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Abstract
This paper presents a study of user comfort levels using an

ubiquitous interface. The aim is to analyse the comfort func-
tion of an individual as opposed to previous approaches that
look at the average human being. The data is analysed us-
ing Gaussian Process regression which allows several mech-
anisms to be exploited. These include regression on the data
to give an estimate of a users comfort function. The predic-
tion variance is also estimated and outlier influence can be
reduced easily. In addition, a natural means of combining
the preferences of users falls out of the approach. The com-
bination algorithm takes into account fairness tempered by
the quality of the user’ preference estimates. Empirical re-
sults show that the combined preferences have a well defined
maxima which can be used as a control signal for a HVAC
system. The Gaussian Process approach is hierarchical and
interestingly, while those users studied have differing prefer-
ences, their hyperparameters (at the second level of the hier-
archy) are concentrated; i.e. there is a strong commonality
across individuals in this domain.

General Terms
Categories and Subject Descriptors

G.3 [Probability and statistics]: Correlation and regres-
sion analysis; H.1.2 [Information Systems]: User/Machine
Systems

Keywords
User preference, Gaussian process, ASHRAE, PMV.

1 Introduction
Energy usage in buildings accounts for between 20% and

40% [15] of total energy consumption, with Heating Venti-
lation and Air Conditioning (HVAC) systems accounting for
50% of this figure in the USA. While much effort has been
focused on developing efficient HVAC systems, including ef-
ficient control, less attention has gone into investigating the
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setpoints maintained by these systems. Typically the set-
points are fixed or adjusted manually for different seasons,
regardless of the preferences of the occupants of the build-
ing. In this paper we present a Bayesian technique for esti-
mating a user’s thermal comfort as a function of their current
environment, based on a history of their reported perceptions
of comfort.

Thermal comfort sampling and modelling is a particu-
larly difficult task. There are many factors which effect
a user’s perception of comfort, including outside tempera-
ture, the internal environment, the clothes they are wear-
ing, their type of activity (metabolic rate), the mood they
are in, their current health and many more. The largest set
of studies on user comfort levels comes from the ASHRAE
RP-884 Database [5], which contains 22 thousand responses
from 20 different studies undertakenmainly during the 1990s
in which differing levels of detail were recorded, including
clothing index, metabolic rate and the users perception, via
questionnaires. We build on this research but use a different
paradigm made possible by ubiquitous computing. Our data
is gathered from three experiments with 65 volunteers. We
take real-time comfort measurements via a computer inter-
face in a work environment where the full attention of the
user is not sought. Our aim is to produce a comfort indi-
cator for the individual as opposed to one for the average
occupant. While sensors can be placed near a user these can-
not measure every factor, so our aim is to include only vari-
ables which can reasonably be measured (we choose tem-
perature and humidity) and to produce an effective estimate
from them. The other unmeasured factors thus feed into the
data as noise. However, there is another source of error, on
the dependent variable side of the function: the users them-
selves are not a good measurement device for their own com-
fort. A user may not be aware that it is warmer than they
would normally prefer. In addition, due to annoyance or en-
gagementwith a more important task, users can respondwith
outliers. Thus our software interface is designed to minimise
the nuisance to the user. Our study includes an analysis of the
influence of the data gathering tool on the users’ responses.

The specific statistical approach used in the study is based
on Gaussian Process (GP) Regression. While involved, the
GP approach solves the aforementioned problems allowing
a good estimate of a user’s preference function and a nat-
ural way in which to combine the preference functions of
individuals sharing the same office space. We apply our GP



approach to our experimental data, and we show how the
the GP can incorporate belief about the measurement noise.
We demonstrate a variance reduction approach to reduce the
effect of outliers. To the best of our knowledge Gaussian
Processes have not been applied in this area before.

2 Related Work
User thermal preferences have been traditionally defined

by the Ashrae Standard [5]. The standard defines thermal
comfort using the Predicted Mean Vote (PMV) [7], a com-
plex recursive equation which estimates a user’s response on
a 7 point scale (see Figure 1) using a full array of environ-
mental factors including clothing index and metabolic rate.
In practice however, many of these factors are not measured
and so their application can be broken into two types: fixed
setpoint and adaptive setpoints [5]. In the fixed setpoint ap-
proach a fixed setpoint/preference is given based on the aver-
age environment for a building/space of this type. In Ireland,
for example, air conditioned offices have a fixed setpoint of
21◦C in Summer and 24◦C in Winter. However, given live
readings of some environmental conditions, the adaptive ap-
proach can be employed. In this approach variables such as
the clothing index and metabolic rate are fixed to their av-
erage while those that can be measured are inserted into the
equations and the temperature setpoint that optimises Pre-
dicted Mean Vote then adapts to the environment continu-
ally [20] [14] [2]. The PMV itself can take a significant
amount of resources to estimate and so is sometimes mod-
elled using a neural network [2] or fuzzy logic system [6].
However, the adaptive approach does not consider the in-
dividual’s thermal preference. Perhaps the closest research
in spirit to the current research is that by Daum et al. [4].
In their study, a pop-up polled users four times a day about
their perceived comfort levels, their clothing index and their
activity levels. Our approach polls only for perceived com-
fort level as we consider the other information too large an
intrusion on users activities and the emphasis here is on the
quality of the data returned in a ubiquitous approach. In ad-
dition, the modelling procedure employed by Daum et al. is
logistic regression in which the data is quantized. Gaussian
processes have become increasingly popular for data analy-
sis due to their flexibility and the excellent results they pro-
duce [16]. They have been applied in many fields such as
robot control [12] and fault detection [19], as a general opti-
mization approach [1][17][9][18].

3 Interface and data collection procedure.
The user interface in this study is designed to be easy to

use and cause minimal intrusion. Figure 1 shows a cropped
screenshot in which the user interface appears in the top left
corner of the user’s computer screen. There is a colorbar,
with 7 labels to the right (hot, warm, neutral etc.). Once a
click has been received the interface disappears and does not
appear again until a random time the next day. The devia-
tion from neutral is the dependent variable in the model and
is denoted Y , and lies in the range -133 to 133 (the height
of the colorbar in pixels is 133× 2).1 Although the labels in

1The direction of the data might cause confusion; in keeping with image

processing convention the image begins at the top-left corner and so while

Neutral is zero, Hot is -133 and not +133. While it would have been easy

Figure 1. A screenshot of the user interface (top left).

Figure 1 correspond to the ASHRAE labels there is an im-
portant difference: the ASHRAE polls consists of 7 discrete
levels, while here they are continuous, which allows us to
avoid quantisation errors.

The preference collection software was deployed in three
different sites. Table 1 summarises the data collected. The
first is at a room in University College Cork (UCC) in which
each user has a temperature and humidity sensor located at
their desk. This site is the most important in terms of instru-
mentation and control but contains the fewest participants:
just four. The HVAC system consists of underfloor storage
heating and natural ventilation; the room also has a large
south facing window. The environment is difficult to con-
trol, as there is a lag of approximately eight hours between
the control/storage heating and the resulting temperature in
the room, and this site presents the largest variation in the
environment of the three.

The second implementation took place at the new engi-
neering building at the National University of Ireland, Gal-
way (NUIG). This building is in its first year of operation.
The building contains 2 large rectangular open plan research
rooms, each containing space for approximately one hun-
dred students. Both rooms have large south facing win-
dows. From these two rooms forty participants were re-
cruited. Each room consists of 5 temperature and CO2 sen-
sors equally spaced along the room’s length.

The final implementation was in a research building at
Cork Institute of Technology (CIT). These rooms have tem-
perature sensors in various locations: for the 21 participants
there are 13 sensors. The HVAC system is modern but has
been in use for several years and so the environment showed
the least variation.

In addition hourly readings of the external temperature
are available for each site.

to reverse this we found that doing so makes the 3-D figures in this paper

harder to interpret.



Table 1. Summary of data collected.
Site No. Participants Average number Internal Internal External

of polls (Max,Min,Std) Temperature Humidity Temperature Environment

UCC 4 39 (60,4,15) Yes Yes Yes Controlled but large variation.
NUIG 40 39 (60,4,15) Yes No Yes Controlled but not fully tuned.
CIT 21 39 (60,4,15) Yes No Yes Controlled and tuned.

4 Gaussian processes.
In the GP’s presented here, the variables of interest are

updated using Bayesian inference. A prior belief is first
given about the process of interest. Then, given new infor-
mation (i.e. a poll), this belief is updated, resulting in a pos-
terior. By belief we mean a probability distribution and all
unknowns in a process are assigned a (probability) distribu-
tion. Thus, unlike classical statistical modelling, Bayesian
modelling does not force us to accept one particular value
for a parameter but rather accepts all values as true with dif-
fering levels of probability. In the current setting, this belief
is the comfort of the individual at the current environmental
settings, based on their past responses.

4.1 Gaussian Process Models
The data model used is a GP [17][16]. A GP consists of

assigning a kernel to each measured data point and perform-
ing a regression based on that kernel and the measurement
noise at that data point. While most regression techniques
use a single function to fit the data, GPs are equivalent to tak-
ing a weighted average of functions over a whole functional
space; thus reducing the dependence on a single function and
in addition providing an estimate of the variance of the mean
estimates.

The first stage in the GP employed here is input data scal-
ing. Given a d dimensional input, x ∈ ℜd , the data is first
scaled such that the variation in all dimensions along the data
is the same. To achieve this the data is typically multiplied
by a scaling matrix M ∈ ℜd×d ; which in this case is diag-
onal. M thus consists of d elements and we choose to keep
the first entry on the diagonal as 1. The reason for this choice
is that the first variable is internal temperature, the dominant
variable, which is already in units that can be easily inter-
preted. ThusM consists of d−1 unknown elements denoted,
{m1, . . . ,md−1}. These unknowns can be incorporated into
the set of hyperparameters for the GP. The estimation proce-
dure is discussed below.

A GP is defined as a process in which realisations from
the process are jointly multivariate Normally distributed.
Specifically, the data generated by the process at n sample
points, Yx1:n , are drawn from a multivariate Gaussian distri-
bution as:

Yx1:n ∼N [µx,Cx,x] (1)

where N denotes a Gaussian distribution, x1:n, denotes n
samples taken at points x1 . . .xn, µx ∈ ℜd , is the mean of
the process and Cx,x is the covariance matrix. The covari-
ance matrix depends on the separation of the data points and
so is often referred to as the covariance function. Following
appropriate scaling of the inputs (viaM) an isotropic covari-
ance function can be used in which the variation of the func-
tion is equal in all directions. Given an isotropic covariance
function it now becomes more convenient to talk in terms

of the correlation function which is related to the covariance
function via2:

Cx,x = σ2
xRx,x (2)

as σ2
x , is the variance of the process and Rx,x ∈ ℜn×n is the

correlation function. The correlation function is defined by a
kernel with the following properties:

Rx,x = R(0) = 1 (3)

the correlation function at a distance of zero (i.e. between a
point x and itself) is one,

Rx1,x2 = R(‖x1− x2‖) (4)

the correlation function is only a function of the separation
of the sample points, where ‖•‖ denotes euclidean distance,
and

R(h1)< R(h2) for h1 > h2 > 0 (5)

the correlation function dies away as the distance increases;
where h denotes a distance. This last condition is necessary
in order for single function paths (i.e. a collection of samples
taken from the GP) to be used for inference [17]. A valid ker-
nel function may be derived from any symmetric probability
density function (pdf). In this application, the Matérn Ker-
nel, derived from the t-distribution is used as it has just two
parameters and allows the kernel to have a variety of shapes,
from a Gaussian-like shape to shapes peaked at zero andwith
a long tail. The Matérn kernel is defined as:

R(h,θ,ν) =
1

Γ(ν)2ν−1

(

2
√

ν|h|
θ

)ν

Kν

(

2
√

ν|h|
θ

)

(6)

where Kν is the modified Bessel function, θ and ν are pa-
rameters of the kernel with θ controlling the scale and ν the
shape of the kernel.

Now, given a set of points at which samples have al-
ready been taken, x1:n, and a set of locations (called eval-
uation points), x∗, at which we have not sampled, the rela-
tionship between the sampled and evaluation points may be
expressed by partitioning Equation 16 in terms of the cross
and auto-correlation matrices of the sampled and evaluation
points as [17]:

[

Yx1:n
Yx∗

]

∼N

[[

1n
1∗

]

µx,σ
2
x

[

Rx,x Rx,x∗

RT
x,x∗ Rx∗,x∗

]]

(7)

where Yx∗ is the value of the process at x∗, 1n and 1∗ are
appropriately dimensioned vectors of ones, Rx,x is the auto-
correlation between the known sample points, Rx,x∗ is the
cross-correlation between the sample and evaluation points

2Here is assumed that the overall process mean is zero; alternatively a

non-zero mean may be subtracted from the data prior to modelling.



and Rx∗,x∗ is the auto-correlation of the evaluation points. ∼
denotes drawn from and N denotes a Gaussian distribution.

The unknown parameters in the GP defined by Equation 7
are the process mean, the process variance and the shape
parameters for the kernel. In addition, the data scaling pa-
rameters are unknown and so the full set of unknowns is
{µx,σ2

x ,θ,ν,m1, . . . ,md−1}. These may be estimated itera-
tively using Bayesian conjugate analysis and a hierarchical
GP in which the parameters are organised in a hierarchy as:

[µx,σ
2
x ,θ,ν] = [µx|σ2

x ]× [σ2
x]× [θ,ν,m1, . . . ,md−1] (8)

where [•] denotes distribution. It is thus assumed that the
kernel and data scaling parameters are independent of the
process mean and variance. They are estimated first, fol-
lowed by the next stage in the hierarchy; estimating the vari-
ance. The process mean is then estimated (conditional on
the variance). Finally, estimates of the function at particu-
lar sample points may be made given the hyperparameters.
Each stage is now explained further.

Given the current data points the kernel and data scaling
parameters are estimated by maximising the log likelihood
function with respect to [θ,ν,m1, . . . ,md−1]. This function
(the log marginal likelihood) may be expressed as:

L=−1

2
YT
x1:n

C∗−1Yx1:n −
1

2
log|C∗|− n

2
log(2π) (9)

where L ≡ log p(Yx1:n |x1:n,θ,ν,m1, . . . ,md−1) is the log like-

lihood function, C∗ = σ2
x(Rx,x∗ + ζx), is the covariance ma-

trix of the noisy data and ζx is the measurement noise co-
variance. Equation 9 has two terms on the right hand side
which are quite interesting. The first term, Y T

x1:n
C∗−1Yx1:n is

the data fit while the second term, log|C∗|, is the variance of
the model itself (the third term is just a normalisation factor).
Thus there is a natural trade-off between the data fit and the
model complexity which avoids over fitting (see [16]). The
process parameters are estimated using a conjugate Bayesian
approach in which the standard conjugate Bayesian prior for
a mean and (unknown) variance are used; specifically the
mean has a normal prior; µx ∼N

[

0,σ2
xδ2
]

and the variance
has a normal-inverse-Gamma prior; σx ∼ IG [a/2,b/2]. δ is
our initial estimate of the variance of the mean. The variance
is initially assumed to lie in the interval [a,b].

An estimate of the function at the evaluation points may
be constructed using least squares (see [17] for details).
However, in the current application we are interested in es-
timating the value of Yx∗ given that the measurements are
noisy. In the presence of measurement noise Equation 7 be-
comes [16]:

[

Yx1:n
Yx∗

]

∼N

[[

1n
1∗

]

µx,σ
2
x

[

Rx,x+ ζx Rx,x∗

RT
x,x∗ Rx∗,x∗

]]

(10)

and an estimate of the value of the function at the evaluation
points, x∗ may be expressed as [16]:

Ŷx∗ = 1∗µ̂x+Rx,x∗ (Rx+ ζx)
−1 (Yx1:n − 1nµ̂x) (11)

An estimate of variance at the evaluation points, σ2(x∗), may

be estimated via [16]:

σ̂2(x∗) = σ̂2
x

(

Rx∗ −RT
x,x∗KRx,x∗ +

(

1− 1n
TKRx,x∗

)2

1n
TK1n+ δ−2

)

(12)
where K = (Rx,x+ ζx)

−1 is used to simplify notation. The
maximum a-posteriori estimates for the process parameters
are [12]:

µ̂x =
(

1−K+ δ−2
)−1

1n
TKYx1:n (13)

and

σ̂2
x =

(

b+YT
x1:n

KYx1:n − (1n
TK1n+ δ−2)

)

µ̂2x

n+ a+ 2
(14)

4.2 Outlier influence reduction.
At this stage the base model has been presented but there

still remains one set of unknowns in the equations above,
the measurement noise at the sample points, ζx. In many
cases this is assumed to be constant [16] or another GP is
employed to model the variance in addition to the mean (see
[8] [11]). However here we use an approach similar to that
in [18]. In the current setting, an initial guess can be made
for the variance of a sample/poll (see Section 5.2.1), say ζ0x .
Given this initial guess the GP can be used to produce an
estimate of the process at x, i.e. Ŷx, and this can be taken
from the measured value to produce a residual. A recursive
procedure can then be used to further estimate the variance
based on the residual as:

ζix = αζi−1
x +(1−α)rix (15)

where rix = Ŷx−Yx is the residual at x in iteration i and α is a
coefficient which is here set to 0.7 (although this algorithm
was found to be robust to different values of α). The net
effect of this algorithm is that outliers are excluded as shown
empirically in Section 5.2.1.

5 Results
The results are broken into three major sections; the first

presents a preliminary analysis of the data demonstrating
major characteristics (5.1). The aim of the second section
is to show the GP model in operation (5.2). The third section
concentrates on the group results from the three sites (5.3).

5.1 Preliminary data analysis
Figure 2 shows the responses of a typical user with re-

spect to the internal temperature (note that there are other
dimensions to the data not shown here). As can be seen the
relationship between internal temperature and the deviation,
Y , is not immeadiatly clear. In addition, there appears to be a
band around Y = 0 for which the response is invariant to the
input. This band is called the deadband and shows a clear
band of entries from 21-26 ◦C for which the user gave a near
zero response. The likely cause of this deadband is several
fold. It is well known that biases exist in survey responses
known as the demand characteristics [13]. Also, anecdo-
tally, users indicated that when they didn’t care they usually
clicked at the neutral position. In addition, skin is very bad at
perceiving warmth and cold [10] especially when the room
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Figure 2. The response of a single user with respect to
internal temperature; the deadband location.
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Figure 3. The response of a single user with respect to
internal temperature; Points outside the deadband and a
linear fit to those points.

heats up slowly. Statistically the deadband constitutes a dif-
ferent process which should be taken out of the data alto-
gether. Figure 3 shows the same data as in Figure 2 but this
time with the deadband removed. The relationship between
internal temperature and Y is now somewhat clearer. Indeed
a (toy) linear model (shown in Figure 3), created purely for
illustration purposes (the actual model is a GP), shows a rea-
sonable fit to the data. The toy model suggests that this users
optimal internal temperature is in the region of 24◦C, which
is plausible. Given the preliminary elimination of the dead-
band data a more complex model, the GP, may now be con-
structed.

5.2 A Gaussian Process model.
Figure 4 shows the original input data for a single sam-

ple user: the internal temperature, the internal humidity and
the external temperature. The original data shows that the
internal temperature spans a lower range than the external
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Figure 4. Original input data points; note the axis scales
are equal.
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Figure 5. Data points following rescaling; note the
axis scales are equal. Kernel shown in red. (mtext =
2.68,mhint = 0.62) .

temperature. 3 The Maximum Likelihood Estimates (MLE)
for the scaling parameters (Equation 9) are mText = 2.68 and
mHext = 0.62.

Figure 5 shows the scaled input data for this user. It
can see that the external temperature has in fact been ex-
panded (by a factor of 2.68) while the Humidity has been
compressed; overall the scales have changed quite signifi-
cantly.

Figure 6 shows the estimated mean of the process over
a grid of internal and external temperatures, i.e. Ŷx∗ from
Equation 11. There are a few things to note about this fit.
First the estimated mean (Equation 11) drifts back to the pro-
cess mean (Equation 13) as we get further from the sample
points. This explains the counter-intuitive estimate which
suggests the expected response to be zero at the boundaries.

3It is unclear how humidity is related to the temperatures as it is unitless

(i.e. a percentage)
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Figure 6. A fit of the preference data for user 1. (the hu-
midity is kept constant at the average humidity, 36.2%.)

For example, an internal temperature of 28◦C is obviously
too hot and so the mean estimate for Y should be approxi-
matly -100 but as can be seen in Figure 6 the mean estimate
is zero.

Figure 7 shows mean estimates generated from the same
model used to produce Figure 6 but with the external temper-
ature and internal humidity kept constant at their respective
means. In addition, the variance at the evaluation points is
also shown in the lower panel. As can be seen while the mean
estimate, Ŷ ∗

x tends to zero as the internal temperature goes to

28◦ C, σ̂2(x∗) increases from 5,000 to 10,000 reflecting the

fact that Ŷx∗=28◦C has a high variance. Thus while Ŷx∗=28◦C
is obviously wrong this is reflected clearly in the estimated

variance at that point; σ̂2
x∗=28◦C. The fit itself shows that

this user is comfortable at 24◦C but at 23◦C the estimated
response is 100 which lies between slightly cool and cool.
The curve peaks at 23 ◦C as there is insufficient data at lower
temperatures to make a good estimate (which is reflected in
the higher variance).

5.2.1 Outlier influence reduction.
Initial estimates of the variance, ζ0x , are set according to

ζ0x = min(1/|Yx|,11). This equation reflects the fact that
larger amplitude measurements are more likely to represent
a deliberate response and was found to work quite well with
this data set. Figure 8 illustrates three iterations of the out-
lier reduction algorithm. Figure 8 (a) shows the initial model
fit. This user (different from that presented above) has been
chosen as there is a large outlier, shown in red. As can be
seen after three rounds the effect of this outlier has been sig-
nificantly reduced.

5.3 Group results.
Table 2 shows parameter and hyperparameter estimates

along with the number of samples for the UCC group. As
the number of data points, n, increases, σ̂x decreases; as ex-
pected. Note that this need not necessarily be the case; σ̂x is
not just a function of n but also the quality of the responses.
For example, some users might return many responses but
with large measurement errors. This would be reflected in
a higher σ̂x. µ̂x is negative for all users indicating that the
room is in general too hot for the group as a whole. The
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Figure 7. A fit of the preference data for user 1 with con-
fidence intervals. (the humidity and external tempera-
tures are kept constant at the average, 36.2%and 8.86◦C,
resp.).

Table 2. Statistics for the control group of users.
User θ̂ ν̂ m̂Text m̂3 σ̂x µ̂x n

1 2.53 0.85 0.39 2.71 2.98 -9.43 61
2 4.97 2.79 0.13 2.01 14.60 -8.32 29
3 4.64 2.78 0.16 2.27 4.87 -19.43 48
4 5.00 2.26 0.11 2.18 29.69 -1.52 14

estimated hyperparameters for users 2 to 4 shows surprising

consistency with θ̂ ≈ 5, ν̂ ≈ 2.7, m̂2 ≈ 0.13 and m̂3 ≈ 2.

5.3.1 Global priors
To examine the distribution of the hyperparameters the

models from all users were collected together and the dis-
tribution of the hyperparameter estimates from all 65 users
were examined to form global priors [3].4 These are shown
in Figure 9. While some outliers do exist (such as user 1
above) the distributions in Figure 9 are highly concentrated
about their respective maxima. Specifically the maxima in
Figure 9 are {θ̄, ν̄, m̄Text , σ̄x} = {4.91,2.20,0.63,5.19}. This
is a very useful result in several ways. First, there are physi-
cal interpretations for each parameter; θ̄ indicates that a poll
taken at one point has an effective radius of 4.9◦ C (a useful
rule of thumb for a grid survey). The scaling between in-
ternal and external temperatures is 0.63 and the variance of
the ’preference process’ is smooth at 5.19. Secondly, these
global priors can be used as priors for a new user in order to
give a reasonable fit before a significant amount of data has
been collected.

5.3.2 Combining preference functions
Figure 10 shows the response curves for the 4 users in the

UCC group. In addition the value of, σ̂2(x∗), at the internal
temperatures, x∗, is shown in the lower panel. The points
at which Ŷx∗ = 0 (the cross-over points) for the four users
are {20.1,22.9,21.8,21.0}, respectively. Thus the average
cross-over point is 21.4◦C. However, this figure does not
take into account that our confidence about each user differs
significantly as can be seen on the lower panel of Figure 10.
Figure 11 shows the probability distribution function of the
response at 23◦C. The data in this figure refers to just one

4Priors for mHext cannot be examined as there are no internal humidity

readings for the CIT and NUIG sites.
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Figure 8. Outlier influence reduction;. a) The initial GP fit. b) after round 1. c) round 2. )
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Figure 9. Global prior distributions for the hyperparameters.

operating point; the internal temperature at 23◦C (the other
variables being set to the average). Comparing Figures 10
and 11, it can be seen for example that User 4 has a mean
response (Ŷx∗) of -10 at 23

◦C. In Figure 11 it can be seen that
the distribution (∼ N {Ŷx∗ , σ̂2(x∗)}) around this response is
quite narrow. For the other users the situation is different;
although user 1 also has a response of Ŷ23◦C ≈−10, σ̂2

23◦C is
much higher than for user 4 and so the corresponding distri-
bution on Figure 11 is far wider. Here, we propose that the
expected number of neutral votes as a combination function:

J1(x
∗) =

1

4

4

∑
i=1

Pi(Yx∗ = 0|x= x∗) (16)

where Pi(Yx∗ = 0|x = x∗) is the pdf of the response for the

ith user evaluated at zero and J1(x
∗) is the name given to

this combination. Figure 12 shows the value of J1(x
∗) corre-

sponding to the response curves in Figure 10. It is satisfying
to note that the peak occurs along a ridge and that the func-
tion decays smoothly away from the peak.

6 Conclusions
For truly smart building operation, HVAC control should

take user preferences into account. However, obtaining ac-
curate comfort models tailored to specific users is difficult.
We have developed a software app which requests users per-
ceptions of the environment, and we show how to extract the
meaningful data. We show how to extract individual prefer-
ence functions from this noisy data using Gaussian Processes
(GPs). Beliefs about the data can easily be integrated into GP
models, from a prior belief about the population as a whole
to belief about the measurement noise . We show how vari-
ance reduction can account for remaining outliers. The GP
model also provides a natural means of combining the pref-

20 21 22 23 24 25 26 27 28 29 30

−100

−80

−60

−40

−20

0

20

Y

 

 

20 21 22 23 24 25 26 27 28 29 30
0

50

100

150

200

250

T
int

σ
2
(x

* )

User1

User2

User3

User4

Figure 10. The response curve from the 4 control group
users with respect to internal temperature. (Text = 11◦C,
Hint = 39%)

erences of individuals sharing a space, to provide a usable
signal for HVAC control. The focus here was on the data
analysis. Future work will look at how and when the data
should be collected. We are investigating an active learning
approach, where σ̂2(x∗) can be used to select an optimal time
to poll the user. In addition, a GP model allows prior infor-
mation to be easily integrated into the model (for example,
there is no need to ask whether a user’s response at 0◦C is
’too cold’). Finally, we will investigate the application of
GPs to other areas of intelligent building operation.
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