
Realtime Online Solving of Quantified CSPs�

David Stynes and Kenneth N. Brown

Cork Constraint Computation Centre,
Dept of Computer Science, University College Cork, Ireland

d.stynes@4c.ucc.ie, k.brown@cs.ucc.ie

Abstract. We define Realtime Online solving of Quantified Constraint
Satisfaction Problems (QCSPs) as a model for realtime online CSP solv-
ing. We use a combination of propagation, lookahead and heuristics and
show how all three improve performance. For adversarial opponents we
show that we can achieve promising results through good lookahead and
heuristics and that a version of alpha beta pruning performs strongly.
For random opponents, we show that we can frequently achieve solutions
even on problems which lack a winning strategy and that we can improve
our success rate by using Existential Quantified Generalised Arc Consis-
tency, a lower level of consistency than SQGAC, to maximise pruning
without removing solutions. We also consider the power of the universal
opponent and show that through good heuristic selection we can generate
a significantly stronger player than a static heuristic provides.

1 Introduction

Many practical decision problems are not under the control of a single decision
maker. For example, in planning under uncertainty, mixed initiative planning,
interactive configuration or game playing, either the external environment or
another actor refines the detail of the problem as decisions are being made. Such
problems can be modeled as online constraint satisfaction, where the problem
variables must be instantiated in a fixed sequence, but where some of those
variables are set externally, and the aim is to achieve a complete satisfying
assignment at the end of the process. Quantified constraint satisfaction (QCSP)
is a generalization of CSP, which also has a fixed sequence of variables, but where
some of the variables are universally quantified. The aim is to find a winning
strategy, which guarantees a complete satisfying assignment for every possible
combination of values for the universal variables. QCSP can be regarded as a
model for online CSP: the existential variables represent the values under our
control, while the universal variables represent the externally assigned variables,
and if we can find a winning strategy for the QCSP, then we can guarantee to
find a solution to the online CSP. But in many online problems, including for
example delivery dispatch, game playing or reservation management, we have
� This work was supported in part by Microsoft Research through the European PhD

Scholarship Programme, and by the Embark Initiative of the Irish Research Council
for Science, Engineering and Technology (IRCSET).

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 771–786, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

772 D. Stynes and K.N. Brown

limited time in which to make each decision, and so online CSP can be extended
to realtime online CSP. Given the time limits, it may no longer be feasible to
search for a winning strategy for the corresponding QCSP. If we are to continue
using QCSP as a model, then we must develop methods for finding solutions to
a QCSP interactively, or online, as the universal variables are assigned, and we
must do this under time constraints.

Here, we investigate realtime online solving of QCSPs. We continue to use
QCSP as an idealised model of online CSP, but at each time-limited step we
search partial strategies to find the best decision, in the style of game tree search.
We develop the use of constraint propagation, game-tree search and ordering
heuristics for finding partial strategies. We consider two types of external ac-
tors: (i) adversarial opponents, who try to prevent us finding a solution, and (ii)
random solvers, which simply select random values for the variables. We develop
existential generalised arc consistency, which does not prune any solutions from
a QCSP, and which is particularly effective against random solvers. We develop a
version of alpha-beta pruning for adversarial opponents, and a method based on
weighted estimates for random solvers. We evaluate our methods empirically. On
random binary QCSPs, we show that alpha-beta is most effective on large adver-
sarial problems, while against random solvers we show that weighted estimates
frequently finds solutions where no winning strategy exists. We then consider
Online Bin Packing problems, requiring non-binary constraints, where the ex-
ternal solver generates the items to be packed into the bins. For these problems
we propose some online heuristics tailored to bin packing, and we show that
these heuristics outperform static heuristics. Performance is obviously affected
by the quality of the opponent, and we show the effect of different strategies and
heuristics for the opposing solver.

2 Background

A Quantified Constraint Satisfaction Problem[1] is a tuple P = (X ,D, C,Q)
where X = {X1, . . . , Xn} is a set of variables, D = {D1, . . . , Dn} is their do-
mains, C = {C1, . . . , Ce} is a finite set of constraints and Q = Q1X1 . . . QnXn is
a sequence of quantifiers for each variable, where each Qi is either ∃ (existential)
or ∀ (universal). We define a Normal Form QCSP as one with a strictly alternat-
ing sequence of quantifiers, starting with ∀ and ending with ∃. Each constraint
C acts on its scope, an ordered subset of the variables SC = (Xi, . . . , Xj), where
C ⊆ Di × . . .×Dj . A solution is a tuple containing a value assignment for each
variable in X which satisfies all of the constraints in C. A strategy is a tree of
value assignments which assigns a value for each existential variable for all pos-
sible sequences of assignments to the preceding universal variables. If every path
in the strategy tree generates a solution tuple, it is a winning strategy. A QCSP
is satisfiable if and only if a winning strategy exists, i.e. if we can guarantee to
reach a solution no matter what values the universal variables take. Determining
whether a winning strategy exists is PSPACE-complete[2]. Note that a QCSP
may have solutions which are not part of any winning strategy. When generat-
ing binary QCSP problems, it is common[3] to generate only constraints where

Realtime Online Solving of Quantified CSPs 773

the second variable is existentially quantified (i.e. ∃∃ and ∀∃ constraints), since
other constraints can be removed during preprocessing.

For QCSP, a constraint C is Strongly Quantified Generalised Arc Consistent
(SQGAC)[4] iff for each variable Xi ∈ SC and value a ∈ Di, a vertex labeled
Xi←a is contained in M , where M is a multiple winning strategy tree represent-
ing the union of all winning strategies for the constraint C. Any values not in the
tree are pruned from their domains, and following each domain reduction the
tree is updated to be a valid representation of all remaining winning strategies.
SQGAC applied to binary QCSPs reduces to arc consistency for QCSPs[5] which
we shall refer to as Quantified Arc Consistency(QAC), and can be implemented
without a complex tree structure.

Gent et al.[3] proposed QCSP-Solve as a solver for QCSP, and included a
Pure Value Rule for binary constraints, later extended to cover non-binary
constraints[4]. A value a for variable Xi is pure if and only if all possible tu-
ples with Xi←a are actual solutions to Pi, the sub-problem containing only all
constraints over the variable Xi. As domains are reduced during search, values
may dynamically become pure. Existential pure values can be instantly assigned,
while universal pure values can be safely pruned from their domains (assuming
one other value still remains) to reduce search. Value ordering heuristics have
been developed for QCSP, including Dynamic Geelen’s Promise[6,7].

A difficulty in modeling using QCSPs is that in many problems some val-
ues for the universal variables are only legal depending on preceding decisions,
and so no winning strategy is possible. To handle such problem types, Strategic
CSPs [8] extend QCSPs by allowing universal variables to adapt their domains
to be compatible with previous choices. Alternatively, QCSP+[9] introduces re-
stricted quantification to state when values are legal in the universal domains.
[10] proposes backpropagation methods for value ordering in QCSP+. To use
QCSP-Solve on such problems, shadow variables [4] and associated constraints
can be introduced, which make universal values pure when they are no longer
legal choices, and thus they are removed from the search.

Dynamic Constraint Satisfaction [11,12] considers problems that change over
time, by the addition, retraction or modification of variables, domains and con-
straints. Formalisms that specifically focus on problems that progress by the as-
signment of values to variables include Mixed CSP [13] and Stochastic CSP [14],
although in the latter case probability distributions are associated with the as-
signment of each uncontrolled variable. Sampling methods have been used[15,16]
to solve Online Stochastic Optimization problems under time constraints, in
which problems are gradually revealed, although again with an assumption that
there is some model of the likely growth. Finally, Groetschel [17] considers the
general problem of Realtime Online Combinatorial Optimization.

In AI game playing [18], the game is represented as a tree of game states.
Players take turns making moves, which are a transition from one state in the
tree to another. Players perform game-tree search to determine their best option,
but it is typically infeasible for the player to search the entire tree. Players are
forced to form estimates of which move will lead them to a win. In practice, a

774 D. Stynes and K.N. Brown

subtree of limited depth is generated and the leaf states are evaluated according
to a problem specific heuristic function. These values are then propagated back
up the tree to the current root state, in order for the player to make a decision.
For adversarial zero sum games, most algorithms for performing this propagation
are based upon the minimax heuristic [18], which states that a player should
make the choice which minimises the (estimated) maximum that the opponent
can achieve. When propagating up the tree, a state in which it is the player’s
move will take the value of its child with the highest estimate, since that is the
minimum for the opponent. Conversely, a state in which it is the opponent’s
move will take the value of its child with the lowest estimate. The best known
algorithms use variants of Alpha-Beta Pruning[19], which uses minimax based
reasoning to prune moves which cannot improve on already discovered scores.
[20] applied game-tree search in what they call Adversarial CSP, in which solving
agents take turns to choose instantiations for variables in a shared CSP.

In a bin packing problem [21], we are given a list of items of varying size, and
required to place them into a minimal number of fixed capacity bins without
causing any of the bins to overflow. In an online bin packing problem, we must
permanently assign each incoming item to a bin with no knowledge of the future
remaining items to come. Two of the simplest heuristics to achieve this are
First Fit (FF) and Best Fit (BF). First fit tries to place a packet into the first
bin it can fit into. Best Fit places the packet into whatever bin will have the
least space remaining after inserting the packet, and is equivalent to ordering
the bins in descending fullness and then applying FF. Best Fit is known[22] to
have worst case performance of 1.7 times as many bins as an off-line optimal
algorithm, where the theoretical best possible by any online algorithm is 1.54,
and an average waste of O(n1/2log3/4n) bins.

3 Realtime Online Solving of QCSP

When solving realtime online CSPs using QCSP as a model, we treat the QCSP
as a two-player game, in which one player (the existential player) assigns values to
the existentially quantified variables, and the other (the universal player) assigns
values to the universally quantified variables. The variables are assigned in the
order of the quantifier sequence, and a time limit is imposed on each decision.
For the existential the objective is to reach a solution, while for an adversarial
universal it is to cause a failure (i.e. prevent a solution being reached). Formally,
we define Realtime Online solving of QCSP for the existential as:

Definition 1 (Existential RO-QCSP). Given a normal form QCSP P, an
increasing sequence of time points t1, t2, . . . , tn, and a sequence of values v1, v3, v5,
. . . , vn−1 such that each value vj is in Dj and is revealed at time tj, generate at each
time tk for k = 2, 4, 6, . . . , n a value vk ∈ Dk such that the tuple (v1, v2, . . . , vn) is
a solution for P.

When choosing each value vk, the existential player has a known time limit for
making the decision. A competent player should reason about the best value

Realtime Online Solving of Quantified CSPs 775

to select, taking into account the possible future actions of the other player.
If the time limit is sufficiently large, the first player can search for a winning
strategy, and if it finds one it can simply execute this for each successive decision.
However, we assume that finding a winning strategy will be initially infeasible,
and instead we will generate partial strategies. The player looks ahead at possible
future moves of both itself and the opponent, performing a partial exploration
of the search tree. Different lookahead methods determine which area of the tree
is explored. While exploring the tree, constraint propagation prunes unwanted
branches. The player heuristically evaluates nodes as they are generated and
propagates the evaluations back up to the root node. Once the time limit is
reached, it selects the root value with the highest evaluation.

3.1 Constraint Propagation

The strongest level of consistency we consider is SQGAC. However, depending
on the type of opponent, maintaining arc consistency can be detrimental, since
our aim is simply to find any solution, and not necessarily a winning strategy.
Consider a sequence of quantified variables ∃X1∀X2∃X3, with domains D1 =
D3 = {b, c} and D2 = {a, b}, and constraints X1 = X3 and X2 �= X3. If we
maintain arc consistency, then assigning X1 = b will remove c from D3, causing
b to be removed from D2. At this point, we backtrack, since no winning strategy
is now possible. For online problem solving with an adversarial opponent this is
sensible, since when it reaches variable X2 after X1 = b, it is simple to detect that
X2 = b removes all options for X3 and thus the adversary would win. However,
when a random opponent reaches X2 after X1 = b, it may still choose X2 = a,
and thus a solution is still possible. In this case, maintaining arc consistency
may prevent us finding a solution. Therefore, to avoid losing solutions against
random opponents but to keep some of the propagation power of arc consistency,
we introduce Existential Quantified Generalised Arc Consistency (EQGAC):

Definition 2 (EQGAC). A QCSP is Existential Quantified Generalised Arc
Consistent (EQGAC) if for every Xi with Qi = ∃, for all constraints C with
Xi ∈ SC , ∀a ∈ Di, ∃ a tuple t ∈ C, s.t. each tuple element tj ∈ Dj and ti = a.

When all constraints are binary, EQGAC reduces to EQAC (Existential Quanti-
fied Arc Consistency). Maintaining EQAC or EQGAC does not remove solutions
from the problem. When maintaining EQAC, all ∃∃ constraints are propagated
like standard constraints in a CSP with MAC, while propagating ∀∃ constraints
never prunes values from the universal domain. Maintaining EQGAC uses the
SQGAC algorithm[4], except we never place universal values on the remove list,
and when removing a universal value from the tree, we do not remove sibling val-
ues, maintaining multiple solution trees, and not winning strategy trees. Main-
taining SQGAC or EQGAC constructs a large tree in a preprocessing step, and
as problem sizes increase, it becomes extremely expensive in time and space to
construct and maintain these trees. To test the impact of this processing cost, we
also implement solvers using forward checking. For non-binary QCSPs we extend

776 D. Stynes and K.N. Brown

nFC0 [23] to QnFC0, which provides much weaker propagation, but requires no
preprocessing and no significant extra data structures:

QnFC0: After assigning the current variable, achieve arc consistency on all
constraints involving the current variable, past variables and exactly one
future variable. If the future variable is existentially quantified, if the domain
is not emptied, continue with a new variable, otherwise backtrack. If the
future variable is universally quantified, if any value is removed from the
domain, backtrack immediately, otherwise continue with a new variable.

3.2 Lookahead and Heuristics

The lookahead strategy and heuristic determine the sub-tree explored for each
decision. Each strategy implements the general lookahead algorithm (Alg 1).
Nodes is the main data structure, containing the unexpanded nodes in the
search tree: each node represents a partial instantiation of the variables, in
order, with the domains of uninstantiated variables reduced by propagation,
and is ni(Xi, vi, σi, pi), recording the last instantiated variable, its value, the
domains and propagation information, and its parent node. Initially Nodes con-
tains a single node n0(φ, φ, σ0, φ), where σ0 is the current state of the QCSP. We
also maintain Store, a global store of evaluated nodes, initially empty. Different
strategies implement Nodes differently, and are explained below.

Algorithm 1. lookahead(N,S) - the basic lookahead algorithm
Input: Nodes,Store
Data: τ , ε ; // empty data structures

ni← select-and-remove-node(Nodes) ; // select a node to expand1

if Xj← next-variable(ni) is not null then2

σi← pure-value-rule(Xj , σi) ; // apply PV rule to Xj3

for each value w in Xj ’s domain do4

σw← assign-and-propagate(Xj , w, σi) ; // propagate the assignment5

τ← τ + nj(Xj , w, σw, ni) ; // record the new state6

ew← evaluate(σw) ; // evaluate by inspecting domains7

ε← ε + (Xj , w, ew) ; // record the evaluation8

Store ← Store + ni(Xi, vi, ε, pi) ; // store the old evaluated node9

prop-eval(ε,ni,Store) ; // propagate evaluations upwards10

Nodes←Nodes +τ ; // add new nodes to data structure11

if Nodes is not empty and time remaining then12

lookahead(Nodes, Store) ; // continue expanding nodes13

Depth First(DF): Uses a stack; children are pushed onto the stack in order
of generation; the next node to be expanded is popped off the top.

Breadth First(BrF): Uses a queue; children are added to the end in order of
generation; the next node to be expanded is taken from the front.

Best First: Uses an ordered list; children are evaluated and inserted into the
appropriate position; the next node to be expanded is taken from the front
(with highest evaluation).

Realtime Online Solving of Quantified CSPs 777

Partial Best First(PBF): Best First can perform poorly against adversarial
opponents, as the best move for a universal variable is the worst for an
existential variable and vice versa. PBF is a modification which behaves as
best first for existential nodes, but when expanding a universal node the
best child for the universal (lowest scored evaluation) will be immediately
explored and the remaining children have their estimation negated and then
are added to the ordered list.

Alpha Beta Pruning(AB): As depth first but using alpha and beta bounds
to prune parts of the search tree which would never be reached, identified
when the node is popped off the stack.

Intelligent Depth First(IDF): As DF, but where children are ordered from
best to worst before being pushed onto the stack.

Intelligent Alpha Beta(IAB): As AB, but with children ordered as in IDF.

AB and IAB do not search to the bottom of the tree since they are too time
consuming and would not finish within the time limit. Instead, we perform an
iteratively deepening form of AB which searches to a fixed depth limit and then
increases that depth limit before performing AB lookahead again. We continue
until we have searched to the final variable (maximum depth) or we have run
out of time. In our tests we set the initial depth limit to 2 and at each iteration
we increase the depth limit by 1.

For general heuristics to evaluate states, we use Dynamic Geelen’s Promise
(DGP)[7] which is the product of the future existential domain sizes and was
shown to be a good value ordering heuristic for solving QCSPs. Since we are
looking ahead we need to compare states at different depths of the search tree,
where the heuristic evaluations are the product of different numbers of future
existential domains, and thus the DGP evaluations are incomparable. We present
two different modifications to DGP for achieving that. Proportional Promise(PP)
is calculated as DGP divided by the product of the original sizes of those future
domains. The Geometric Mean(GM) of a heuristic is calculated as the nth root
of the evaluation given by the heuristic. For random QCSPs, n is the number
of future existential domains. For the online bin packing problems, we introduce
two heuristics based upon the principals of First Fit (FF) and Best Fit (BF).
The Ordered Fitting (OF) heuristic is based on First Fit, and prefers states in
which the first bin is the most filled, the second bin is the second most filled, etc..
For a problem with a set of k bins, b = {b1, b2, .., bk} of maximum capacity c,
where fi is how full the ith bin is, we calculate OF as Σk

i=1fi ∗ ck−i. The Heavily
Filled (HF) heuristic is based on Best Fit, and prefers states in which bins are
as highly filled as possible and the rest empty, to those in which many bins are
only partially filled. We calculate HF as Σk

i=1

√
fi/c. For applying GM in bin

packing, n is the number of packets which have already arrived (since OF/HF
evaluations increase with depth, unlike DGP evaluations which decrease).

To propagate heuristic evaluations back up the tree, we use either Minimax,
or what we term Weighted Estimates(WE) reasoning. At each level, we switch
the method of aggregating child scores depending on the quantifier of the parent
variable. In a node where an existential variable’s valuation is being decided,

778 D. Stynes and K.N. Brown

 0

 10

 20

 30

 40

 50

 25 30 35 40 45

S
ol

ut
io

ns

Qee

n = 20, tle = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP
Probs with WinStrat

Fig. 1. Random RO-QCSP against uni-
versal using AB with no time limit

 0

 10

 20

 30

 40

 50

 25 30 35 40 45

Qee

n = 20, tl = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP
Probs with WinStrat

Fig. 2. Random RO-QCSP against uni-
versal using DF with time limit

both methods select the highest of the children’s valuations. In a node where
a universal variable’s valuation is being decided, minimax selects the lowest of
the children’s valuations, while Weighted Estimates computes the average of
the children’s valuations. While minimax reports that certain values lead to
failure, weighted estimates gives an indication of how likely it is an unintelligent
opponent can pick a value which causes domain wipe outs.

4 Experiments: Random Binary QCSPs

We tested on randomly generated binary QCSPs with a strictly alternating se-
quence of ∃ and ∀ quantifiers, using the flawless generator described in Section
6 of [7]. In all our tests, the block size = 1, domain size = 8, constraint density
= 0.20, q∀∃ = 1/2. q∀∃[3] is looseness for ∀∃-constraints, q∃∃ is the looseness
of ∃∃-constraints, and n is the number of variables. We denote as tl the time
limit for both players, and tle the time limit for the existential. For each value
of Q∃∃ we generated 50 random problems. We measure the number of solutions
reached. We omit many of the combinations of lookahead methods, propagation
and heuristics from our graphs for clarity. Unless explicitly stated to be using
Weighted Estimates(WE), all strategies are using Minimax. Both participants re-
ceive the same time limit, tl, per move unless explicitly stated otherwise. For the
smaller problems with 20 variables we also show how many problems contained
a winning strategy. For larger problems, n = 51, finding a winning strategy in
reasonable time was not possible. Experiments ran on a 2.0GHz Pentium with
512MB RAM.

Figure 1 shows the number of solutions against an opponent performing a
complete lookahead with infinite time on problems with n = 20. This is the
best a universal player is able to perform - if there is no winning strategy for

Realtime Online Solving of Quantified CSPs 779

 0

 10

 20

 30

 40

 50

 70 75 80 85 90 95

S
ol

ut
io

ns

Qee

n = 51, tl = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP

Fig. 3. Random RO-QCSP against uni-
versal using DF

 0

 10

 20

 30

 40

 50

 70 75 80 85 90 95

Qee

n = 51, tl = 1000ms

DF DGP
IDF PP

PBF PP
AB DGP

IAB DGP

Fig. 4. Random RO-QCSP against uni-
versal using DGP AB

the QCSP or if the existential makes any choice which is not part of a winning
strategy, the universal will win. We see that our time-limited existential solvers
are still able to find most of the winning strategies, with PBF-PP finding them
all for lower levels of QEE . Figure 2 shows performance against a time-limited
universal opponent using depth-first lookahead, also with n = 20. Against this
weaker universal, the existentials improve, and in a number of cases at lower
QEE achieve solutions even when the QCSP has no winning strategy. In both
figures, we see that PBF-PP outperforms AB and IAB; we believe that on these
relatively small problems PBF-PP is able to search enough of the space to make
intelligent decisions, while AB and IAB’s higher overhead restricts their search.
Figures 3 and 4 show performance on larger problems against weak and strong
opponents respectively, and we see that IAB is now outperforming PBF-PP,
finding solutions for up to five times as many problems at lower QEE. The value
ordering used by IAB also allows it to prune the search space faster than AB,
and thus enables it to search to a deeper level and make more informed decisions.

For problems against a random opponent, again we set n = 20, but reduce
the time limit to 500ms, as it is significantly easier for the existential player to
succeed. In Figure 5 the existential maintains QAC, while in Figure 6 it maintains
EQAC. In both cases, IAB and methods using WE find many solutions even
when the problem has no winning strategy. The WE approaches, which estimate
the likelihood of an opponent picking a particular value, benefit significantly
from the use of EQAC, and outperform IAB in Figure 6.

5 Modeling Online Bin Packing

We test on two types of Online Bin Packing problems in which the universal
player selects packet sizes, while the existential player attempts to place them in

780 D. Stynes and K.N. Brown

 0

 20

 40

 60

 80

 100

 15 20 25 30 35 40 45

S
ol

ut
io

ns

Qee

n = 20, tle = 500ms

DF DGP
BF DGP
AB DGP

IAB DGP
WE BF PP-DGP

WE PBF GM-DGP
Probs with a WinStrat

Fig. 5. Random RO-QCSP using QAC
against random universal

 0

 20

 40

 60

 80

 100

 15 20 25 30 35 40 45

Qee

n = 20, tle = 500ms

DF DGP
BF DGP
AB DGP

IAB DGP
WE BF PP-DGP

WE PBF GM-DGP
Probs with WinStrat

Fig. 6. Random RO-QCSP using EQAC
against random universal

the bins. We present the models in an abstract form, in which we assume pruning
the universals is unrestricted, to provide a clear and concise description. The
footnotes describe how we transform this to a correct quantified form, through
use of shadow variables and pure value pruning. The basic model is common
to both problems and we describe it first. A known number of packets will be
chosen from a limited set, and there is a fixed number of bins, each of the same
capacity. We use state variables for each bin to record how much capacity it
has left, we have decision variables for the universal which determine the size
of each packet, and decision variables for the existential to state into which bin
the current packet will be placed. Note that no lookahead is performed before
assigning state variables, since they are uniquely determined by previous choices.
As an example, the variables for the jth packet choice are

∃a(j−1)b1∃a(j−1)b2 . . . ∃a(j−1)bk
∀pj∃lj∃a(j)b1∃a(j)b2 . . . ∃a(j)bk

where a(j−1)bi
is the state of bin bi before the jth packet arrives, pj is the size of

the jth packet, lj is the bin the jth packet is placed into, and a(j)bi
is the state

of bin bi after the jth packet has been placed. The following constraints for each
j and i ensure the state variables are consistent1:

(lj = bi)⇒ a(j)bi
= a(j−1)bi

− pj

(lj �= bi)⇒ a(j)bi
= a(j−1)bi

1 Note that this describes the abstract model. The limited set of possible packets con-
strains the universal choices, and so in the implementation we use shadow variables
to render illegal universal values pure, and modify the constraints accordingly. Each
universal variable pj has an existential shadow variable spj placed immediately after
it in the variable sequence (and they will be linked in later constraints). Thus the
variables for the jth packet choice become . . . ∃a(j−1)bk

∀pj∃spj∃lj . . ., and we replace
the first constraint by (lj = bi)⇒ a(j)bi

= a(j−1)bi
− spj .

Realtime Online Solving of Quantified CSPs 781

5.1 Type 1 Problems

In type 1 problems, the universal player has a fixed set of m packets, for which
the sum of their sizes is the value B, and must decide on which order to provide
them to the existential player. By testing with both a random and an adversarial
universal we can evaluate the existential’s performance against both average
case and worst-case order scenarios for randomly generated sets of packets. The
existential player does not know the sizes of the packets before they arrive, but
does know the upper bound on the sum of their sizes. Thus the existential is
less informed than the universal and the two actually assign values in slightly
different synchronised problem models.

We represent the fixed set of packets with a single global cardinality constraint
over the pj variables2:

gcc(p1, p2, . . . , pm, cs1 , cs2 , . . . , cst).

The domain for each pj is a set {s1, s2, ..., st} of possible sizes, and the csi state
exactly how many of the pj must take each value si. Note that the csi in this case
are constants, rather than constrained variables. The existential player does not
see the gcc constraint; instead it sees a less restrictive global sum constraint3:

Σm
j=1pj ≤ B

In the Type-1 problems, our aim is to show how the existential player can improve
over strategies like First Fit or Best Fit, even when its perception of the problem
is more restricted than that of the opponent.

5.2 Type 2 Problems

In the second type of problems, the universal and existential players both share
the same problem. This time the list of packets for the universal is larger than

2 The universal value must respect the gcc constraint. Instead of posting the
gcc constraint, for each pi we post an extensional constraint with scope
(sp1, sp2, ..., spi−1, pi, spi), such that each possible tuple satisfies the following rule:
if the values for the spj should disallow a value v for pi (pi← v would cause a vi-
olation of the gcc constraint), then pi← v is compatible with all values of spi, and
otherwise, pi = spi. Thus as soon as choices for some pj disallow a value v for pi, v
becomes pure; immediately before pi is to be assigned, the pure value rule removes
v from its domain.

3 As before, we replace this with a shadow variable form for each pi with scope
(sp1, sp2, ..., spi−1, pi, spi), as an extensional constraint which implements the rule:
if the values of the spj plus the number of remaining packets would disallow v for pi

(pi←v would cause the sum to exceed B), then pi←v is compatible with all values
of spi, and otherwise pi = spi. Note that this never makes a value pure if it has not
also been made pure in the universal’s problem model.

782 D. Stynes and K.N. Brown

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

E
xi

st
en

tia
l W

in
s

B

m = 4, k = 2, tle = 1000ms

IAB HF (SQGAC)
WE PBF GM-HF (EQGAC)

IAB HF (QnFC0)
WE IDF GM-HF (QnFC0)

BF

Fig. 7. Bin packing type I against random
universal

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

B

m = 4, k = 2, tle = 1000ms

IAB DGP (SQGAC)
PBF OF (SQGAC)
IAB DGP (QnFC0)
PBF OF (QnFC0)

BF

Fig. 8. Bin packing type I against univer-
sal using IAB OF

the number of packets it must pick. However, the subset of packets it can pick
is restricted by an upper bound, B, on their combined size4:

gcc(p1, p2, . . . , pm, vs1 , vs2 , . . . , vst)
Σm

j=1pj ≤ B

where the vsi are now variables, each of which has its own upper bound and
a lower bound of 0. In these type-2 problems, the universal has more freedom
as to what values to pick and in what order, and our aim is to show that by
exploiting constraint propagation, lookahead and heuristics the universal can
have a significant effect on the success rate of the existential.

6 Experiments: Online Bin Packing

In our Online Bin Packing problems, packets range in size from 1 to 10 and
each bin’s capacity is 10. We test 50 problems, each with a different randomly
generated list of packets, at each of the different upper bounds on the sum of
the sizes of all packets. The size of the list of packets in Type 2 problems is
twice the number of incoming packets. The number of incoming packets is m,
the number of bins is k, and the time limit per decision for the existential is
tle. In all problems the universal has 1000ms per decision. Again, many of the
lookaheads and heuristics are omitted from these graphs for clarity. In general,
we plot the best AB-based heuristic+lookahead combination, and the best non-
AB heuristic+lookahead combination, with other relevant combinations shown
4 The shadow variable form is an extensional constraint for each pi with scope

(sp1, sp2, ..., spi−1, pi, spi) such that if the spj values disallow v for pi (due to the gcc
constraint or the upper bound constraint), then pi←v is compatible with all values
of spi, and otherwise pi = spi.

Realtime Online Solving of Quantified CSPs 783

when appropriate. As a baseline for our tests, we compare our results against an
existential using Best Fit, as it is always at least as good as First Fit.

Figures 7 and 8 show the results for small Type 1 problems against Random
and IAB OF universals respectively. Against a random opponent we see that the
simple BF strategy does well, and our combination of propagation, heuristics and
lookahead only achieves a small performance gain over it. Against an adversarial
opponent however we see that we can perform significantly better than BF. We
also note that the existential using QnFC0 propagation instead of SQGAC or
EQGAC performs worse due to the reduced amount of propagation. In all these
tests the universal is using SQGAC.

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

E
xi

st
en

tia
l W

in
s

B

m = 4, k = 2, tle = 1000ms

IAB HF (SQGAC)
WE PBF GM-HF (EQGAC)

IAB HF (QnFC0)
BF

Fig. 9. Bin packing type II against ran-
dom universal

 0

 10

 20

 30

 40

 50

 16 16.5 17 17.5 18 18.5 19 19.5 20

B

m = 4, k = 2, tle = 1000ms

AB HF (SQGAC)
PBF GM-OF (SQGAC)

AB HF (QnFC0)
IDF GM-OF (QnFC0)

BF

Fig. 10. Bin packing type II against uni-
versal using IAB OF

Figures 9 and 10 show the results for small Type 2 problems. The relative
performance is similar to Type 1. In Figure 11 we increase the problem size,
and use QnFC0 propagation for every player, as SQGAC is too slow on large
problems. These larger problems reveal an flaw with IAB OF for the universal,
and IAB DGP for the existential player exploits it, obtaining exceptionally good
results. A universal using IAB OF essentially assumes the existential wants to
maximise the content of the first bin, and so initially picks a small packet to be
placed into it. However, IAB DGP’s implementation places the first packet into
the final bin, so the universal ends up continually feeding small packets expecting
them to be placed into the first bin, making it easy for the existential to win.

To overcome this flaw, we develop a new heuristic intended for the universal
called MinSpace(MS). MS tries to leave a minimal non-zero empty space in each
bin. By leaving these small gaps, it makes it hard for the existential to succeed at
high upper bounds. We calculate the MS measure using Σk

i=1g(i), where g(i)=0
when c− fi = 0, and g(i)=

√
(c− fi)/c otherwise. Figure 12 shows a universal

using MS on the same problems as in Fig. 11. As can be seen the performance

784 D. Stynes and K.N. Brown

of the universal is drastically improved. When both the existential and universal
have 1000ms time limits, the existential struggles to do well against MS and
only achieves close to the performance of BF, as shown by AB OF (1000ms).
The remainder of the plots in Figure 12 show how well we can do when the
existential’s time limit is raised to 5000ms. With this additional time on these
larger problems, we can achieve many more solutions than BF.

 0

 10

 20

 30

 40

 50

 51 52 53 54 55 56 57 58 59 60

E
xi

st
en

tia
l W

in
s

B

m = 10, k = 6, tle = 1000ms

IAB DGP
IAB HF

IDF GM-HF
FF
BF

Fig. 11. Bin packing type II against uni-
versal using IAB OF

 0

 10

 20

 30

 40

 50

 51 52 53 54 55 56 57 58 59 60

B

m = 10, k = 6, tle = 5000ms

AB OF
IAB OF

WE DF MS
WE IDF MS

BF
AB OF (1000ms)

Fig. 12. Bin packing type II against uni-
versal using IAB MS

We also compared against a universal using a policy of picking the largest
packet it can at each turn. Due to the nature of this universal policy, our choice
of existential strategy has no effect until far into the packet stream and BF
and most of the heuristics perform almost identically against it. A universal
using IAB MS performs consistently significantly better than this Largest First
approach at all upper bounds.

7 Conclusions and Future Work

Quantified CSPs can be used as a model for solving online CSPs, generating
winning strategies in advance. But when decisions in the online problem have
to be made in realtime, complete solving of a QCSP is infeasible. We have de-
veloped techniques for realtime online solving of QCSP using a combination
of propagation, lookahead and heuristics, for online CSPs involving both ad-
versarial opponents and random external solvers. We have proposed existential
quantified generalised arc consistency for handling random solver opponents,
which allows us to achieve solutions even when the underlying QCSP has no
winning strategy. We have demonstrated that a version of alpha-beta pruning
with a constraint-based value-ordering heuristic outperforms other heuristics on
large binary QCSPs against adversarial opponents. We have developed a non-
binary constraint model of Online Bin Packing, and we have shown that with

Realtime Online Solving of Quantified CSPs 785

good heuristic selection, a significantly stronger universal player can be gener-
ated using our reasoning, but that against even a strong opponent the existential
reasoning can help us reach more solutions.

In future work we will consider weaker consistency levels than SQGAC or
EQGAC to avoid the large overhead, we will investigate the use of other forms
of quantified constraint problems for realtime online problem solving, and we
will consider solution methods based on sampling.

References

1. Bordeaux, L., Cadoli, M., Mancini, T.: CSP Properties for Quantified Constraints:
Definitions and Complexity. In: Proceedings of AAAI, pp. 360–365 (2005)

2. Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: Algo-
rithms and complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS,
vol. 2803, pp. 58–70. Springer, Heidelberg (2003)

3. Gent, I.P., Nightingale, P., Stergiou, K.: QCSP-Solve: A solver for quantified con-
straint satisfaction problems. In: Proceedings of IJCAI, pp. 138–143 (2005)

4. Nightingale, P.: Consistency and the Quantified Constraint Satisfaction Problem.
PhD thesis, University of St Andrews (2007)

5. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for quantified constraints.
In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer,
Heidelberg (2002)

6. Stynes, D., Brown, K.N.: Value Ordering for Quantified CSPs. In: Proceedings of
CP2007 Doctoral Programme, pp. 157–162 (2007)

7. Stynes, D., Brown, K.N.: Value Ordering for Quantified CSPs. Constraints 14(1),
16–37 (2009)

8. Bessiere, C., Verger, G.: Strategic constraint satisfaction problems. In: Proceedings
of CP Workshop on Modelling and Reformulation, pp. 17–29 (2006)

9. Benedetti, M., Lallouet, A., Vautard, J.: QCSP made Practical by Virtue of Re-
stricted Quantification. In: Proceedings of IJCAI, pp. 38–43 (2007)

10. Verger, G., Bessiere, C.: Guiding Search in QCSP+ with Back-Propagation. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 175–189. Springer, Heidelberg
(2008)

11. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In:
Proceedings of AAAI, pp. 37–42 (1988)

12. Brown, K.N., Miguel, I.: Uncertainty and Change. In: Handbook of Constraint
Programming, ch. 21, pp. 731–760 (2006)

13. Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: a frameworkfor
decision problems under incomplete knowledge. In: Proceedings of AAAI, pp. 175–
180 (1996)

14. Walsh, T.: Stochastic constraint programming. In: Proceedings of ECAI, pp. 111–
115 (2002)

15. Bent, R., van Hentenryck, P.: Regrets only! online stochastic optimization under-
time constraints. In: Proceedings of AAAI, pp. 501–506 (2004)

16. Hentenryck, P.V., Bent, R.: Online Stochastic Combinatorial Optimization. The
MIT Press, Cambridge (2006)

17. Grötschel, M., Krumke, S.O., Rambau, J., Winter, T., Zimmermann, U.T.: Com-
binatorial Online Optimization in Real Time. Online Optimization of Large Scale
Systems, 679–704 (2001)

786 D. Stynes and K.N. Brown

18. Shannon, C.E.: Programming a computer for playing chess. Philosophical Magazine
(Series 7), 256–275 (1950)

19. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6(4), 293–326 (1975)

20. Brown, K.N., Little, J., Creed, P.J., Freuder, E.C.: Adversarial constraint satisfac-
tion by game-tree search. In: Proceedings of ECAI, pp. 151–155 (2004)

21. Johnson, D.S.: Fast Algorithms for Bin Packing. Journal of Computing and System
Sciences 8(3), 272–314 (1974)

22. Version, P., Kenyon, C., Rabani, Y., Sinclair, A.: Biased Random Walks, Lyapunov
Functions, and Stochastic Analysis of Best Fit Bin Packing. J. Algorithms, 351–358
(1998)

23. Bessière, C., Meseguer, P., Freuder, E.C., Larrosa, J.: On forward checking for
non-binary constraint satisfaction. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713,
pp. 88–102. Springer, Heidelberg (1999)

	Realtime Online Solving of Quantified CSPs
	Introduction
	Background
	Realtime Online Solving of QCSP
	Constraint Propagation
	Lookahead and Heuristics

	Experiments: Random Binary QCSPs
	Modeling Online Bin Packing
	Type 1 Problems
	Type 2 Problems

	Experiments: Online Bin Packing
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

