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Abstract. One of the main consumers of energy in buildings are
the HVAC systems intended to maintain the internal environment for
the comfort and safety of the occupants. Occupant satisfaction, is in-
fluenced by many different factors, including air temperature, radiant
temperature, humidity, the outdoor environment, activity levels and
clothing. Occupant thermal comfort is traditionally measured by the
Predicted Mean Vote (PMV) metric, which estimates the expected
response of the occupants on a seven point scale. PMV is a statis-
tical measure, which holds for large populations. For small groups,
however, the actual thermal comfort could be significantly different,
and so energy may be wasted trying to achieve unwanted conditions.
In this paper, we apply Locally Weighted Regression with Adaptive
Bandwidth (LRAB) to learn individual occupant preferences based
on historical reports. As an initial investigation, we attempt to do this
based on just one input parameter, the internal air temperature. Us-
ing publicly available datasets, we demonstrate that this technique
can be significantly more accurate in predicting individual comfort
than PMV, relies on easily obtainable input data, and is much faster
to compute. It is therefore a promising technique to be used as input
to adpative HVAC control systems.

1 INTRODUCTION
One of the primary purposes of heating, ventilating and air condition-
ing (HVAC) systems is to maintain an internal environment which is
comfortable for the occupants. Accurately predicting comfort levels-
for the occupants should avoid unnecessary heating or cooling, and
thus improve the energy efficiency of the HVAC systems. A number
of thermal comfort indices (indicators of human comfort) have been
studied for the design of HVAC systems [1,2]. However, the most
widely used thermal comfort index is the predicted mean vote (PMV)
index [1]. This conventional PMV model predicts the mean thermal
sensation vote on a standard scale for a large group of persons in a
given indoor climate. It is a function of two human vari-ables and
four environmental variables, i.e. clothing insulation worn by the oc-
cupants, human activity, air temperature, air relative humidity, air
velocity and mean radiant temperature, respectively. The values of
the PMV index have a range from -3 to +3, which corresponds to the
occupants thermal sensation from cold to hot, with the zero value of
PMV meaning neutral. The conventional PMV model has been an
international standard since the 1980s [3,4]. It has been validated by
many studies, both in climate chambers and in buildings [5,6]. The
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standard approach to comfort-based control involves regulating the
internal environment variables to ensure a PMV value of 0 [7,8].
Though the conventional PMV model predicts thermal sensations
well, it is a nonlinear relation, and it requires iteratively computing
the root of a nonlinear equation, which may take a long computation
time. Therefore, Fanger [1] and ISO [4] suggest using tables to deter-
mine the PMV values of various combinations between the six ther-
mal variables. Secondly, PMV is a statistical measure, based on field
studies over large populations. For small groups of people, within a
single room or zone of a building, PMV may not be an accurate mea-
sure. Moreover, computing PMV requires knowledge of a number of
variables that may be hard to obtain (i.e., activity level and clothing).
Therefore, in this study we consider an alternative practical approach
to predicting thermal comfort through the automatic learning of the
comfort model of each user based on his historical records.

2 THE METHOD

Locally weighted regression is a technique with many strengths,
some discussed in detail [9]. Let (xi, yi) denote a response, yi, to
a recorded value xi, for i = 1, . . . , n. The aim is to assess the re-
sponse y for a new value x. The approach is concerned to estimate
a local mean, fitting the recorded data by means of a local linear re-
gression. This involves solving the least squares problem, where α
and β are the values that minimize (1):

min

n∑
k=1

(
yi − α− β(xi − x)2

)
ω(xi − x;h) (1)

Then α is the response y for the new entry point x. The kernel
function ω(xi −x;h), is generally a smooth positive function which
peaks at 0 and decreases monotonically as increases in size. The
smoothing parameter h controls the width of the kernel function and
hence the degree of smoothing applied to the data.

There are many criteria to choose the kernel function based on the
theoretical model of the function that has to be fitted. We follow the
method in [10]. The kernel function for our problem is:

ω =

(
1−

( |xi − x|
h

)3
)2

(2)

for |xi − x| ≤ h; otherwise ω = 0.

2.1 Adaptive bandwidth

Finally, we need to choose the bandwidth h. The choice here needs to
take into account the fact that the density of the recorded data may be



variable. In particular, there may be areas in which the data are clus-
tered closely together (which suggests a narrow bandwidth), while,
on other hand, other areas may be characterised by sparse data (in
which a choice of a large bandwidth is more appropriate). In view
of this, it would be appropriate to have a large smoothing parameter
where the data are sparse, and a smaller smoothing parameter where
the data are denser (Figure 1). In this situation an adaptive param-
eter has been introduced. Let the ratio k/n describe the proportion
of the sample which contributes positive weight to each local regres-
sion (for example if the ratio is 0.7, it means that 70% of the recorded
data contributes to the regression). Once we have chosen k/n (that
means we have chosen k, as n is fixed), we select the k nearest neigh-
bour from the new entry point x. Then, the smoothing parameter h
is denoted by the distance of the more distant neighbour among the
k neighbour selected. It should be noted that the entire procedure
requires the choice of a single parameter setting.

Figure 1. In locally weighted regression, points are weighted by proximity
to the current x in question using a kernel function. A linear regression is
then computed using the weighted points. Here, an adaptive bandwidth h

based on the density of the recorded data is proposed.

3 EXPERIMENTS
The proposed LRAB has been compared with the PMV index on real
data from ASHRAE RP-884 database [11]. This collection contains
52 studies with more than 20,000 user comfort votes from different
climate zones. However, some of these field studies contain only few
votes for each user. Thus they are not well suited for testing the pro-
posed algorithm. This is because our approach seeks to learn the user
preferences based on their votes, and it requires sufficiently many
data records. For this reason, only the users with more than 10 votes
have been used to compute the proposed LRAB. After removing the
studies and records as described above we were left with 5 climate
zones, 223 users and 7552 records. As a starting point, only one en-
vironmental variable (i.e. inside temperature) has been taken into ac-
count in order to evaluate the proposed LRAB. The proposed LRAB
has been implemented in MatlabTM, using the trust-region method to
minimize the problem in (1), with a termination tolerance of 10−6.
As with the field study [11, 12], the algorithms are evaluated consid-
ering the difference ∆V between the computed votes by both LRAB
(evaluated) and PMV (reported in the database) and the actual vote
(reported in the database) on a three-level accuracy scale [11, 12] as
reported below:

• Precise: ∆V < 0.2

• Correct: 0.2 ≤ ∆V < 0.5
• Approximation: 0.5 ≤ ∆V < 0.7

Figure 2. Average accuracy of predicting user comfort in 5 different
climate zones.

Figure 2 illustrates how accurately the LRAB predicts the actual
comfort vote of each user compared with PMV. In all 5 climate zones,
LRAB is able to predict the actual vote better than PMV especially
in the accuracy level < 0.2 and has up to 200% of the number of
occupants for whom a correct value is predicted. Since this value can
be computed quickly, and requires only a single setting parameter
that is easily obtained, this method is feasible for use as a comfort
measure in real time control. The next step will be the extension of
the method to accept multiple environment variables (for example
humidity etc.) in order to improve the above results.
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