Branching Constraint Satisfaction Problems for
Solutions Robust under Likely Changes

David W. Fowler and Kenneth N. Brown

University of Aberdeen, Aberdeen AB24 3UE, UK
{dfowler,kbrown}@csd.abdn.ac.uk

Abstract. Many applications of CSPs require partial solutions to be
found before all the information about the problem is available. We ex-
amine the case where the future is partially known, and where it is im-
portant to make decisions in the present that will be robust in the light
of future events. We introduce the branching CSP to model these situ-
ations, incorporating some elements of decision theory, and describe an
algorithm for its solution that combines forward checking with branch
and bound search. We also examine a simple thresholding method which
can be used in conjunction with the forward checking algorithm, and we
show the trade-off between time and solution quality.

1 Introduction

In this paper, we consider the problem of a solver that periodically receives
additions to an existing problem, and must make a decision for each addition
as it is received. We assume that there is a simple model of what additions
are likely to occur. We believe that this knowledge can enable the solver to
make decisions that will be robust under future events. The approach used here
involves extending the framework of constraint satisfaction to include the model
of future events to give a new form of CSP, called a branching CSP (BCSP). A
detailed presentation can be found in [FB00].

As an illustration, consider a scheduling problem in which new tasks arrive
during the process. The aim is to schedule as many tasks before their due date
as possible. There are two identical resources that the tasks may use. The tasks
for this problem are described in Fig. 1. We start with tasks A and B. We know
that one of the other tasks will arrive at time 1. It will be C with probability
0.6, and D with probability 0.4. A final restriction (future work will look at how
to overcome this) is that tasks A and B must be scheduled before it is known
which of tasks C or D arrives next. How should we schedule tasks A and B?

There are three reasonable possibilities, shown in Fig. 2. Solution (a) allows
C to be scheduled, but not D, whereas (b) allows D but not C. (c) allows both C
and D to be scheduled, at the price of omitting B. Which is best depends on the
probabilities and utilities. For this example, the expected utilities are (a) 3.8,
(b) 5.2, and (c) 6.0. So it is best to schedule task A at time 0, omit B, and then
schedule C at time 1 or D at time 2, depending on which arrives.

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 500-504, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Branching Constraint Satisfaction Problems 501

Task Duration #Resources Due Utility

g1 A ‘ B 1 A 1 A ‘
A 2 141
B 2 14 2 Y B :
C 3 1 4 3 o 1 2 3 4.0 1 2 3 4.0 1 2 3 4
D 1 2 4 8 1;‘:;0 (b) fe)
Fig. 1. Tasks for Example Problem Fig. 2. Three Possible Solutions

2 Branching CSPs

The initial definition of a BCSP involves variables, constraints, and a state tree.
The variables and constraints are as in standard CSPs, with the difference that
each variable has an associated non-negative utility, which is gained if the vari-
able has a value assigned to it. Variables can be left unassigned, in which case
the utility gained from that variable is 0.

The state tree represents the possible development paths of the dynamic
problem. Each edge in the tree is directed, and is labelled with a transition
probability. Each node S; has an associated variable Xg,, with the restriction
that a variable can appear at most once in any path from the root to a leaf node.
There are transition probabilities p;; labelling the edge (if it exists) between S;
and S;. For any path through the tree from root to leaf node, a series of con-
straint satisfaction problems is produced, involving all variables that have been
encountered at each node in the path so far. If a constraint involves variables
that are all assigned values, then those values must satisfy the constraint.

A solution to a BCSP is a decision for each variable at each node in the
state tree, so that on each path all relevant constraints (those that involve only
variables that have been assigned values in the path) are satisfied. A solution
is a plan for each possible sequence of variable additions, and we have assumed
that the total utility of the solution can be found by summing the utilities of the
assigned variables in the path that actually occurs. However, we must try to find
a solution before we know which path will occur, and so we define the optimal
solution to be the one with the highest expected total utility. For a solution,
the expected utility from a node can be defined recursively as follows. The E.U.
from a leaf node S; is the utility of Xg, if it is assigned a value, otherwise 0. For
a nonleaf node S;, the E.U. is the utility of X, (or zero if it is unassigned) plus
>_; i EU; , where the sum is over all the child nodes of 5.

3 Solution Algorithms

Two complete algorithms have been implemented to solve BCSPs involving bi-
nary constraints on finite domains. These are: a straightforward branch and
bound algorithm that examines each node in the state tree in a depth first or-
der, and finds the value for the variable that maximises the expected utility
from that node; and a forward checking algorithm that uses the constraints to
prune the domains of variables lower down in the tree. As well as reducing the

502 David W. Fowler and Kenneth N. Brown

number of values that need to be examined, the propagation is used to calculate
an upper bound on the expected utility from the current node. If this value is
less than that of the best solution found so far, the effects of propagation can be
undone, and the next value tried for the current variable immediately. Experi-
ments show that FC is much faster than the basic branch and bound algorithm,
so we concentrate on FC for the rest of this paper.

To test FC, we generated random problems as follows. The number of vari-
ables, n, was fixed at 10. Each variable had a domain with m = 10 values, and a
utility which was an integer selected at random uniformly from the range [1,50].
The state tree was produced by the following branching process. For each node
the probability of no children was 0.05, for one child 0.5, for 2 children 0.25,
and for 3 children 0.2. The transition probabilities for each child node were then
selected so that they summed to 1.0. We varied the density of the constraint
graph p; and the tightness of constraints ps. p; was varied from 0.1 to 1.0 in
steps of 0.1, and py from 0 to 1 in steps of 0.02. 100 problems were generated
for each combination of p; and ps, and the median number of constraint checks
recorded. The results are shown in Fig. 3.

It is interesting to compare the hardness of BCSPs with that of static CSPs,
where all variables must be assigned values (if this is possible). In Fig. 3 we have
shown the curve for p; = 0.6 (other values of p; show similar behaviour). The
static CSP also has n = 10 and m = 10.

1e+06

1
p1x100 i ; T
Static CSP —— | o0 e *

o
100000 |- 08 o *
.

) & 4t
¥
W
o
2
06 ¥
&

i
04k 7

10000

Constraint checks
Utilty (normalised)
4

1000

L A N 0.2

.
0 20 40 60 80 100 0 02 0.4 06 0.8 1
p2x 100 Constraint checks (normalised)

Fig. 3. FC Search Fig. 4. Thresholding using FC

4 Thresholding

The algorithms presented above are complete, but may not have explored impor-
tant branches by the time the first decision is required. In real world applications
we usually prefer a slightly inferior result before a deadline has been reached,
than an optimal result afterwards. It is also useful to be able to generate results
that improve over time, instead of a single result at the end of the computation.

Branching Constraint Satisfaction Problems 503

Thresholding is a simple method that can be used to implement either of the
above. The idea is to ignore branches of the state tree that can not give a utility
higher than a threshold value. For high thresholds, large sections of the tree will
be pruned, giving a problem that can be solved much more quickly. For very low
values the tree will be pruned only slightly, and for a threshold of 0 there will
be no pruning at all.

The algorithm was tested on random problems generated as before. For each
problem, the initial threshold was taken as an upper bound on the total expected
utility, calculated by assuming that all variables could be assigned values. The
threshold was reduced to zero in 50 evenly spaced steps, with the problem being
solved with FC for each threshold. The last step (with the threshold equal to
zero) corresponds to the full original problem. p; was fixed at 0.7, and three
values of po chosen to give underconstrained (p; = 0.3), hard (p2 = 0.6), and
overconstrained (p2 = 0.9) problems. 100 problems were generated in each run.
Fig. 4 shows how the expected utility increases with the number of constraint
checks. For the hard problems, almost 80% of the achievable utility can be gained
with 20% of the constraint checks needed to find the optimal solution. The
overconstrained problems give similar results; for underconstrained problems
the performance is poorer, but the time for solving these is not significant.

5 Related Work

Dynamic Constraint Satisfaction [DD88] models a changing environment as a
series of CSPs. The emphasis in DCSPs has been on minimising the work needed
to repair a solution when a change occurs. There is typically no model of the
future, and thus no concept of solutions which are themselves robust to changes.
Wallace and Freuder [WEF97] do consider future events in their recurrent CSPs,
and aim to find robust solutions, but they concentrate on changes which are
temporary and frequently recurring. Supermodels [GPRI8] are solutions which
can be repaired in a limited number of moves, given a limited change to the
original problem. This approach does not consider the likelihood of changes, nor
does it take account of a sequence of changes. Fargier et al. [FL596] propose mized
CSPs, in which possible future changes are modelled by uncontrollable variables.
They search for conditional solutions, dependent on the eventual value of these
variables, and thus the solutions are robust. However, they do not deal with
sequences of events, but assume all changes occur at the same time. As a result,
there is not necessarily any similarity between the different individual solutions
derived from the conditional ones. Finally, it must be mentioned that the model
of likely future events will occasionally be insufficient, and an unexpected event
will occur. A practical solver will have to be able to fall back to existing DCSP
methods in this case.

In addition to modelling changes, we also develop partial solutions to overcon-
strained problems. We choose to leave variables unassigned, and insist on all con-
straints being satisfied. Most work on partial CSPs, for example [F'W92, BNMR95],
concentrates on finding solutions which violate the fewest constraints. Freuder

504 David W. Fowler and Kenneth N. Brown

and Wallace’s [F'W92] general scheme for solving PCSPs searches for variations
on the problem which would allow complete solutions. It is possible to recast the
unassigned variable approach in that scheme by creating new problems which
retract exactly those constraints which involve the variables we leave unassigned.
Our algorithms could be considered to be doing exactly that; however, we believe
explicitly designating variables as being unassigned is a more natural represen-
tation for many applications.

6 Future Work

For the example problem of section 1, it can be seen that it would be better to
schedule A, and delay a decision on B until we see whether C or D arrives. The
expected utility is then 7.0. We have implemented an algorithm which allows
such delays, but have yet to produce experimental results. At present, we can
only postpone a variable until the next variable arrives; future work may consider
how to relax this restriction. We intend to continue developing our understanding
of the current model by more experimentation with the existing algorithms, de-
veloping the algorithms to include more propagation during search, and finding
better anytime algorithms. We aim to extend the model to include explicit times
for events, and to allow constraint violations as well as unassigned variables. We
have started to compare our algorithms with CSPs that use 0/1 variables to
signify that variables are unassigned. Early results indicate that our methods
allow for both easier formulation of problems and more efficient solution. Fi-
nally we will compare our algorithms with existing methods of scheduling under
uncertainty - for example, MDPs and Just-In-Case scheduling [DB594].

References

[BMR95] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semirings.
In Proceedings of IJCAI-95, pages 624-630, 1995. 503

[DBS94] M. Drummond, J. Bresina, and K. Swanson. Just-in-case scheduling. In
Proceedings of AAAI-94, Seattle, Washington, USA, 1994. 504

[DD88] R. Dechter and A. Dechter. Belief maintenance in dynamic constraint net-
works. In Proceedings of AAAI-88, pages 37-43, 1988. 503

[FBO0O] D. W. Fowler and K. N. Brown. Branching constraint satisfaction problems.
Technical report, Dept. of Computing Science, Univ. of Aberdeen, 2000. 500

[FLS96] H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: a frame-
work for decision problems under incomplete knowledge. In Proceedings of
AAAI-96, Portland, OR, 1996. 503

[FW92] E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58:21-70, 1992. 503, 504

[GPRO8] M. L. Ginsberg, A. J. Parkes, and A. Roy. Supermodels and robustness. In
AAAI-98, pages 334-339, 1998. 503

[WF97] R. J. Wallace and E. C. Freuder. Stable solutions for dynamic constraint
satisfaction problems. In Workshop on The Theory and Practice of Dynamic
Constraint Satisfaction, Salzburg, Austria, November 1997. 503

	Branching Constraint Satisfaction Problems for Solutions Robust under Likely Changes
	Introduction
	Branching CSPs
	Solution Algorithms
	Thresholding
	Related Work
	Future Work

