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Abstract 
 

The efficient operation of building systems is 

important energy efficiency, comfort and safety. 

Determining when maintenance is required or 

when a fault has occurred is the focus of this 

work. We show how to use available performance 

data in a methodology for improved maintenance 

scheduling through anomaly detection. We apply 

two statistical prognostic techniques – Particle 

Filters and Gaussian processes – to sensed data 

from two HVAC components to illustrate the 

methodology. We demonstrate that both methods 

identify occasions when maintenance should be 

carried out for one of the components, but are 

less successful on the second component.  

1. Introduction 

One of the main financial burdens of a building 

during its life cycle is the cost of maintenance. 

There are many different methods for scheduling 

maintenance activities, including reactive, 

planned, and condition-based maintenance. 

These methods make a trade-off between 

equipment health, cost and user-comfort. In 

industrial applications, a greater importance is 

placed on maintenance, due to high costs 

associated with equipment down-time, and so 

techniques such as condition-based maintenance 

are commonly used. For the most part, office or 

educational facilities are not subjected to such 

stringent maintenance controls, but many of these 

buildings already have the data needed to enable 

such maintenance activities. This data is provided 

from Building Management Systems (BMS) and 

can be used in conjunction with other tools to 

manage maintenance activities more effectively. 

There are a number of different types of 

maintenance which are used at present. They are: 

Routine Maintenance; Emergency Maintenance; 

Corrective Maintenance; Testing or Failure-

finding; Predictive Maintenance; and Performance 

Based Maintenance (PBM). We consider 

Performance-based maintenance in this paper. 

PBM can be further classified as a meeting point 

between scheduled and reactive maintenance. It 

allows for faults which were not foreseen at the 

time of scheduling to be dealt with before they 

reach failure, i.e. before reactive maintenance is 

required. Cost allocation can be carried out for 

performance based but not for reactive 

maintenance. 

In order to implement PBM for building service 

components, it is necessary to utilise techniques 

from the area of prognostics. These prognostic 

techniques can be used to monitor and track the 

performance of a component and also to predict 

the future behaviour, within the limitations of the 

available data with which the technique is trained. 

In general there are three main requirements to 

implement prognostics, (Greitzer & Ferryman 

2001) define them as: hardware and sensor 

technologies; analytically effective predictive 

methods; and organisational changes to capture 

the operational, maintenance and logistical 

benefits made possible by effective prognostic 

information. Given the predominant occurrence of 

BMS for controlling and operating building service 

equipment, there is now a readily available source 

of hardware and sensor technologies available in 

many buildings. Also due to the increasing use of 

Building Information Modelling in building 

construction, information to support analytical 

predictive methods can be more easily, accessed. 

In this research, we focus on data driven 

approaches, in the area of prognostics of 

monitoring and reasoning about parameters. As 

well as identifying precursors to failure, we also 

aim to be able to identify reductions in 

performance, through tracking of performance 

parameters of components. We apply two 

advanced techniques for tracking the performance 

of HVAC equipment: a Gaussian process model 

and a dynamic model/particle filtering approach. 

These approaches allow detection of major 

changes in equipment performance including drift 
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and change points due to faults. We apply the 

techniques to two real datasets containing sensed 

data from two different HVAC components, and 

we demonstrate that the techniques can 

successfully monitor their performance and 

identify points in time when a change is occurring, 

be that a change due to control strategy, load 

levels or conditions, due to suboptimal operating 

conditions or a maintenance requirement. 

2. Technical Background 

(Si et al. 2011) divides statistical prognostic 

techniques firstly into two segments based on the 

type of data available, direct condition monitoring 

data or indirect condition monitoring data. They 

focus on the area of prognostics which deals with 

estimating the Remaining Useful Life (RUL) of a 

component. Within direct CM data, Si highlights 

the following techniques: regression based, 

wiener process, gamma process, and markovian-

based. The techniques within indirect CM data 

include stochastic filtering based, covariate-based 

hazard, and HMM and HSMM based. For this 

paper, we utilise indirect CM data and apply a 

Particle filter (section 3.4) and a Gaussian 

Process approach (section 3.5). 

 

2.1 Particle Filter Prognostics 

The first technique employed is a Particle 

Filter/state space approach (PF). This assumes 

an underlying state space model in which the 

states are the efficiency and rate of change of 

efficiency. The states are observed using a non-

linear observation equation which expresses the 

relation between the input x and the output y as: 

)(x,Fy     (1) 

As this Equation is non-linear, a particle filter is 

required to track the change in parameters over 

time. Note that the observation equation is the 

function relating efficiency to input; i.e. it is the 

change in the system we are interested in. There 

are several types of particle filter; the specific PF 

used here is a sequential importance sampling 

PF, (Arulampalam et al. 2002) and is detailed in 

Algorithm 1. A particle filter essentially involves a 

collection of parameter estimates which are called 

particles denoted, pk
i
 the ith particle at time k. 

There are Ns such particles (typically 100) and 

these are weighted according to how well they 

match the observations, yk, by weights, wki. Those 

particles that produce estimates close to the 

observed outputs are given a higher weighting. It 

becomes necessary to clear out those particles 

with very low weights after several time steps and 

re-sample new ones; this is known as the particle 

degeneracy problem. Finally a smoothed estimate 

of the process, hat yk, is obtained by a weighted 

average of the individual particle estimates. As 

described by (Li et al. 2006), a 'standard particle 

filter is developed based on Bayesian sequential 

estimation', where the hidden state of target and 

its observation at a time t, are denoted by xt and yt 

and the filtering distribution p(xt,Yt) stands for the 

distribution of the target state given all 

observations Yt = (y1,...,yt) . The Particle Filter 

(PF) approach utilises state space models. The 

state-space approach to time-series modelling 

puts attention on the state vector of a system. The 

state vector contains all relevant information 

required to describe the system under 

investigation (Arulampalam et al. 2002). The state 

space approach is convenient for handling 

multivariate data and non-linear/non-Gaussian 

processes, and it provides a significant advantage 

over traditional time-series techniques for these 

problems (Arulampalam et al. 2002). Resampling 

is necessary to avoid the problem of degeneracy. 

According to (Arulampalam et al. 2002), 

degeneracy is the "phenomenon, where after a 

few iterations, all but one particle will have 

negligible weight" and a suitable measure of this 

degeneracy is Neff, the effective sample size.  

There is a large amount of literature in the 

prognostic field on the utilisation of PFs for the 

estimation of Remaining Useful Life (RUL). These 

research works focus on identifying a particular 

feature of the system and utilising this feature to 

infer the state of the system at a particular point in 

time and also predict the future state.   

For example, (Caesarendra et al. 2010) and (Lall 

et al. 2011) use PF to indicate the degradation 

condition of a machine through monitoring 

vibration levels of a machine. Also, PF has been 

used in conjunction with other techniques. For 

example, in (Chen et al. 2011), a high order PF is 

used in combination with ANFIS (Adaptive neuro 

fuzzy inference system) to predict the remaining 

useful life of a cracked carrier plate and a faulty 

bearing. PF can also be applied in model based 

approaches, e.g. (Daigle & Goebel 2009) in order 

to estimate the damage for a pneumatic valve. 

 

2.2 Gaussian Processes for Prognostics 

A Gaussian Process (GP) represents 

observations from a process as draws from a 

jointly multivariate normally distributed as: 

 x,xx C,Ν~y    (2) 

where ~ is used to denote drawn from, N denotes 

a Gaussian distribution, y is a vector of 

observations, x is a vector of sample times. μx is 

the mean of the process at the sample times and 

Cx,x is the covariance matrix. The covariance 
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between two points is defined by a kernel which is 

often referred to as the covariance function. The 

covariance function is central to a GP model and 

defines the structure of the model. In order to be a 

valid covariance matrix we require that Cx,x be 

positive definite. However, the sum or product of 

two valid covariance functions is also a valid 

covariance function allowing us to tailor the 

covariance function to the particular dataset being 

analysed. For the GP's used in this paper the 

covariance function is derived from the Matérn 

kernel which defines the covariance between two 

points as: 

)
||2

()
||2

(
2)(

1
)(2
















h
K

h
hC


 (3) 

where h is the separation of the input points, K   

is the modified Bessel function, θ and are 

parameters of the kernel with θ controlling the 

scale and v the shape of the kernel, Γ is the 

Gamma function. This kernel is chosen as it 

allows for a wide variety of kernel shapes with the 

use of only 2 parameters. Later we will use the 

fact that the sum or product of two valid 

covariance functions is also a valid covariance 

function. This allows us to tailor the covariance 

function to the particular dataset being analysed. 

Finally, both the covariance function and data 

scaling parameters need to be estimated. For this 

work, and as described by (Brahim-Belhouari & 

Bermak 2004), these parameters are estimated by 

maximising the log likelihood function with respect 
to [α, β, σb

2
, ϒ, σr

2
]. This function, also known as 

the log marginal likelihood, may be expressed as 

(Rasmussen & Williams 2006):  
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There are many examples in the literature of the 

use of GP for prognostics. (Goebel et al. 2008) 

utilised GP regression to estimate end of life for 

batteries where the shape and position of EIS 

plots are used as diagnostic features in the GPR. 

(Mohanty et al. 2007) investigates GPs for use 

with a hybrid model of fatigue crack growth in 

metal alloys with a physics-based state space 

based model. (Boskoski et al 2012) uses GP to 

estimate the RUL for faulty bearings.  

Also with respect to timeseries GP, (Wang et al 

2006) and (Kocijan & Tanko 2011) uses a GP 

timeseries models to track human motion capture 

data and to describe gear health respectively. 

(Kocijan & Tanko 2011) use 2 covariance 

functions, the sum of the Matérn and polynomial 

covariance function and the neural network 

covariance function and (Mohanty et al. 2007) 

also implements 2 types of covariance functions, 

a radial based anisotropic and a neural network 

based isotropic. GPs can also be integrated with 

other techniques, e.g. (Dong & He 2007) 

combines GP with Hidden semi Markov Model. 

3. Case Study and Methodology 

3.1 Gaussian Processes for Prognostics 

One sample data set used here is from a water to 

water heat pump located in the Environmental 

Research Institute, University College Cork. This 

particular heat pump is used to provide hot water 

to an underfloor heating system. It is served by a 

vertical, open-loop piping system connected to an 

underground aquifer located on site. 4 years of 

data are available for this component including, 

the power into HP01 in kWh, heat output, kWh, 

temperature of the aquifer, degree Celsius, 

temperature on the condenser side, degree 

Celsius, and temperature on the evaporator side, 

degree Celsius. 

In order to track the performance of the Heat 

Pump, the Coefficient of Performance (COP) is 

calculated using the formula: 

COP = Heat Output/ Power Input (5) 

There are known relationships between (1) the 

COP and the temperature difference between the 

evaporator and condenser and (2) the COP and 

the temperature of the water entering the heat 

pump on the aquifer side. For these analyses, the 

first relationship is chosen, in order to negate 

somewhat the effect of seasonal variances on the 

results. 

 
Figure 1: Original Data for Heat Pump COP vs A2 
 

3.2 Case Study: Heat Exchanger HE01 

The Heat Exchanger used in this example is a 

plate heat exchanger. It is located in the 

Environmental Research Institute, University 

College Cork. Its main purpose is to transfer heat 

from a cooling circuit to a geothermal heating 

circuit. There are a number of variables measured 

with respect to HE01. The most useful for this 

example are the temperatures into,C2, and out of, 

C1, HE01 on the cooling circuit side and the 

temperature into HE01 on the aquifier side, A1. 

A2, the temperature out of HE02, will also be 
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used, see Figure 2. It is known that HE01 

underwent an overhaul in October 2009, and so it 

is assumed that the condition of HE01 in October 

2009 is 100%. The measure used to monitor the 

performance of HE01 is the plot of the 

temperature difference between the fluid in on the 

hot side and out on the cold side versus the 

temperature difference between the fluid out on 

the hot side and in on the cold side, due to 

counterflow principles, Figure 3. 

 
Figure 2: ERI HVAC schema 

 
Figure 3: HE01 performance indicator, raw data 
 

3.3 General Methodology 

The aim of this paper is to provide a way for the 

facility manager to make decisions about 

maintenance actions, based on data, such that 

can be seen in Figure 1 and Figure 3. In order to 

do this effectively, a number of steps are followed. 

(1) Performance indicators are identified: Specific 

relationships between measured data are 

investigated; Acceptable upper and lower bounds 

for these performance indicators are defined. (2) 

Performance indicators are extracted and tracking 

using: Particle Filters; Gaussian Processes. (3) 

Tracked performance indicators are evaluated 

against predefined acceptable ranges, for the 

case of the PF, and evaluated against an optimal 

scenario, in the case of the GP. For this paper, we 

assume the ranges, due to knowledge of when 

the components are at 100% efficiency.  

3.3.1 Particle Filter 

The sequence of the particle filter used here is 

described by Algorithm 1. It details the steps 

necessary to use the particle filter methodology 

for the available HVAC data. The algorithm can be 

divided into 4 steps: Initialisation of the variables; 

Propagation of the particles, weighted 

probabilities calculated and normalised; if 

necessary, resampling; and, posterior value for 

yobs is calculated. In Algorithm 1, p0 are the initial 

estimates or initial set of particles to feed into the 

particle filter. They are found through trial and 

error, by using regression technique, such as 

robustfit and polyfit in Matlab, and by using an 

optimisation technique in conjunction with the 

process equation for the state space model. Ns 

represents the number of particles per iteration 
and T is the number of iterations. h is the set of 

resultant particles and w is the set of applied 

weights. The symbol 𝓝 represents a normal 

probability density function. 

 
Algorithm 1: Generic Particle Filter Algorithm 

 

3.3.2 Gaussian Processes 

In this research, 2 GPs were applied to the case 

study dataset: (1) GP with 1 covariance function; 

(2) GP yearly with 2 covariance functions. 

The first GP utilises one covariance function, 

derived from a Matérn kernel. The methodology 

involves scaling the time variable and so the 

kernel models the relationship between the output 

and the non-time related inputs. Also, while 

evaluating the GP with one covariance function, 

two methods of estimation of the function and 
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kernel parameters were evaluated. These two 

methods were: (a) including the effect of each 

data point on the maximum likelihood in the 

estimation; and (b) calculating one maximum 

likelihood estimation value. It was decided from 

this evaluation to utilise the second method, 

calculation of one maximum likelihood estimation 

value, as the resulting GP tracked the parameters 

with a much lower Root Mean Squared Error 

(RMSE). For the second GP, two covariance 

functions were involved in the calculation of the 

final kernel. Both of the kernels were chosen to be 

Matérn kernels. These two kernels were added as 

it was decided that a lower value in one kernel 

should not predict a low overall value. 

4. Results 

This section will introduce the case study dataset 

and present the results from the particle filtering 

algorithm and the various GP techniques.  

 

4.1 Particle Filter Results 

4.1.1 Heat Pump 

For the heat pump data, the relationship between 

the COP of the HP and the Temperature 

difference across the heat pump is used to 

generate parameters to monitor the condition of 

equipment. The equation used for the state space 

model process equation is: 

Y = α*x
β
   (6) 

where y is the COP and x is (UF2-A2) and the 

relationship is represented by F within the general 

algorithm (see Algorithm 1) and Figure 1 

illustrates this relationship. The resulting tracked 

parameters from the PF can be seen in Figure 4 

and Figure 5. It is known that at the beginning of 

the heating season in 2009, the refrigerant in 

HP01 was topped up and so the working pressure 

increased. It can be clearly seen that this had a 

large effect on the efficiency of the heat pump, as 

both parameter 1 and 2 increase by 0.1 during 

this period. It can also be seen that the yearly 

mean decreases slightly consistently from 2009 to 

2011.  

4.1.2 Heat Exchanger 

For the heat exchanger data, the relationship 

between the temperature differences at the inlets 

and outlets is used to model the process equation. 

It is of the form:  

y=α + βx   (7) 

where y is C2minusA2 and x is C1minusA1, these 

are the differences between the inlet/outlet 

temperatures on the heating and cooling side. 

 

 
Figure 4: Parameter 1 from HP01 PF results 

 
Figure 5: Parameter 1 and 2 from HP01 PF 
results 
 

 
Figure 6: PF parameters for HE01 

 

Note: there is a period of data missing from the 

second half of the first year. The obvious trends in 

the two parameters can be seen as a gradually 

heightening of the parameters as the years 

progress. Due to the nature of heat exchanger 

failure, we can assume here that this represents a 

gradual build-up of deposits in the heat 

exchanger. 

 

4.2 Gaussian Processes 

4.2.1 GP – yearly, 1 covariance function 

For this model, one covariance function is used 

and the general principle is as described in 

section 2.2. The root mean squared error for 

these processes can be found in Table 1 and 

Table 2. As before, the estimated kernels were 

then graphed for each data segment under a 

constant time and temperature ranges (Figure 7). 
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Figure 7: Kernel parameters evaluated for 
possible range of ∆t values for HE01and HP01 

 

 
Figure 8: Kernel evaluated for possible range of 
∆temp values at mean time value for each year, 
HE01 and HP01 
 

4.2.2 GP – yearly, 2 covariance functions 

In order to account for the influence of time on the 

relationship between the COP and the difference 

in temperature across the heat pump, and the 

comparative relationship for the HE01 data, two 

covariance functions are used instead of one. For 

both the time and the temperature difference 

relationships, a Matérn kernel is used. Again, the 

estimated kernels were then graphed for each 

data segment at the mean time for each year and 

for a constant range of temperature, see Figure 8. 

As stated in section 2.2, it is valid to add or 

multiply kernels. Both were investigated for this 

research, and it was decided that addition was the 

more suitable combination mechanism. The 

justification for this is that addition allows for either 

one of the kernels to attribute a high COP value 

whereas multiplication would constrain the results 

so that in any combination with one poor and one 

high COP reading, the poor reading would 

override the high value.  
 

4.3 Tracking Ability 

With regard to tracking ability, both the particle 

filter and the Gaussian processes performed to 

the same level for the HP01 dataset, all RMSE 

were within 0.45 to 0.55. With the GP 2 

covariance functions outperforming slightly the GP 

with one covariance function. 

Year GP 2 cov GP 1 cov PF 

2008 0.5273 0.5319 0.515 

2009 0.5207 0.5296 0.515 

2010 0.4977 0.5303 0.515 

2011 0.4891 0.5403 0.515 

Table 1: RMSE for GP results for HP01 

For the HE01 dataset, the particle filter out 

performs both GP processes. Also, the results for 

the GP processes are quite variable over the 4 

year period. This may be due to the oscillatory 

nature of the relationship between the 

temperature differences across the heat 

exchanger. 

Year GP 2 cov GP 1 cov PF 

2008 0.4076 0.5404 0.4573 

2009 0.6112 0.7195 0.4573 

2010 0.2931 0.4343 0.4573 

2011 1.2823 0.9058 0.4573 

Table 2: RMSE for GP results for HE01 

The resulting RMSEs give credibility to the 

tracking performance of both techniques and so 

we can utilise them in future work to predict what 

the performance of the components will be. 

When the two GPs are compared, it can be seen 

that the GP with 2 covariance functions 

outperforms that with only 1 function, with respect 

to RMSE but also with respect to what we would 

expect, i.e. we know that for both datasets 2011 

was a poorer performing year than 2010, yet with 

only 1 covariance function this is not picked up. 

 

4.4 Maintenance Planning from Tracked 

Parameters 

This section will illustrate how these tracked 

parameters can be utilised to indicate if 

maintenance is required for a component. As we 

apply two statistical techniques in this paper to 

track the underlying parameters of the HVAC 

components, two slightly different techniques are 

utilised to apply the allowable ranges to the 

datasets for each statistical technique. 

4.4.1 Particle Filter 

For the particle filter parameter results, before 

allowable ranges could be set, it was first 

necessary to regress the parameters with respect 
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to influencing factors. For HP01, A1, the 

temperature of the Aquifer water is used. This is 

to reduce the effect of seasonal changes on the 

data. Likewise, for HE01, the parameters are 

regressed against A1. For both datasets, the 

slope and intercept of the regressed data are 

compared against preset ranges. It was found for 

the HP01 dataset, that the intercept was most 

critical for parameter 1 and that the slope was 

critical for parameter 2. While for the HE01 

dataset, the slope was most critical for both 

parameter 1 and 2.  

 

 
Figure 9: Parameter 1 and 2 for HP01 with 
inspection points 

 

 
Figure 10: Parameter 1 and 2 for HE01 with 
inspection points 

 

Figure 9 and Figure 10 illustrates the predicted 

inspection calls when the chosen ranges are 

applied to the heat pump and heat exchanger 

respectively. The optimum parameters are taken 

to occur at the beginning of October 2009, for 

both the heat exchanger and the heat pump 

datasets. The range for parameter 1 worked 

reasonably well for the heat pump data, the 

known year where the heat pump was performing 

sub optimally, 2008, has a number of inspection 

calls. Also, in 2010 and 2011 a number of 

inspections are highlighted. The 2010 results are 

questionable, but it can be seen that in 2011 the 

performance of the heat pump is decreasing.  

While parameter 2 did not perform as well, it did 

highlight a number of inspection points at the 

beginning of 2008. For the heat exchanger, this 

method is affected by the seasonal variance in the 

data. More work is needed to isolate the 

appropriate ranges to indicate when maintenance 

is required.  

4.4.2 Gaussian Processes 

For the GP results a different scenario is 

implemented to determine when maintenance 

should be scheduled. The difference between the 

output at 100% component health and that at the 

current time is tracked and this can act as a guide 

for the facility manager to decide when the cost is 

great enough for maintenance to be warranted. 

 

 
Figure 11: HE01 and HP01 GP 1 and 2 - Drop in 
output with respect to optimum output 

Figure 11 illustrates the optimal output (2009 – 

green) and the cumulative sum of each year 

minus the optimal output. This method works well 

for the heat pump. It can be clearly seen that 

2009, 2010 are performing well while, 2008 and 

2011 are not. As with the PF ranges, this method 

is not performing well on the heat exchanger data. 

The results replicate the GP tracking results: 

discrepancies in tracking are also evident here. 
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5. Conclusion 

In conclusion, a methodology was presented in 

this paper to aid a facility manager in deciding 

whether to schedule maintenance based on the 

performance of a component. Two statistical 

techniques are utilised and both were found to 

perform well on one dataset, in terms of tracking 

ability and inspection requirement detection. 

Given the nature of the second dataset, it can be 

concluded that it is necessary to utilise data in this 

method which is not influenced by seasonal 

factors. 

6. Future Work 

The work presented here tracked performance 

parameters for HVAC equipment. The prediction 

of these parameters is still required to 

complement the methodology. Also, in order to 

evaluate these two chosen techniques on a wider 

scale, they should be test with large dataset of 

anomaly data. Also isolating better ranges for the 

parameters is a very important area of this 

research and in the future, it is envisaged to 

evaluate the available techniques to do so. In 

order to effective, more datasets with anomalies 

present are required. Finally, it is necessary to 

provide a means to ensure no seasonal variations 

are present in the data. 
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