking (FC [12]) asynchronously. AFC-ng allows different
agents to perform backtracks concurrently to the same or different destinations. As a
result, several CPAs can be generated simultaneously by the destination agents. Due to
the timestamps integrated in the CPAs, the CPA coming from the highest level in the
agent ordering will eventually dominate.

In the standard DisCSP communication model [41, 30, 17, 32] each exchange of
information from one agent to another (e.g., value choice, acknowledgement, no-good,
constraint description) is represented as a message. This is an abstraction of the com-
munication layer, based on the assumption that the number of source-to-destination
messages is the main factor in communication cost. Zivan and Meisels (2006) proposed
an Asynchronous Message Delay Simulator (AMDS) [41] for distributed constraint rea-
soning algorithms. AMDS is a Mailer thread through which all messages are passed to
simulate message delays. The mailer holds a counter of non-concurrent computation
steps (LTC, Logical Time Counter) performed by agents, represented as the number of
non-concurrent constraint checks (#ncccs). Communication delays can be modelled
by adding extra increments to get #encccs. Each agent maintains its own LTC, and
attaches it to each message she sends. An agent that receives a message updates her
counter to the maximum value between the received LTC and her own counter. Next,
she performs a computation step and sends her outgoing messages. Immediately prior
sending a message, the agent increments her LTC by the number of constraints checks
performed during that step. When an agent desires to send a message she passes it to
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Fig. 1: Different communication protocols.

the dedicated mailer thread. Upon receiving that message, the mailer updates its LTC
by the value of the LTC carried by the message if its value is larger than that held in the
mailer. A delay for the message is then chosen and the message is added to the outgoing
queue. The queue is ordered by increasing LTC. When a message reaches the front of
the queue, it is removed, and delivered to the incoming queue of the receiving agent.

Each agent maintains a count of the messages it sends (#msg), incrementing it
by 1 for each message sent to the mailer. Note that each message counts 1 regardless
of size, and is thus recording the instance of a single source-to-destination commu-
nication. Most experimental comparisons of DisCSP algorithms record the maximum
#ncccs value over all agents at termination, and the sum of the message counts (#msg)
over all agents. Occasionally, the total number of constraints checks (summed over all
agents) or the number of communication cycles is also reported. The most important
metric is usually considered to be #ncccs, consistent with work in general distributed
algorithms [19, p. 22]. This model works well with applications implemented over stan-
dard wired TCP/IP networks, where variation in routing and packet retransmissions can
be averaged over all agents and messages.

There are many practical application problems which rely on wireless networking.
For example, in dynamic mission scheduling in unmanned aerial vehicles (UAVs), clus-
ters of UAVs are remote from the base and must coordinate their actions and revise
their plans through negotiation with each other using wireless communication [28]. In



wireless sensor networks, small sensor nodes must relay sensed data to a base, and
may be required to coordinate their sensing in order to ensure the target phenomena is
adequately covered [1, 15, 36, 3]. This is further extended to wireless sensor actuator
networks, in which some of the nodes can control aspects of the physical environment.
In addition, the operation and configuration of ad hoc and mesh wireless networks re-
quires individual radio nodes to sense the topology of the network and to agree spectrum
use, time schedules for communication, and routing paths [25], all of which involve dis-
tributed combinatorial problems.

In wireless communication [24], each individual transmission of data consumes
energy in order to radiate and receive the signal. The energy consumed depends on the
distance over which the data is transmitted, and on the amount of data. In wireless sensor
networks, the cost of transmitting one bit of information is estimated to be equal to the
cost of executing 1000 to 2000 logical instructions on the sensor node [14, p. 104], and
so computation is considered much cheaper than communication. For battery powered
nodes, limiting communication cost is the key to maintaining node, and thus network,
lifetime. In multi-hop networks (e.g., wireless sensor networks or ad hoc networks),
some nodes are not in range of each other, and so intermediate nodes must receive
and re-transmit the data in order for it to be delivered. Thus, the delivery of a single
message between nodes Ai and Aj may require significantly more transmissions than
the same message delivered from Ai to Ak. Also, wireless communication is subject to
radio interference, and so messages may have to be retransmitted in order to be received
successfully; alternatively, to avoid interference, nodes may have to wait until the radio
spectrum is free before they transmit. Thus, as well as incurring additional energy costs,
longer transmission paths impose additional delays on message delivery.

Within a multi-hop network, there are many different approaches for routing the
data [16]. Methods include flooding the network with messages, decentralised routing
with each node maintaining a routing table, and source-level routing, in which each
node decides upon the end-to-end route it will use for each recipient. Within source-
level routing, options include N-way unicast, multicast, and multicast using the broad-
cast medium (which we refer to as multicast*)(Fig. 1). For N -way unicasting, a source
sending to N recipients creates N copies of the message, and then initiates each mes-
sage along its chosen route. In multicasting, the source constructs a rooted tree with
itself as root and containing all the intended recipients. Messages are then sent down
the tree, with multiple copies only created when multiple branches leave from a single
node. Multicast* takes advantage of the fact that multiple nodes can receive a single
transmission, and thus each node in the multicast tree only needs to transmit a single
copy of the message (assuming an omnidirectional antenna).

The differences between the standard DisCSP communication model and the wire-
less communication model raises the question of how our algorithms perform when
deployed on wireless networks. The standard DisCSP model is essentially N -way uni-
casting, either on a complete communication network or on the constraint graph. Every
edge in the graph requires the same energy for a transmission – any agent can commu-
nicate directly with any neighbour, for a cost of 1 message (plus a delay increment of δ)
for each communication. In a problem instance with n agents, sending a variable assign-
ment tom (constraint graph) neighbours takesm transmissions each with delay δ. Even



if we assume that each transmission does consume the same energy, implementing the
same instance on a wireless network may incur different costs. If the communication
topology is a linear chain, with the source at one end and the recipients at the other, the
same variable assignment would require n∗m− (m(m−1)/2) transmissions, with the
longest delay n∗δ. Multicast on the same topology would require just n transmissions,
but with the longest delay still n ∗ δ. Finally, if the topology is a complete graph, using
multicast*, then we require just 1 transmission, with delay δ. Since increasing delays in
messages are known to adversely affect #encccs for DisCSP algorithms, we may also
see variation in the #encccs metric as we vary the communications layer. Therefore,
if we are to deploy DisCSP algorithms on wireless networks, we need to revisit the
algorithms, and assess their performance under different communication assumptions.

3 Network Communication Simulator Framework (NeCoS)

The standard DisCSP model views agents as distributed autonomous entities. Al-
most all distributed constraint reasoning simulators implement agents as Java Threads
[40, 30, 17, 32, 11]. Zivan and Meisels (2006) proposed AMDS counting non-
concurrent constraints-checks (#ncccs) for systems with message delays. In AMDS,
agents run concurrently, exchanging messages using a common mailer. In this section
we generalize AMDS to simulate different communication topologies and routing pro-
tocols (unicast, multicast, and multicast*). We call the new simulator Network Com-
munication Simulator (NeCoS). NeCoS is a Thread to which all messages are passed to
simulate delays in communication networks using different communication protocols.
We assume two graphs: (i) the standard DisCSP constraint graph, where two agents are
neighbours if and only if they share a constraint, and (ii) the communications graph,
where two nodes are neighbours if and only if they can communicate directly with each
other in a single transmission. There is a function from the constraint graph vertex set
(agents) to the communications graph vertex set (nodes), but the edge sets may be arbi-
trarily different. NeCoS requires as input the communications graph and the function.
When Ai sends a message to Aj , the message must traverse a path in the communica-
tions graph, which may require multiple retransmissions of the message.

As in AMDS, NeCoS maintains a Logical Time Counter (LTC), which measures
the longest sequence of computation and communication between agents. Each agent
maintains its own counter. To simulate delays on message transmissions, each message
in the system carries the LTC value of its sender. Whenever an agent receives a message,
it updates its counter to the maximum value of the received LTC and its own counter.
It then performs its computation step and sends messages with the value of its counter
incremented by the amount of computation required during this step.

The NeCoS pseudo-code is presented in Figs. 2 and 3. In initialisation, NeCoS
stores the communications graph in network, and then computes all shortest paths
using [8]. When an agent desires to send a message msg to a set of recipients, it emits
the message to NeCoS by calling sendMessage(msg, recipients). Depending on the
routing protocol used, NeCoS runs different procedures (lines 15-17):

unicast: for each recipient, NeCoS creates a copy (m) of the original message and
computes the routing tree for that copy. The routing tree is the shortest path in



procedure NeCoS()
01. outQueue← ∅; LTC ← 0; end← false ;
02. network ← getCommunicationGraph() ;
03. network.computeAllShortestPaths(); /* Use Floyd-Warshall [8, 35] */
04. while ( ¬end ) do
05. if ( all agents are terminated ) then end← true ;
06. else if ( all agents are idle ) then LTC ← outQueue.first().getLTC();
07. deliverMessages() ;

procedure deliverMessages()
08. foreach ( msg ∈ outQueue s.t. msg.getLTC() < LTC ) do
09. tree← msg.gettree() ;
10. As ← tree.getRoot() ;
11. if ( As ∈ msg.getRecipients() ) then deliver(msg) to As;
12. if ( routingProtocol 6= multicast* ) then routingMessage(msg, tree,As);
13. else routingMulticast∗(msg, tree,As);

procedure sendMessage(msg, recipients)
14. switch ( routingProtocol ) do // routingProtocol ∈{unicast,multicast,multicast* }
15. unicast : sendUnicast(msg, recipients) ;
16. multicast : sendMulticast(msg, recipients) ;
17. multicast* : sendMulticast∗(msg, recipients) ;

procedure sendUnicast(msg, recipients)
18. As ← msg.getSender();
19. foreach ( Ai ∈ recipients ) do
20. As.nbMsgSent← As.nbMsgSent+ 1;
21. m← msg;
22. m.setRecipients(Ai);
23. tree← network.shortestPath(As, Ai) ;
24. m.setRoutingTree(tree);
25. chooseDelay(m) ;
26. outQueue.add(m) ;

procedure sendMulticast(msg, recipients)
27. As ← msg.getSender() ;
28. tree← network.steinerTree(As, recipients) ;
29. routingMessage(msg, tree,As) ;
procedure sendMulticast∗(msg, recipients)
30. As ← msg.getSender() ;
31. tree← network.steinerTree(As, recipients) ;
32. routingMulticast∗(msg, tree,As) ;
procedure routingMessage(msg, tree, node)
33. foreach ( subtree ∈ tree.getSubtreesOf(node) ) do
34. node.nbMsgSent← node.nbMsgSent+ 1 ;
35. m← msg;
36. m.setRecipients(recipients ∩ subtree);
37. m.setRoutingTree(subtree);
38. chooseDelay(m) ;
39. outQueue.add(m) ;

Fig. 2: Network Communication Simulator (Part 1).



procedure routingMulticast∗(msg, tree, node)
40. node.nbMsgSent← node.nbMsgSent+ 1 ;
41. chooseDelay(msg) ;
42. foreach ( subtree ∈ tree.getSubtreesOf(node) ) do
43. m← msg ;
44. m.setRecipients(recipients ∩ subtree);
45. m.setRoutingTree(subtree);
46. outQueue.add(m) ;

procedure chooseDelay(msg)
47. LTC ← max(LTC,msg.getLTC()) ;
48. msg.LTC ← msg.getLTC() + δ ;

Fig. 3: Network Communication Simulator (Part 2).

the communications graph from the sender to the recipient (line 23). Then, NeCoS
calls procedure chooseDelay(m) (line 25) to select a random delay needed to
transmit the message to the next node in the routing tree (lines 47-48). The copy of
the message is then added to the outgoing message queue (i.e., outQueue, line 26).

multicast: NeCoS constructs a rooted Steiner tree with the source (As) as root and
containing all recipients, line 28.1 Then, NeCoS mimics the multicast routing pro-
tocol (routingMessage call, line 29). In routingMessage, a message is trans-
mitted from the root node to each of its children (roots of its sub-trees, subtree,
line 33) in the routing tree, tree, and each of these in turn queues the message for
retransmission to its children (lines 38-39). We increment the number of messages
transmitted by node by the number of its children in routing tree (line 34).

multicast*: NeCoS constructs a rooted Steiner tree with the source (As) as root and
containing all recipients, line 31. Then, NeCoS mimics the multicast* routing
protocol (routingMulticast∗ call, line 32). In routingMessage, a message
is transmitted from the root node to each of its children (roots of its sub-trees,
subtree, line 42) in the routing tree, tree requiring only one transmission (line 40)
from node with the same delay (line 41). However, to simulate this, NeCoS creates
a copy m of msg for all children of node in the routing tree, tree (lines 43) and
each of these in turn will queue the copy for retransmission to its children (line 46).

In the three communication protocols, the LTC of each transmitted message is up-
dated to the sum of the value of the message LTC and a random selected delay (line 48).
Then, the message is added to the outgoing queue (outQueue). The outgoing queue is
a priority queue in which messages are sorted by their LTC, so that the first message is
the message with the lowest LTC.

When there are no incoming messages, and all agents are idle, NeCoS increases the
value of its LTC to the LTC value of the first message in the outgoing queue (line 6)
and calls procedure deliverMessages (line 7). When deliverMessages is invoked
by NeCoS all messages carrying an LTC smaller than the counter of the simulator are
transmitted line 4. Thus, this message is delivered to the root of the routing tree if it is

1 In our experiments, we use a heuristic algorithm to compute good Steiner trees.



one of the final recipients of that message, line 11. Next, we simulate a routing node for
that agent depending on the routing protocol used (lines 12-13).

4 Experiments

In this section we evaluate ABT and AFC-ng under different network conditions. Al-
gorithms are tested on the same static agent ordering using the max-degree heuristic.
For ABT we implemented an improved version of Silaghi’s solution detection [29] and
counters for tagging assignments. All experiments were performed on the DisChoco 2.0
platform [32],2 in which agents are simulated by Java threads that communicate only
through message passing.

The algorithms are tested on uniform binary random DisCSPs which are charac-
terized by 〈n, d, p1, p2〉, where n is the number of agents/variables, d the number of
values per variable, p1 is the constraint graph connectivity defined as the ratio of exist-
ing binary constraints to possible binary constraints, and p2 is the constraint tightness
defined as the ratio of forbidden value pairs to all possible pairs. We solved instances
of two classes of constraint graphs: sparse constraint graphs 〈20, 5, 0.2, p2〉 and dense
ones 〈20, 5, 0.7, p2〉. We varied the tightness from 0.1 to 0.9 by steps of 0.1. For each
pair of fixed density and tightness (p1, p2) we report the average over 20 instances.

We evaluate the performance of the algorithms by communication load and compu-
tation effort. Communication load is measured by the total number of transmission mes-
sages in the communication network during algorithm execution (#transmission).
Computation effort is measured by the average of the equivalent non-concurrent
constraint checks (#encccs) [5] that extends the non-concurrent constraint checks
(#ncccs) [9]. The #encccs are a weighted sum of processing and communication
time. We simulate uniform random message delays on the communication network. For
each message a delay is randomly chosen between 10 and 100 constraint checks. We
simulated three communication protocols: unicast, multicast, and multicast*.

To assess the behaviour of ABT and AFC-ng on different communication layers we
generate 8 different connected network topologies, using only agents in the problem:
complete: the communication network is a complete graph, where all agents are con-
nected to each other – the maximum number of hops between any two agents is one;
constraint: the communication network matches the constraint graph exactly;
star: the communication network has a star topology where one randomly selected
agent is directly connected to all other agents, and there are no other connections;
random (0.7): dense random communication networks, where exactly 0.35∗(n(n−1))
randomly selected binary connections are created;
random (0.2): sparse random communication networks, where exactly 0.1∗ (n(n−1))
randomly selected binary connections are created;
spanning: the communication network is a random spanning tree that spans the agents
of the problem;
ring: the communication network is a random ring, and so the maximum distance be-
tween any agent pair is n/2 hops;

2 http://dischoco.sourceforge.net/

http://dischoco.sourceforge.net/


Table 1: Performance on hard region when simulating unicast communication protocol.
Communication (p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

graph #transmission #encccs #transmission #encccs

Algorithm ABT AFC-ng ABT AFC-ng ABT AFC-ng ABT AFC-ng

complete 5 769 2 724 26 143 25 968 627 742 188 934 1 784 567 1 223 455
constraint 7 834 2 886 27 807 30 115 772 906 182 744 1 836 074 1 292 729

star 12 061 5 076 39 587 48 301 1 283 398 361 580 2 286 323 2 181 065
random (0.7) 7 846 3 518 29 640 32 344 846 561 242 956 1 929 618 1 505 303
random (0.2) 15 299 6 147 43 790 55 555 1 609 192 431 490 2 476 220 2 541 963

spanning 28 236 10 936 67 390 97 036 3 083 883 739 513 3 673 841 4 158 617
ring 40 274 13 654 86 113 120 862 4 602 738 972 699 4 564 197 5 528 475

chain 51 075 19 872 99 331 164 056 6 183 110 1 321 164 5 262 304 6 680 264

Table 2: Performance on hard region when simulating multicast communication protocol.
Communication (p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

graph #transmission #encccs #transmission #encccs

Algorithm ABT AFC-ng ABT AFC-ng ABT AFC-ng ABT AFC-ng

complete 5 604 2 774 26 187 26 758 624 311 188 967 1 776 765 1 241 699
constraint 6 629 2 764 28 361 29 793 678 895 183 789 1 832 203 1 279 464

star 8 657 3 483 38 680 46 047 881 339 215 746 2 276 400 2 051 918
random (0.7) 6 976 3 103 29 708 32 157 736 382 197 971 1 929 399 1 527 361
random (0.2) 12 022 4 442 45 536 55 573 1 153 096 242 460 2 625 804 2 588 631

spanning 19 066 6 497 66 879 91 341 1 741 666 304 504 3 610 608 3 823 730
ring 28 641 8 086 90 159 121 029 2 593 760 367 807 4 843 591 5 465 870

chain 32 553 10 917 97 718 153 332 3 055 454 430 339 5 182 070 5 984 795

Table 3: Performance on hard region when simulating multicast* communication protocol.
Communication (p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

graph #transmission #encccs #transmission #encccs

Algorithm ABT AFC-ng ABT AFC-ng ABT AFC-ng ABT AFC-ng

complete 2 643 993 25 493 25 959 230 833 35 028 1 764 498 1 113 742
constraint 4 167 1 273 27 977 30 186 313 675 37 869 1 817 239 1 181 323

star 5 416 1 805 37 564 44 317 487 496 67 289 2 242 006 1 905 299
random (0.7) 4 013 1 554 29 361 32 211 366 740 62 809 1 913 308 1 407 144
random (0.2) 9 004 3 257 44 894 56 056 874 364 151 131 2 613 529 2 505 835

spanning 15 522 5 382 65 817 91 692 1 442 528 213 293 3 600 303 3 728 196
ring 25 648 7 741 88 114 122 376 2 517 252 351 788 4 826 414 5 452 225

chain 31 882 10 580 97 689 153 234 2 972 596 415 085 5 161 530 5 977 598
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Fig. 4: Comparison of the performance of ABT using unicast on chain communication tree and
complete graph, and using multicast* on complete graph.

chain: the communication network is a linear chain tree, randomly selected; agents at
the ends of the chain are (n− 1) hops from each other.

For each topology (except complete and constraint), we generated 5 different ran-
dom communication networks, and solve each problem instance on each one. The re-
sults presented are averaged over 20 problem instances.

For space reason, we show only a subset of the obtained results. Tables 1, 2, 3
present the obtained results on the hard regions (p1 = 0.2, p2 = 0.7) and (p1 =
0.7, p2 = 0.3). On dense problems on complete communications graphs with multi-
cast* (Table 3), ABT can use 7 (resp. 1.7) times more #transmission (resp. #encccs)
than AFC-ng. On sparse problems on complete graphs when simulating multicast*,
ABT requires 2.5 times more #transmission than AFC-ng while the #encccs value
for both algorithms is similar. On dense problems on chain communications network
with multicast, (Table 2), ABT requires 7 times more #transmission than AFC-ng,
but ABT requires slightly fewer #encccs. On sparse problems on chain communica-
tions network with multicast, ABT requires 3 times more #transmission than AFC-
ng, but AFC-ng records 1.5 times more #encccs. For unicast (Table 1) we see a sim-
ilar pattern, but smaller differences. For sparse problems on the chain communication
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Fig. 5: Comparison of the performance of AFC-ng using unicast on chain communication tree
and complete graph, and using multicast* on complete graph.

networks ABT requires 2.5 times more #transmission than AFC-ng, but AFC-ng
performs 1.6 times more #encccs. Thus, when we use unicasting on sparse communi-
cations networks, ABT is better on #encccs, otherwise, AFC-ng is better, and particu-
larly for dense communication networks with multicast*, where ABT requires 7 times
more #transmission than AFC-ng.

We note that, for the two algorithms we studied, changing just the routing pro-
tocol rarely changes the ranking, but it does affect the margin of improvement. For
example, for multicast on dense networks that match the constraint graph, the ratio of
#transmission for ABT against AFC-ng is 3.7, but for multicast* on the same prob-
lems, the ratio increases to 8.2. A change in the topology of the communications graph
does affect the ranking for #encccs. For example, for unicast on dense problems, on
complete networks AFC-ng offers an improvement over ABT of 45%, but for chain tree
networks, ABT is better by a factor of 27%.

Looking at just ABT, for sparse problems, for different communication layers, the
#transmission can vary by a factor of 20 (multicast* on complete, vs unicast on
chain), Fig. 4. If we assume unicast on a complete network is the standard DisCSP
model, then varying the communication layer could drop #transmission by a factor
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Fig. 6: Patterns used to generate communication chain trees from the max-degree ordering o.

of 2.5, or raise it by a factor of 8. For dense problems, the biggest factor is 25 for
#transmission (this factor can drop by 1/3 or rise by 9), and 2.7 for #encccs.

Looking at just AFC-ng on sparse problems (Fig. 5), again the range in
#transmission varies by a factor of 20, and for #encccs by a factor of 6.5. For
dense problems, the variation factor for #transmission is 37 when comparing the
multicast* protocol on complete communications graph to the unicast protocol on chain
communications network. The variation is 6 for #encccs. These results show that the
#transmission for AFC-ng using the standard model used so far to compare DisCSP
algorithms (unicast on complete communications graph) could be factor of 6 too high
or a factor of 6 too low.

Changing just the routing protocol has only a small effect for ABT, varying by a
factor of approximately 2, but a larger effect for AFC-ng, of up to 5.5. We believe
this is because of the nature of the algorithms. Multicast* does not change the number
of no-goods, and ABT sends significantly more no-goods than AFC-ng. In general,
multicasting (multicast and multicast*) offers an improvement over unicast when the
communications graph is sparse, while multicast* improves over multicast when the
communications graph is dense.

On the chain communications network, AFC-ng appears to require more #encccs
than ABT, while ABT requires more #transmission. This is investigated more
closely in the next section. On chain communications, multicast and multicast* are
similar, apart from random variation in message delays.

4.1 Communication chain trees

In the following we evaluate the performance of ABT and AFC-ng on different chain
communication networks. Based on the max-degree ordering (o) (computed from the
constraint graph) 5 patterns are used to generate chain communication trees (T ). In the
following we denote by xo(k) the kth agent in o. This patterns are presented on Fig. 6.
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Fig. 7: Performance of ABT on dense problems, multicast routing protocol, different communi-
cation chain trees.
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Fig. 8: Performance of AFC-ng on sparse problems, multicast routing protocol different commu-
nication chain trees.

p1: every pair of adjacent agents in o are connected in the chain communication tree
(TE = {{xo(k), xo(k+1)} | k ∈ 1..n− 1}.

p2: for each pair of adjacent agents on the resulting communication tree T , we try to
maximise their separation in the ordering o. Thus, the first agent (xo(1)) is con-
nected to the last (xo(n)), the last the second, and so on: TE = {{xo(1), xo(n)};
{xo(n), xo(2)}; {xo(2), xo(n−1)}; . . . }.

p3: we try to maximise the distance between the first and the second agent on
o. Thus, xo(1) and xo(2) are the extremities of the resulting chain communica-



tion tree T , TE = {{xo(2), xo(n−1)}; {xo(n−1), xo(n−2)}; {xo(n−2), xo(3)}; . . . ;
{xo(n

2 ), xo(n)}; {xo(n), xo(1)}}.
p4: we try to maximise the distance between the last and the second last agent on

o. Thus, xo(n−1) and xo(n) are the extremities of the resulting chain commu-
nication tree T , TE = {{xo(n−1), xo(2)}; {xo(2), xo(3)}; {xo(3), xo(n−2)}; . . . ;
{xo(n

2 +1), xo(1)}; {xo(1), xo(n)}}.
rnd: we generate random chain trees.

Again we show only a subset of results due to space reasons. Looking at ABT per-
formance on dense problems (Fig. 7), when the chain communication tree does not
match the max-degree agent ordering (pattern 1) the #transmission required is in-
creased by 50%. For #encccs a small improvement can be seen for pattern 1 compared
to other patterns. For AFC-ng on sparse problems (Fig. 8), the pattern used doesn’t re-
ally matter for the #transmission. For #encccs, if the chain communication fits the
max-degree we get an improvement of 30%.

5 Conclusion

There are many potential applications of Distributed Constraint Satisfaction that rely
on wireless networking for the agent to communicate. The standard DisCSP commu-
nication model does not represent important features of wireless communication, par-
ticularly the topology of the communications graph and the routing protocols. We have
introduced a new simulator for modelling wireless communication in DisCSP, NeCoS,
which allows different topologies and routing protocols to be modelled. We have shown
that varying the communications layer can have a significant effect on the performance
metrics for existing DisCSP algorithms, sometimes varying the number of messages by
a factor of over 30. The topology of the network also has an impact on the performance
of the algorithms, causing a variation of up to 50% in the number of transmissions for
ABT and almost 30% in the number of #encccs for AFC-ng.

These results indicate that, if DisCSP is to be applied to wireless network appli-
cations, further research is required on the interaction between the algorithms and the
communications layer. In particular, we will investigate ordering heuristics that adapt to
the wireless network structure. We will explore algorithm variants that exploit the com-
munication structure; for example, in distributed optimisation, we believe the broadcast
mechanism of the AFB family [10, 31] will work well with multicast*. Finally, we will
extend these ideas to explore more features of wireless networking, including cases
where the communication network is dynamic or agents are mobile, and so areas of the
network may become temporarily disconnected [28].
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[1] Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman,
B., Valls, M.: Sensor networks and distributed csp: communication, computation
and complexity. Artif. Intel. 161, 117–147 (2005)

[2] Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking
without adding links: a new member in the ABT family. Artif. Intel. 161, 7–24
(2005)

[3] Bijarbooneh, F.H., Flener, P., Ngai, E., Pearson, J.: Optimising quality of infor-
mation in data collection for mobile sensor networks. In: Quality of Service
(IWQoS), 2013 IEEE/ACM 21st International Symposium on. pp. 1–10. IEEE
(2013)

[4] Brito, I., Meisels, A., Meseguer, P., Zivan, R.: Distributed Constraint Satisfaction
with Partially Known Constraints. Constraints 14, 199–234 (2009)

[5] Chechetka, A., Sycara, K.: No-commitment Branch and Bound Search for Dis-
tributed Constraint Optimization. In: Proc. of the Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems. pp. 1427–1429. AA-
MAS’06, ACM, New York, NY, USA (2006)

[6] Doniec, A., Bouraqadi, N., Defoort, M., Le, V.T., Stinckwich, S.: Distributed Con-
straint Reasoning Applied to Multi-robot Exploration. In: Proc. of the 21st IEEE
International Conference on Tools with Artificial Intelligence. pp. 159–166. IC-
TAI’09, IEEE Computer Society, Washington, DC, USA (2009)

[7] Ezzahir, R., Bessiere, C., Wahbi, M., Benelallam, I., Bouyakhf, E.H.: Asyn-
chronous Inter-level Forward-checking for DisCSPs. In: Proc. of the 15th In-
ternational Conference on Principles and Practice of Constraint Programming. pp.
304–318. CP’09, Springer-Verlag, Berlin, Heidelberg (2009)

[8] Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (jun 1962)
[9] Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward-Bounding for Dis-

tributed Constraints Optimization. In: Proc. of the 2006 Conference on ECAI
2006: 17th European Conference on Artificial Intelligence. pp. 103–107. IOS
Press, Amsterdam, The Netherlands, The Netherlands (2006)

[10] Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward Bounding for Dis-
tributed COPs. JAIR 34, 61–88 (2009)

[11] Grubshtein, A., Herschorn, N., Netzer, A., Rapaport, G., Yaffe, G., Meisels, A.:
The Distributed Constraints (DisCo) Simulation Tool. In: Proc. of the IJCAI work-
shop on DCR’11. pp. 30–42. Barcelona, Catalonia, Spain (2011)

[12] Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artif. Intel. 14(3), 263–313 (1980)

[13] Hirayama, K., Yokoo, M.: The Distributed Breakout Algorithms. Artif. Intel. 161,
89–116 (2005)

[14] Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks.
Wiley (2005)

[15] Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adaptive sampling in
wireless sensor networks. ACM Trans. Sen. Netw. 5(3), 19:1–19:35 (Jun 2009)



[16] Kurose, J.F., Ross, K.W.: Computer Networking, 63. Addison Wesley (2013)
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