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a b s t r a c t 

Wireless Sensor Networks in volatile environments may suffer damage which partitions the network, and 

connectivity must be restored. We investigate the online problem, in which the repairing agent must 

discover surviving nodes and the damage to the physical and radio environment as it moves around 

the sensor field to execute the repair. The objectives include minimising the cost of the repair in terms 

of new radios and distance travelled, and minimising the time to complete the repair. We consider a 

number of different agent features which we can combine in different configurations. The repairing agent 

may prioritise either the node cost or the travel distance. The focus of the agent may be local, with a 

greedy choice of next partition to re-connect, or global, maintaining a plan for all partitions. To handle the 

developing knowledge of the network conditions, the agent may revert to full replanning when a change 

is discovered, or try a minimal adjustment of the current plan in order to minimise the computation 

effort. For each configuration, we develop a number of heuristics for creating the plans. We evaluate the 

approach in simulation, varying the density of the connectivity graph and the level of damage suffered. 

We demonstrate that the plan repair method, while producing more expensive solutions, can require 

significantly less computation time, depending on the choice of heuristic. Finally, we evaluate the total 

time to repair the network for different speeds of agent, and we show the relative importance of the 

agent speeds on the two focuses. In particular, algorithms which prioritise mobility cost are preferred for 

slow agents, while faster moving agents should prioritise the radio node cost. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Wireless Sensor Networks are becoming increasingly impor-

ant for monitoring phenomena in remote or hazardous environ-

ents, including pollution monitoring, chemical processes, disaster

esponse, and battlefield sensing. As these environments are un-

ontrolled and may be volatile, the network may suffer damage,

rom hazards, attack or accidents involving wildlife and weather,

nd may degrade through battery depletion or hardware failure.

he failure of an individual sensor node may mean the loss of par-

icular data streams generated by that node; more significantly,

ode failure may partition the network, meaning that many data

treams cannot be transmitted to the sink. This creates the net-

ork repair problem, in which we must place new radio nodes in

he environment to restore connectivity to the sink for important

ata streams. 
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There are four main challenges in the problem: (i) determining

hat damage has occurred (i.e. which nodes have failed and what

adio links have been blocked); (ii) determining what changes have

appened to the accessibility of the environment (i.e. what posi-

ions can be reached, and what routes are possible between those

ositions); (iii) deciding on the positions for the new radio nodes;

nd (iv) planning a route through the environment to place those

odes. The problem thus involves both exploration and optimisa-

ion. The main objective of the agent is to minimise the cost of

he repair, where the main cost factor may be the number of new

odes, the distance travelled, or the time taken to complete the

epair, depending on circumstances. 

The agent starts with knowledge of the radio and physical en-

ironments before the damage, and is aware of the connected sub-

etwork after the damage, i.e. the set of nodes still successfully

ransmitting data to the sink. It must plan a deployment of nodes

o restore connectivity for designated data streams, and plan a

oute through the environment to place those nodes. Each plan is a

et of locations to be visited and a detailed motion plan for reach-

ng the first location. However, while executing the plan, the agent

ill encounter blocked paths and broken radio links, but may also

http://dx.doi.org/10.1016/j.adhoc.2016.02.021
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Table 1 

Summary of the agent approaches. 

Focus Local (L) Global (G) 

Priority Node cost (N) Path cost (P) 

Strategy Replanning (c) Repairing (f) 
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discover surviving disconnected components of the network, and

as it discovers new knowledge, it must revise its plans to complete

the repair. When it discovers knowledge that renders its current

plan infeasible or changes its cost significantly, it will update its

plan and continue. 

Since both subproblems (connectivity and multi-point path

planning) are computationally hard, we use heuristic algorithms

to generate the plans. We describe possible agents using four dif-

ferent features. The focus of the agent describes how much of the

remaining problem should be considered when choosing the next

data stream to be connected: a local focus uses a greedy approach

and considers the next data stream in isolation, while a global fo-

cus chooses the best sequence of streams to connect The plan-

ning priority determines which cost factor will be prioritised when

developing and executing the plans: the number of nodes or the

distance travelled. The online planning strategy describes how the

agent reacts to new knowledge. Full replanning generates a new

plan each time the cost of the plan changes significantly, or when

the plan becomes infeasible. Plan repair instead searches for a

new subplan to connect its current target, and reverts to full re-

planning only when that is infeasible or has excessive cost. The

search heuristic describes how the agent makes its selection of data

stream to connect or path to be followed. A summary of our ap-

proaches is shown in Table 1 . Thus we can construct 8 different

high-level approaches, with a possibly different set of heuristics for

each one. 

We evaluate the approaches in simulation on randomly gen-

erated problems, assessing the impact of increasing the damage,

increasing the number of data streams to be connected, and in-

creasing the number of candidate locations for radio nodes. We

show that the costs all increase when we increase the number of

disconnected terminals (i.e. the desired locations from which we

want to restore the data streams) and the damage levels but do

not always increase with the number of candidate locations. In

some cases, the global focus and the full replanning strategy, for

both node and path priorities, are poorer than locally focused plan-

repair approaches. The main cause of this is the initially unknown

environment; the global plans are too specific to the initial knowl-

edge, and require long paths or too many additional radio nodes

to recover when the initial assumptions prove invalid, while the

local plans with small repairs assume less about the environment,

and are thus cheaper to adapt. In addition, we show that different

movement speeds of the repairing agent have a significant impact

on performance, and must be taken into account when selecting

the algorithm. With slow agents, the time to move through the

sensor field outweighs both the time to place nodes and the com-

putation time. Therefore, approaches which produce low mobility

cost should be prioritised. For medium speeds, the gap between

the path and the node priorities in total restoration time is smaller.

However, with a fast moving agent, the higher mobility costs are

less significant, and thus the time to place nodes and the compu-

tation time become more important. Therefore, the node priority

approaches should be preferred in this situation. 

In the remainder of the paper, we discuss related work, then we

introduce the problem formulation, followed by the agent knowl-

edge structures. We then describe the details of our agent features

and the different algorithms. We describe the simulation frame-

work, and conclude with the experimental results. 
. Related work 

The subject of network restoration for wireless networks is an

ctive area of research. The different approaches can be classified

s (i) deploying redundant nodes to be able to cope with a pre-

etermined number of failures, (ii) use of mobile (actor) nodes

hat can be moved into position in order to restore connectivity,

iii) dispatching mobile nodes in a pre-emptive manner to avoid

ailures in connectivity, (iv) the deployment of additional nodes to

estore connectivity after failures have occurred, and (v) sensor re-

ocation by mobile robots. 

Deploying redundant nodes to achieve a level of connectivity 

In [1–5] , the goal is to deploy redundant nodes with the in-

ention of achieving k -connectivity. The main idea of these papers

s to place redundant nodes at some calculated locations to cre-

te a k -connected graph. Those redundant nodes start in sleeping

ode and only wake up to offer new paths if a node fails. These

pproaches tend to require many redundant nodes, which makes

hem expensive. Finally, the main focus is not on repairing the

amaged network, but on achieving fault tolerance. 

Repairing connectivity in Wireless Sensor and Actor Networks

WSAN) 

Wireless Sensor and Actor Networks (WSANs) are networks of

ensors and actors that communicate via a wireless medium to

erform distributed sensing and actuation tasks. Actors usually

ake decisions and perform suitable actions upon the information

ollected from the sensors. The actors collect data from the nearby

ensors and can exchange information with other actors to make

he right decisions. Several papers consider the use of mobile ac-

or nodes in network restoration, e.g. [6–14] . The papers assume

hat all sensors are connected and propose different strategies to

hoose the moving actors, for example, based on estimating the

hortest moving distance and/or degree of connectivity to achieve

oals of connectivity or coverage for the actor network (an overlay

etwork of all actors). 

The repair methods discussed above are for restoring the con-

ectivity for a single node failure at a time only. The work is ex-

ended in [15] to deal with multiple failures. It proactively pre-

omputes cut-nodes and the Connected Dominating Set (CDS), des-

gnates the appropriate neighbours to cover them if they fail and

hen applies cascaded movement (i.e. block movement where the

ovement of each node depends on that of all previous moving

odes in order to maintain the network connectivity) for replace-

ent. Therefore, this work involves all dominatees (i.e. the nodes

hose absence do not lead to any partitioning of the network) to

he cut-node. The work is different from our work in which they

ssume that mobility is unimpeded by obstacles in free space. 

Dispatching mobile nodes to avoid disconnection 

Dai and Chan [16] proactively deploy additional helper mo-

ile nodes, controlling their trajectories in response to predicted

etwork disconnection events. The work assumes that the mobile

odes are always fast enough to reach the desired destination in

ase of a predicted disconnection event, and that a full map of the

hysical terrain and radio environment is available. Details of how

o determine the number of mobile nodes that are needed and the

elated path planning are not provided. 

Henkel and Brown [17] deploy mobile robotic helper nodes to

hysically carry the data to the base station. The approach desig-

ates the speed for those mobile helpers in order to carry data

ith delay-tolerance. However, this work is only suitable for ap-

lications with delay-tolerance and where those helper nodes can

ove in free space to bring the data back. 

Deploying additional nodes to repair the connectivity 

Senel et al. [18–25] assume multiple simultaneous failures in-

olving many failed nodes and a network that is partitioned into

any segments. The approach is to re-connect those segments in
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 centralised manner with the main objective of using the small-

st number of additional nodes. Senel et al. [18] uses a spider web

pproach to reconnect the segments. In [20] , the authors propose

 Distributed algorithm for Optimised Relay node placement us-

ng Minimum Steiner tree (DORMS). This approach forms a con-

ectivity chain from each segment toward a centre point and then

eeks to optimise the number of additional nodes that are needed.

enel et al. [22,23] also propose algorithms using minimum Steiner

rees where Senel and Younis [22] find the best subsets of three

egments and forms a triangular Steiner minimum tree with min-

mum Steiner points while Lee and Younis [23] use a minimum

teiner tree on the Convex hull and places relay nodes inwards to-

ards the centre of the damage area. 

Also [19,21] model the area as a grid of R 
√ 

2 size squares where

 is the transmission range of a node and then map the problem

f finding the optimal number and position of relay nodes into the

roblem of finding the cell-based least-cost paths that connect all

artitions in the network and also meet the QoS requirement. 

In [25] , the authors also consider different aspects of a seg-

ented network such as the sizes and shapes of segments, and

ossible holes in segments. Besides the node cost, the paper also

inimises the average path length from a centre point of each seg-

ent to the sink. The paper assumes a static segmented network

nd a uniform distribution of mobile/relay nodes (MNs), and pro-

oses centralised and distributed connectivity restoration. The cen-

ralised approach uses a genetic algorithm which applies a heuris-

ic to reduce the search space. The distributed approach establishes

he connection between two adjacent segments without consider-

ng all the segments in a network. Therefore, the distributed ap-

roach has lower overhead but it is more costly (longer path length

o the sink, more MNs used) than the centralised approach. 

All the above work assumes a free space where nodes can move

reely to achieve minimum travel distance or other goals (min-

mum number of nodes, etc.). The work also assumes uniform

ransmission range modelled as a disc centred at the node, and

hus ignores radio propagation obstacles as well as obstacles to

ree movement. The last approach above is closest to our research

ut different in three respects, firstly in that we optimise both the

umber of additional nodes as well as the path length needed for

heir deployment, secondly in that we explicitly take into account

he impact of obstacles that can alter both the available paths and

he ability of nodes to communicate directly, and thirdly we model

he problem as continual planning task where the agent has to dis-

over the environments in order to perform tasks. 

Sensor relocation by mobile robots 

Random deployment or sensor failures in Wireless Sensor Net-

ork may cause sensing holes and redundant sensors. The work

n this category deploys a team of robots to relocate sensors and

mprove the area coverage. Existing work focuses on two main

pproaches: centralised approaches [26–28] where one or more

obots are located at a base station which has full knowledge of

he network and the algorithms to find robot trajectory to repair

he network coverage are run globally; and localised solutions [29–

1] where each robot may carry at most one sensor and makes de-

isions that depend only on locally detected information. The work

ocuses on rearranging the redundant sensors to cover any sensing

oles and it aims to maximise the network coverage. 

Other related work in WSNs 

Senturk et al. [24] use game theory to reconnect the network.

gain, the work assumes free space where the mobile nodes can

ove freely and new nodes can be placed in any positions. Sen-

urk et al. [32–34] consider more realistic terrain with obstacles,

ssuming all terrain and all network conditions are known in ad-

ance. The methods focus on networks where the nodes them-

elves are mobile, and consider single instances of moving a node

o re-establish a link without breaking other links. 
Akkaya et al. [35,36] consider on distributed mobile nodes for

e-establishing network connectivity. Akkaya et al. [35] relocate

ome of the sensors to the locations of the failed sensors to re-

stablish the routes with the sink node based on local information.

enturk et al. [36] proposes two distributed relay node positioning

pproaches which use virtual force-based movements of relays and

ame Theory respectively to guarantee network recovery for parti-

ioned WSNs. 

There is also research on topology control using mobile agents.

atalin and Sukhatme [37] deploy a robot with unlimited nodes

nd drops nodes from time to time based on certain ordering rules.

avlanos and Pappas [38] control the agent’s motion to explore the

nvironment while dropping nodes and preserving the connectivity

f the network. Poduri et al. [39] assume a mobile sensor network

here nodes can use repulsion and attraction forces to arrange the

opology. These papers focus on topology control and deployment

ut do not consider repair/restoration after damage has occurred. 

Our work in this paper extends from [40,41,42] . In [40,42] , we

ntroduce the network repair problem in the presence of obstacles

n a static environment, and propose different heuristics to solve

he problem. Truong et al. [41] model the network repair as a con-

inual planning where an agent must discover surviving nodes and

amage to the physical and radio environment as it moves around

he sensor field to execute the repair. The paper focuses on two ap-

roaches, one which re-generates a full plan whenever it discovers

ew knowledge, and a second which attempts to minimise the re-

uired number of new radio nodes. For each approach, there are

wo different heuristics, one which attempts to minimise the cost

f new radio nodes, and one which aims to minimise the travel

istance. In addition to the findings in [41] , there are a number

f other solutions that have been explored in this journal. We also

rovide more results in the simulation to fully compare all the pro-

osed solutions. 

Continual planning . The problem of agent planning is a central

opic in artificial intelligence and robotics. In particular, continual

lanning, in which the plan must be modified as knowledge is dis-

overed, was first proposed in [43] . The paper proposes a frame-

ork (called CPEF) for a continuous planning and execution sys-

em. It is based on a central Plan Manager responsible for the

verall control of system operation: plan generation, monitoring,

nd execution. Chien et al. [44] use iterative repair techniques to

upport a continuous planning process for autonomous spacecraft

ontrol. Lemai et al. [45] and [46] , for temporal planning, interleave

ecision and execution in a dynamic environment to allow plan re-

air interleaved with execution. Pettersson et al. [47] use a model-

ree approach which observes and classifies the actual behaviour

f the monitored systems into normal or faulty execution. Molin-

aux et al. [48] dynamically reasons about which goals to pursue in

esponse to unexpected circumstances. Teichteil-Konigsbuch et al.

49] propose a generic and reactive scheme for continuous plan-

ing for complex problems. Finally, Kaldeli et al. [50] describe a

SP-based continual planner for web service composition. 

Most of the work in replanning focuses on two models: replan-

ing as restarting (planning again) [51–54] , and replanning as re-

air (repairing the current plan locally) [55,56] . 

van der Krogt et al. [51] describe a framework that can use

ost heuristic planner/search for replanning. Koenig et al. [52]

ombine ideas from the artificial intelligence and the algorithms

iterature. It repeatedly finds shortest paths from a given start ver-

ex to a given goal vertex while the edge costs of a graph change or

ertices are added or deleted while reusing information from pre-

ious searches. Given an optimal plan, the objective in [53] is to

onitor its continued optimality, electing to replan only in those

ase where continued execution of the plan will either not achieve

 goal, or will do so sub-optimally. Cushing et al. [54] use rewards

nd penalties to reason about adding or changing goals. Newly ar-
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Table 2 

Table of notation. 

Notation Description 

Subscripts b , B Used for before damage 

Subscripts a , A Used for after damage 

G Rectilinear grid of locations 

V b Set of pre-damage candidate locations for radio 

nodes 

C b Set of pre-damage potential radio links 

V B Set of pre-damage locations with live nodes 

V a Set of post-damage candidate locations for 

radio nodes 

C a Set of post-damage potential radio links 

V A Set of post-damage locations with live nodes 

τ Set of terminals to be connected 

I v Set of nodes successfully transmitting data to 

sink 

I c Set of active links between live nodes 

B b Set of pre-damage blocked squares 

B a Set of post-damage blocked squares 

V n Set of newly added nodes 

L Starting grid location of the agent 

P Path through the grid 

d Agent probe distance 

R Agent transmission range 
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Pairs of locations are classified for radio links as follows: 

1 Many protocols across different layers require symmetric links for proper func- 

tioning, e.g. the MAC layer may require symmetric links for acknowledgements. 
2 Using radar, video, or sensing or by physically moving. 
riving goals are modelled with rewards, while commitments made

by the existing plan are modelled with penalties. For example, a

robot is on its way to rescue an injured person and discovers a

group of children stuck in a burning home. The replanner must re-

solve the problem, exploit the opportunities but also respect the

commitments inherent in the current plan. 

Joslin and Pollack [55] describe the Least Cost Flaw Repair strat-

egy where it defines a repair cost for any flaw (threat or open con-

ditions) and selects the flaw with minimal cost to repair. Ayan and

Kuter [56] describe a planning system which interleaves plan gen-

eration, execution, and repair in a dynamic environment. It gener-

ates a solution plan for a problem, and then executes it. If an ac-

tion fails while the plan is not finished, it attempts to repair only

the related part of the failing action. This approach keeps track of a

dependency graph which contains a derivation tree for the gener-

ated plan and the causal links between the nodes of that tree. The

causal links show the relationship between the effects of an action

to be executed now in the plan and the task decompositions oc-

curring in future. Using this graph, it can find and repair only the

related part of the plan. 

3. Problem formulation 

Network repair is the problem of placing new nodes in the

environment to restore connectivity to the sink for all required

sub-partitions. The agent has to discover the network and phys-

ical environments in order to make the right decisions. Our aim

is to optimise our use of resources in partially known environ-

ments. To represent the problem of exploring an environment to

discover mobility paths, we assume an underlying grid represen-

tation. The grid model is a standard representation in robotics

problems, where the robot must determine whether a neighbour-

ing square is accessible before it moves into it. To represent the

connectivity problem, we use a connectivity graph, where is node

in the graph is assigned a location in the grid model. We give a

description of the problem formulation below, with the notation

listed in Table 2 . 

We will model the environment in two phases: the connectivity

and mobility environment before the damage, and the connectiv-

ity and mobility after the damage. The environment before dam-

age is known completely, from, for example, a survey performed

by robot or human agents. The environment after damage is largely
nknown, and so part of our problem is to discover as much of the

fter-damage environment as is needed to complete an effective

epair. For the environment before the damage, we have a rectilin-

ar grid of locations G, in which a subset V b ⊆ G of grid squares

re candidate locations for wireless nodes, with each square allow-

ng at most one node, at a specified position within the square. C b 
V b × V b is a set of potential radio links, and thus ( V b , C b ) is

 potential connectivity graph. We assume symmetric links are re-

uired for the network operation, 1 and so we ignore any asymmet-

ic connections. V B ⊆ V b is the set of locations with actual nodes.

fter damage, the connectivity graph is ( V a , C a ), where V a ⊆ V b 

nd C a ⊆ C b . V A ⊆ V B ∩ V a is the set of locations with surviving

odes. The set τ ⊆ V B , of terminals , is the set of locations from

hich we require sensed data. I v ⊆ V A is the set of nodes still suc-

essfully transmitting data to our sink, and I c is the corresponding

et of active links. The repairing agent can move from any square

nto one of its four rectilinear neighbours, unless that neighbour is

locked. The set of blocked squares before damage is B b , while the

et of blocked squares after damage is B a , such that B b ⊆ B a ⊆ G .

he agent can deploy a relay node or sensor node at any location x

t visits if x ∈ V a , and we will denote by V n the set of newly added

odes. We assume the starting location of the agent is at L ∈ I v . 

The repair problem is to follow a path P through the grid, with-

ut visiting any location in B a , deploying nodes at locations V n 

uch that in the graph ( V A ∪ V n , C a ), all elements of τ have a com-

unication path to a node in I v . The cost of a plan is evaluated as

i) the number of nodes to be deployed (| V n |), and (ii) the length of

he path P . However, given the unknown damage, any initial plan

s likely to be either infeasible or inefficient, and so while execut-

ng it, the agent must sense its environment, update its knowledge

nd then modify the plan. The agent can probe 2 the accessibility of

ts neighbouring squares up to a distance of d , but cannot probe a

quare if there is a blocked square in between. The agent is able to

est a radio link by listening for transmission from an active node,

p to a distance of R , and can transmit to the same range. When

he agent discovers a new live node, it will also be told all of that

ode’s live connected subgraph. We assume there is no cost for lis-

ening for transmissions. The total cost of the final executed repair

an then be measured as (i) the number of deployed nodes, and

ii) the sum of the movement costs, the probe costs and the node

osts. Fig. 1 shows an illustrative example of the representation. 

. Representing the agent 

The agent has full knowledge of the environment before dam-

ge, obtained from earlier site surveys and network data, but must

uild its knowledge of what remains after damage as it executes

ts repair, and so it must distinguish between objects (locations,

adio links, etc.) that are known to be active, those that are known

o be damaged, and those that have not been verified. We assume

he agent will use its prior knowledge of the map for reference in

lanning, but it must discover if there is any change in the radio

nd the physical environments. 

The agent classifies grid locations for radio nodes into four

lasses: 

• N a , locations known to have an active radio; 

• N f , locations known to be feasible for placing a radio; 

• N i , locations known to be infeasible for placing radios; and 

• N u , locations whose condition is otherwise unknown. 

Initially, N a = I v , N f = I v , N i = G − V b , and N u = V b − I v . 
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Fig. 1. Example of the network conditions. 
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• E f , links known to be feasible for radio communication; 

• E i , links known to be impossible for radio communication; and 

• E u , links whose condition is otherwise unknown. 

Initially, E f = I c , E i = {{ x, y } : { x, y } / ∈ C b } , and E u = C b − I c . 

Locations are classified for accessibility as follows: 

• S f , locations known to be accessible; 

• S b , locations known to be blocked; and 

• S u , locations whose condition is otherwise unknown. 

Initially, S f = L (the initial location of the agent), S b = B b , and

 u = (G − B b ) − { L } . 
World states consist of the post-damage conditions V A , V n , C a ,

nd B a , and a single instance of the predicate at ( x ) representing the

ocation of the agent. As the agent executes a plan, it will update

ts knowledge, and should ensure that N f ⊆ V a , N a ⊆ V A ∪ V n , E f ⊆
 a , and S f ⊆ G − B a . 

The agent has five possible actions, described below. We base

ur representation of the actions on the STRIPS-style rules widely

sed throughout the AI planning literature [57–59] , but we extend

he rules to allow parametrised actions and arbitrary procedures

o represent changes to the agents knowledge structures. The rule

re-conditions, PRE, list the conditions that must be satisfied in

he world state for the action to be applied. The delete list, DEL,

escribes which facts are no longer true after the action completes,

nd the add list, ADD, describes the new facts which become true

fter the action complete. The extra procedures, PROC, specify how

o update the agent’s knowledge after the action. 

1. MOVE( u, v ): move from square u to square v ; 
PRE: at( u ) ∧ neighbour( u, v ) ∧ v / ∈ B a ; 

DEL: at( u ); 

ADD: at( v ); 
DESCRIPTION: The agent must be at u at the start, which has a

neighbour v that is not blocked. After moving, the agent is no

longer at u but now at v . 
2. LISTEN( u ): listen for radio signals at u ; 

PRE: at( u ); 

PROC: ( μ, ε) ← listen(); //listen() reports live nodes and links 
N a ← N a ∪ μ; // any new overheard nodes are active 

N f ← N f ∪ μ; // and now known to be in feasible locations 

N u ← N u − μ; 

E f ← E f ∪ ε; //similarly for links 

E u ← E u − ε; 

if ((x ∈ N a || x = u )&& y ∈ N a && { x, y } / ∈ E u ) 

then E i ← E i ∪ {{ x , y }}; //deduce blocked links 

DESCRIPTION: The agent is at location u and tries to listen to

any signal from surroundings. The onboard radio will report to

the agent the surrounding live nodes in μ and radio links in

ε. If there is any new discovered live nodes in μ and/or radio

links in ε, then the agent will update the related lists above.

After the update, if there is no reported links for two known

active nodes, we can deduce that the communication link be-

tween the two nodes is impossible, i.e. blocked link due to ob-

stacles or out of range communication. 

3. DROP(u): drop a node at u; 

PRE: at(u); 

PROC: if ( u ∈ V a ) then V n ← { u }; 

N a ← N a ∪ { u }; 

DESCRIPTION: If the agent is at location u where u is a can-

didate location after damage, then the agent will drop a new

node at u and update this location into the newly added node

list V n and the active radio node list N a . 

4. PROBE(u,v): probe square v from u; 

PRE: at(u); 

PROC: if (p(u,v) == T) // T if v in range and free 

then S u ← S u − { v }; S f ← S f ∪ { v } ; 
else if (p( u, v ) == F) // F if v in range but blocked 

then S u ← S u − { v }; S b ← S b ∪ { v } ; 
//p(u,v) reports ? if v not in range 

DESCRIPTION: The agent is at location u and tries to probe

square v to see if location v is accessible or not. If v is in range

and accessible, then remove this location from the set of un-

known locations S u and add it into the set of accessible loca-

tions S f ; otherwise, add it into the set of blocked/inaccessible

locations S b . If v is not in range, then no information is updated.

5. INSPECT( u ): check if u can take a radio node; 
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(d) The agent places new node at
location (7,0) to reconnect
terminal (9,3) and replans

Fig. 2. Example of the agent’s view as it executes actions. 
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3 An alternative approach, not considered here, would be to use planning under 

uncertainty, and to select plans which minimise the expected cost. 
PRE: at( u ); 

PROC: if (insp( u ) == T) // T if u ∈ V a 

then N u ← N u − { u }; N f ← N f ∪ { u } ; 
else N u ← N u − { u }; N i ← N i ∪ { u } ; 
DESCRIPTION: The agent must be at location u . If location u is

feasible, then remove this location from the set of unknown lo-

cations N u and add it into the set of feasible locations N f . 

Fig. 2 shows (a) an initial plan to reconnect the terminal at the

location (9,3), (b) execution of the first two movement steps, (c)

the updated knowledge after listening for radio communication,

and (d) the placement of a new node. 

The initial plan (a) is as follows: LISTEN((5,0)); PROBE

((6,0)); MOVE((5,0),(6,0)); PROBE((7,0)); MOVE((6,0),(7,0)); LIS-

TEN((7,0)); INSPECT((7,0)); DROP((7,0)); PROBE((8,0)); MOVE((7,0),

(8,0)); PROBE((9,0)); MOVE((8,0), (9,0)); PROBE((9,1)); MOVE((9,0),

(9,1)); PROBE((9,2)); MOVE((9,1), (9,2)); PROBE((9,3)); MOVE((9,2),

(9,3)); LISTEN((9,3)); INSPECT((9,3)); DROP((9,3)); 

However, (b,c), when the agent executes the plan, it will dis-

cover changes to the environment: 

LISTEN((5,0)); 

PROBE((6,0)); with S f ← {(5, 0), (6, 0)}, 

MOVE((5,0),(6,0)); 

PROBE((7,0)); with S f ← {(5, 0), (6, 0), (7, 0)}, 

MOVE((6,0),(7,0)); 

LISTEN((7,0)); with N f = N a ← { (5 , 0) , (9 , 3) , (8 , 6) } ,
N u ← N u { (9 , 3) , (8 , 6) } 

INSPECT((7,0)); with N f ← {(5, 0), (9, 3), (8, 6), (7, 0)}, N u ←
N u {(7, 0)} 

DROP((7,0)); with N a ← {(5, 0), (9, 3), (8, 6), (7, 0)} 

At this point, where the agent reaches location (7,0), it listens

on its radio and hears the messages from surviving node at loca-

tion (9,3) which is also connected with another surviving node at
ocation (8,6). The agent will update the knowledge it has learned.

he agent revises its plan and (d) drops a new node at location

7,0). This reconnects the terminal at location (9,3), and completes

ts first task. The agent then repeats the process to reconnect other

erminals. 

. Approach 

In this paper, the agent starts by assuming some elements of

he unknown sets are available, based on the pre-damage environ-

ent, and then replans when errors are discovered. 3 We assume,

ntil we discover otherwise, that all squares that were not blocked

efore damage remain unblocked and that all feasible radio links

emain feasible, but that all previously existing radio nodes that

re not reporting after damage have been lost. That means the

gent will plan using grid squares in S f ∪ S u , feasible radio locations

 f ∪ N u , feasible radio links E f ∪ E u , and live radio nodes N a . When

xecuting a plan, the agent will insert LISTEN actions at each step,

ill PROBE immediately before trying to move to a new square,

nd will INSPECT immediately before dropping a node. When it

iscovers knowledge that renders its current plan infeasible or

hanges its cost significantly, it will update its plan and continue. A

lan for the agent will be represented on two levels. At the higher

evel, we have an unordered set of locations in which we intend

o visit to place a node. At the lower level, we have selected one

f these locations, and we have a detailed path plan for moving

here. 

We consider two focuses for the agent. In the greedy or local

ocus (L), the agent considers one terminal at a time, i.e. it picks a

ingle terminal to connect, generates a plan, executes it, and then

elects the next terminal until all terminals are connected. In the
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Fig. 3. Flow chart for the agent planning. 
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r  
lobal focus (G), the agent generates a plan for reconnecting all

erminals before it begins to execute the plan. For each focus, we

onsider two strategies for solving the problem: prioritising node

ost (N) and prioritising path cost (P). The node strategy prefers

lans that require few nodes and then finds cheap paths for visit-

ng those locations. The path strategy prioritises mobility cost, and

refers cheap paths that would allow the agent to restore connec-

ivity. In all cases, the process is iterative. The first plan is gener-

ted based on the pre-damage map. As the agent starts to move

hrough the environment, it discovers information about mobil-

ty and connectivity, and updates its knowledge. When the current

lan is considered too expensive or infeasible, a new plan is gener-

ted, and the process repeats. For the replanning, we also consider

wo methods. The repair method (f) keeps its target terminal, but

ries to repair its immediate plan for reconnecting it. For the repair

ethods in local focus, the agent always keeps the current target

ut updates new plans when it discovers new knowledge. How-

ver, in the globally focused repairing methods, the agent only re-

lans when a cost threshold is exceeded. This strategy is proposed

ecause in general, the time to recompute the plans in local fo-

us is faster than that in global focus. The replan method (c) may

hange its target terminal as soon as it discovers any significant

hange in the environment, and thus replans each time. The over-

ll approach is shown in Fig. 3 . 

Algorithm 1: Local Node (L-N- ∗- ∗) Algorithm. 

1 find t ∈ τ , the terminal requires least node cost to connect 

to the network 

2 find N, the set of required nodes to reconnect t 

3 find P , the cheapest path to the nearest node in N 

4 return (N, P ) 

.1. Local focus 

This focus is based on the belief that the knowledge will change

ignificantly as we explore, and so it is futile to spend time gener-

ting a complete plan which will almost certainly change. Instead,

t takes a greedy approach, picking the best terminal to reconnect

rst. Once it has connected that terminal (or discovered signif-

cant changes), it will move on and consider a second terminal.

here are two important questions: first, how to select the termi-

al which offers the cheapest path in a reasonable time; and sec-

nd, what should the agent do if it discovers new knowledge while

onnecting a target terminal, whether it continues to reconnect

hat terminal or generate a new plan which might change the tar-

et terminal. To evaluate the approach, we propose a set of greedy

lgorithms, for each of the variants above: node or path priority,

nd repair or replan. For each of the four configurations (L-N-f, L-

-c, L-P-f, L-P-c), we consider a number of different heuristics for

aking the choice of node location and path. 
The generic local focus and node priority algorithm (L-N- ∗- ∗)

s shown in Algorithm 1 . For selecting which terminal to connect

ext, based on the node cost, we have two different heuristics: the

rst heuristic is to estimate the number of nodes from a termi-

al to the connected network based on Manhattan distance (L-N-

-MD), and the second is to calculate the optimal number of nodes

or fewest nodes) from a terminal to the connected network (L-N-

-FN). For L-N- ∗-FN, the agent first builds a directed weighted con-

ectivity graph. Each candidate location will be a vertex, with con-

ected components merged into supernodes. Each potential link

ill be represented by two directed edges. An edge connecting a

ive node to a candidate location will have cost 1, while an edge in

he other direction has cost 0. The agent then runs Dijkstra’s algo-

ithm to find the cheapest path from the current network to each

erminal, where the cheapest path will be the one with fewest

dditional nodes. The agent then selects the terminal which re-

uires the fewest nodes. At each stage, the agent finds a path to

he closest one of these nodes using D 

∗ Lite [60] , which allows us

o efficiently integrate new accessibility knowledge into the path

lanning. As above, if the agent discovers information that changes

he node costs (live nodes found, broken links in the current node

lan), it recomputes. 

Algorithm 2: Local Path (L-P- ∗- ∗) Algorithm. 

1 find t ∈ τ , the closest terminal to the agent 

2 find N, the set of required nodes to reconnect t 

3 find P , the cheapest path to the nearest node in N 

4 return (N, P ) 

The generic local focus and path priority algorithm (L-P- ∗- ∗) is

hown in Algorithm 2 . We have three different heuristics for se-

ecting a target terminal, based on Manhattan distance (L-P- ∗-MD),

hortest distance between the terminal and the agent’s location

L-P- ∗-SD) calculated using D 

∗ Lite, or shortest connectivity path

o reconnect the terminal to the current network starting from

he agent’s location (L-P- ∗-SCP). For L-P- ∗-SCP, in order to find the

heapest connectivity path for a terminal t , we first find all critical

odes for the current built-up network ( N ) and the terminal t . The

ritical nodes for N are candidate locations which directly have po-

ential radio links to at least one node in N (node a , b , c in Fig. 4 .

here are two cases in finding critical nodes for t . The first case

left figure) is where the terminal is a location without any exist-

ng live node. In this case, the critical node for t is t itself and we

ave to place a new node in the location of t . The second case is

hen t has an existing live node or it is in a connected component,

he critical nodes for t will be all candidate locations which have

irectly potential radio links to any node in that component (node

 and e - right figure). 

Now, we find all different combinations to travel from L to t

ased on D 

∗ Lite [60] , i.e. 6 and 12 different choices in case 1 and

ase 2 for the scenario in Fig. 4 , respectively. We then select the

ath which has the lowest mobility cost to travel from L to t . We

o the same computation for all the unconnected terminals and

hen select the terminal which requires the lowest mobility cost as

he new target terminal to reconnect. This heuristic requires signif-

cant computation time, but should be balanced by improved mo-

ility cost. As before, for each algorithm, the agent will repair or

eplan as appropriate when it discovers significant changes. 

Fig. 5 summarises the classification of the algorithms for the

ocal focus, as described in Table 3 . 

.2. Global focus 

This focus attempts to plan ahead, selecting the first terminal to

econnect based on the expected cost of completing the connection
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Fig. 4. Two cases in L-P- ∗-SCP: (a) terminal with an existing live node, (b) terminal with no existing live node. 
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Fig. 5. A classification of the local focus algorithms. 

Table 3 

Summary of locally focused algorithms. L: local; N: node; P: path; f: fixed 

terminal; c: change terminal; MD: Manhattan distance; SD: shortest dis- 

tance; SCP: shortest cheapest path; FN: fewest node. 

Algorithm Description 

L-N-c-MD Manhattan distance for finding the closest terminal 

to the network to estimate the terminal which 

requires fewest number of nodes to the network, 

with D ∗lite for the search-while-moving part, 

change the target terminal if cost might change. 

L-N-c-FN Fewest nodes for finding the closest terminal to the 

network, with D ∗lite for search-while-moving, 

change the target terminal if cost might change. 

L-N-f-MD Same as L-N-c-MD but fix the target terminal until it 

is connected 

L-N-f-FN Same as L-N-c-FN but fix the target terminal until it 

is connected 

L-P-c-MD Manhattan distance for finding the closest terminal 

to the agent, with D ∗lite for the 

search-while-moving part, change the target 

terminal if cost might change. 

L-P-c-SD Shortest-path-in-grid for finding the closest terminal 

to the agent, with D ∗lite for search-while-moving, 

change the target terminal if cost might change. 

L-P-c-SCP Shortest-connectivity-path for finding the closest 

terminal to the agent, with D ∗lite for 

search-while-moving, change the target terminal if 

cost might change. 

L-P-f-MD Same as L-P-c-MD but fix the target terminal until it 

is connected 

L-P-f-SD Same as L-P-c-SD but fix the target terminal until it 

is connected 

L-P-f-SCP Same as L-P-c-SCP but fix the target terminal until it 

is connected 

 

 

 

 

 

A  

h

 

a  

m  

m  

s  

p  

t  

s  

h

 

i  

n  

e  

c  

w  

t  

n  

w  

a  

f  

c  

w  

t  

r  

t  
to all the other terminals. The motivation is that the overall plan

will be cheaper, and that this might outweigh the cost incurred

by recovering from newly discovered damage. As before, the plan

will be represented on two levels. At the higher level, we have an

unordered set of locations that we intend to visit to drop a node.
t the lower level, we have selected one of these locations, and we

ave a detailed path plan for moving there. 

Note that the underlying problems, even when there is no dam-

ge, are computationally hard. The task of finding in a graph a

inimal set of nodes which connect a terminal set is the mini-

al Steiner tree in graphs problem, and is NP-hard [61] . Given a

et of nodes in a mobility graph, the task of finding a minimal

ath through the graph that visits each selected node reduces to

he TSP [62] on a metric closure graph, built by finding all-pairs

hortest paths for the selected nodes. Therefore, we again consider

euristic approaches for generating the full plans. 

The generic global focus and node priority algorithm (G-N- ∗)

Algorithm 3: Global Node (G-N- ∗) Algorithm. 

1 find D , the directed weighted connectivity graph 

2 find N, the Steiner nodes in D 

3 find P , the cheapest path to the nearest node in N 

4 return (N, P ) 

s shown in Algorithm 3 . The aim is to find the smallest set of

odes which reconnects all terminals, and then to find the short-

st path to visit them. We first construct a directed weighted

onnectivity graph. Each candidate location ( N f ∪ N u ) is a vertex,

ith connected components merged into supernodes. Each po-

ential link is represented by two directed edges. An edge con-

ecting a live node to a candidate location will have cost 1,

hile an edge in the other direction has cost 0. Fig. 6 shows

n illustrative example of extracting a directed connectivity graph

rom a current map. The agent then finds a Steiner node set N

onnecting all terminals using Steiner-MST [63] on that directed

eighted connectivity graph. The weights ensure that the heuris-

ic algorithm prefers to bring existing live nodes into the tree

ather than new candidate nodes. We use D 

∗ Lite to compute

he cheapest mobility path [60] and then select the Steiner node
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Fig. 6. Example of a directed weighted connectivity graph extracted from a current map. 
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ith the shortest path (the nearest Steiner node) to our current

ocation. 

New knowledge that would change the estimated cost of the

lan or render it infeasible are: (i) a blocked square on the path

o the selected location, (ii) an expected radio link is not pos-

ible, (iii) a location is not suitable for dropping a node, or (iv)

he existence of a surviving connected sub-network. Full replan-

ing (G-N-c), however, is expensive, since we may have to recom-

ute the directed weighted connectivity graph, and then re-run the

teiner MST heuristic. In particular, limited changes of type (iv) for

 small surviving component, are unlikely to affect the cost sig-

ificantly. Therefore, as well as full replanning, we also consider

epairing (G-N-f), in which for case (iv) we use D 

∗ Lite to con-

inue searching for the current target, until we discover β new

urviving nodes, which triggers full replanning. Changes of type (i)

o not affect the node cost, therefore we do not need to recom-

ute the Steiner nodes either in full replanning or repairing when

e discover blocked squares, unless we have established that the

ode is not reachable. In all cases, options (ii) and (iii) trigger full

eplanning. 

The generic global focus and path priority algorithm (G-L- ∗) is

hown in Algorithm 4 . The aim is to find a set of locations which

an be visited by a short path, and for which nodes would recon-

ect the terminals. We first build a weighted connectivity graph,

ugmenting each link in E f ∪ E u with the cost of the cheapest mo-

ility path between the two locations. Again, we use D 

∗ Lite to

ompute the cheapest mobility path, since we expect to compute

hese paths many times as we discover blocked locations. In the

Algorithm 4: Global Path (G-P- ∗) Algorithm. 

1 find W , the weighted connectivity graph, using D* Lite 

2 find N, the Steiner nodes in W , using Steiner-MST 

3 find P , the cheapest path to the nearest node in N 

4 return (N, P ) 

eighted connectivity graph, we then search for a low-cost Steiner

ree. We use the Steiner-MST heuristic [63] to find a set of nodes

hich connects all unconnected terminals to the network. We then

elect the closest node to our current location, using D 

∗ Lite. Fig. 7

s an illustrative example of building a weighted connectivity graph

nd finding a Steiner tree which spans all the terminals. 

Again, when we discover knowledge that changes the cost of

he plan, we revise the plan. We consider the same triggers for

ull replanning (G-P-c) and repairing (G-P-f) as above, except that

hange of type (i) would change the path cost. Therefore, in this

ase of (i) the full replanning will restart the plan with new knowl-
dge while the repairing uses D 

∗ Lite to continue searching for

he current target, until the expected total path length exceeds the

riginal path length by γ steps, which triggers full replanning. 

The classification of the global focus algorithms is shown in

ig. 8 . 

.3. The adapted DORMS approach 

We were unable to find an approach in the literature which

ould be applied to our problem without significant changes. As

ummarised in Section 2 , previous approaches have tended to as-

ume uniform radio propagation, and free space for movement,

nd the approaches concentrate on the number of nodes required

o make the repair. Some papers do consider physical obstacles for

he path planning, but assume full knowledge of the physical and

adio environment, and so it is difficult to find a baseline algorithm

o compare against without significantly altering the algorithm. We

ave selected the DORMS approach [20] for our comparison, since

t has a clear design principle which can be adapted to the new

nvironment. DORMS tries to re-connect network partitions to a

entral point and then perturbs the solution to reduce the number

f additional nodes needed. However, DORMS assumes free space

or mobility, and so the mobility paths are simply straight lines.

herefore, we have adapted the original DORMS, maintaining the

riginal idea of finding a central point from which to reconnect the

arious partitions, based on Steiner trees in the graph overlaid on

he physical environment. We try to use the same algorithms and

ubroutines as in our own heuristic algorithms, in order to give a

air comparison. 

In our adaptation, we select a location which is closest to the

entre of the area. We use D 

∗ Lite to find the shortest path from

ach terminal to that centre location in the connectivity graph.

ig. 9 shows an example of the adapted DORMS reconnecting all

erminals to a central point (5,5) of the grid. Then for each pair of

djacent terminals, we find a graph which contains all nodes and

dges in the current map which are in the smallest area bounded

y the two connectivity paths to the centre. Then we find a Steiner

inimal tree in that graph which spans the two terminals and the

entre location. After finding all Steiner minimal trees for all pair

f adjacent terminals, each terminal is now part of two separate

rees formed with its neighbours, and the algorithm chooses the

rees which require the fewest additional nodes. We then select

he closest Steiner node to our current location, using D 

∗ Lite.

s before, when the agent discovers new information that would

hange the cost, it recomputes, and continues from its current

ocation. 
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(a) A weighted connectivity
graph in a grid
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(b) A Steiner tree (red dotted lines)
in the weighted connectivity graph

Fig. 7. Example of a weighted connectivity graph and a Steiner tree spanning all terminals. 
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Fig. 8. The classification of the global focus algorithms. 
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Fig. 9. Example of adapted DORMS. A node plan (red lines) connecting all terminals 

to a central point (5,5). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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4 Chosen to lie well within the maximum range of the popular TmoteSky sensor 

node [64] . 
6. Experiments 

We now evaluate our algorithms empirically on randomly gen-

erated sensor fields and environments, to compare the quality of

solutions and the run times of the different algorithm variants. Our

aim is to determine the trade-offs between the different algorithm

variants, and to assess which particular configurations of focus, pri-

ority, planning and heuristic are most suited to different problem

characteristics. Note that we are evaluating the repair algorithms

rather than any network protocols, and so we use a custom Java

simulation of the sensor field, rather than a network simulator. 

We assume a pre-damage grid map consisting of n × n squares

representing a 30 0 m × 30 0 m area. We randomly select c grid

squares to be candidate locations, assigning a random location

within the square, and g squares to be blocked. For each pair of
andidate locations separated by less than 60 m, 4 we allow a po-

ential radio link with probability 0.85 (to simulate the RF prop-

gation effects). For the map after damage, we randomly select

 of the candidate locations to be live nodes, and select t can-

idate locations to be terminals (the locations for which we re-

uire sensor data). We randomly pick an additional b % of the to-

al squares to be blocked due to the damage, and we remove r %

f the radio links. We ensure the problems are feasible—i.e. that

here is a set of reachable locations for which nodes would recon-

ect all terminals—by screening for infeasibility and re-generating

f required. In each case, the algorithms only probe a square that

he agent intends to move into. For setting up the values for the

ost threshold β and the live node threshold γ in the globally fo-

used repairing method (G-P/N-f) ( Section 5.2 ), we note that G-P-f

riggers replanning when the agent finds at least β surviving nodes

nd the expected total path length exceeds the original path length

y γ steps, and G-N-f only triggers replanning when it finds at

east β surviving nodes. If the values are too high, then the agent

arely changes the current plans. This may cause extremely high

osts in repairing. However, if the values are too small, it is sensi-

ive to the changes in the network and environments, and thus up-

ates the plans frequently. There is a tradeoff between the time to

epair and the node/path costs. We have tried different values for

hese thresholds and the selected values of β = 4 and γ = 3 are

ompetitive compared to the local heuristics. In all experiments,

e create a = 15 live nodes and the results are the average of 50

uns at each data point. We have tried different values for the pa-

ameters above and different grid sizes, etc. in the experiment, and
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Table 4 

Experiment setup. 

Vary Candidates Terminals Damage levels Grid granularity 

50,100,150 5,10,15 〈 10%, 10% 〉 45 × 45, 150 × 150, 

〈 20%, 20% 〉 200 × 200, 300 × 300 

〈 30%, 30% 〉 
Existing live nodes 15 15 15 15 

Terminals 5 – 5 5 

Candidates – 100 100 100 

Block 90 90 90 90 

Links 9 squares 9 squares 9 squares 9 squares 

More blocks 10% 10% – 20% 

Removed links 10% 10% – 20% 

Grid size 45 × 45 45 × 45 45 × 45 –

Number of live nodes—α 15 15 15 15 

Cost threshold—β 4 4 4 4 

Live node threshold—γ 3 3 3 3 
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Table 5 

Local focus, area 45 × 45, five terminals, 

damage level 〈 b = 10%, r = 10% 〉 : Runtime 

(s) vs. number of candidate locations. 

50 100 150 

L-N-c-FN 0 .24 2 .18 34 .75 

L-N-f-MD 0 .07 0 .48 5 .80 

L-N-f-FN 0 .16 1 .28 19 .08 

L-P-c-MD 0 .13 0 .65 7 .09 

L-P-c-SCP 1 .99 15 .28 92 .90 

L-P-f-SCP 1 .57 6 .86 31 .14 

dorms-AD 0 .20 0 .99 10 .92 
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e received the same relative performance for our algorithms and

euristics. 

A summary of the experiments is in Table 4 . We study the ef-

ects of different numbers of candidate locations, different num-

ers of terminals and different levels of damage. We compare

ur heuristic algorithms to the adapted DORMS algorithm in

lgorithm 5 . We present the experimental results in three sections:

ocal focus, global focus, and agent speed. 

Algorithm 5: Adapted DORMS Algorithm. 

Result : N: node plan; P : path plan. 

1 while there are unconnected terminals do 

2 centre = Find_Centre_Location() 

3 for each t ∈ τ do 

4 p t = Short est _ C onnect i v it y _ Path (t , cent re, G C ) 

5 for each t ∈ τ do 

6 ta = F ind _ adjacent _ terminal(t) 

7 G 

′ = bound ed _ graph (p t , p t a, centre, G C ) 

8 T t = Steiner M 

inimal T ree (t, ta, centre ) 

9 while any t ∈ τ is not in L do 

10 T = F ind _ Smal l est _ t ree _ f or _ t () 

11 Add T into L 

12 find P , the cheapest path to the nearest node in N 

.1. Local focus 

Relative performance of the locally focused heuristics 

We first evaluate the relative performance of all the local focus

lgorithms on a standard problem type, with c = 100 candidates,

 = 5 terminals, the damage level set to ( b = 10% , r = 10% ) and the

rid dimensions at 45 × 45. 

For the path priority algorithms (L-P- ∗- ∗) ( Fig. 10 ), the MD and

D heuristics are almost identical. In addition, there is negligible

ifference between the c (replan) and f (repair) versions of MD/SD,

nd so for the remainder of the paper, unless there is a reason to

how a specific algorithm’s result, we show the results of L-P-c-

D algorithm to represent the four L-P- ∗-MD/SD. 5 We also note

he difference in runtime for L-P-c-SCP and L-P-f-SCP, and so we

etain both. 

For the node priority algorithms ( Fig. 11 ), L-N-c-MD has sim-

lar results to L-N-f-MD, and so we will omit the c variant. The
5 Although we omit the results, we have run the same set of experiments for 

ll algorithms, and can confirm that the omitted results are consistent with this 

nalysis. 

n  

a  

l  

i  
N heuristic improves on the MD heuristic for node costs, but is

oorer in mobility cost. Again, for the FN heuristic, there is some

ariation between the c and f versions, and so we will retain L-N-

-MD, L-N-c-FN and L-N-f-FN for further analysis. 

The relative performance of the selected locally focused heuris-

ics, and Dorms-AD is shown in Fig. 12 . Dorms-AD is significantly

oorer than the other algorithms in node cost, while the path pri-

rity algorithm are surprisingly competitive in node costs. For mo-

ility cost, the MD heuristic with node priority is also surpris-

ngly competitive. There is a small variation between the c and

 versions for L-N- ∗-FN and L-P- ∗-SCP, and the c versions pro-

uces marginally better results in the best performing algorithms

or each cost factor. However, in terms of runtime, the replanning

ethods are clearly slower, and this may outweigh the gains from

ull replanning. We note that Dorms-AD is significantly faster than

he SCP heuristic, but is still dominated by the L-N-f-MD algorithm.

n summary, L-N-c-FN is the top algorithm in node cost and L-P-c-

CP is the top algorithm in mobility cost, although L-P-f-SCP may

e a better choice because of the lower runtime. 

Varying the number of candidates 

We now consider the impact of varying numbers of candidate

ocations for nodes. We fix the size of the grid at 45 × 45, vary

 , the number of candidates, from 50 to 150, and fix the number

f terminals, t , to 5 and the damage level to (b = 10% , r = 10%) .

s connectivity is dependent on the distance, packing more nodes

nto a space increases the density of the connectivity graph. We

xpect this to improve the solution costs, but at the expense of

untime. The results are shown in Fig. 13 and Table 5 . 

The first thing to note is that for most algorithms, the solution

ost increases as the number of candidate locations increase. We

elieve this is an artefact of the experimental setup—although the

umber of candidate locations increases, the number of live nodes

fter damage does not increase, and the random placement of the

ive nodes is thus less constrained. This appears to allow, in some

nstance, clustering of the live nodes away from the terminal lo-
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Path−based heuristics in local focus, area 45x45: 100 candidates, 5 terminals, damage level <b=10%, r=10%>
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Fig. 10. Path-based heuristics in local focus, area 45 × 45: 100 candidates, five terminals, damage level 〈 b = 10%, r = 10% 〉 . 

Node−based heuristics in local focus, area 45x45: 100 candidates, 5 terminals, damage level <b=10%, r=10%>
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Fig. 11. Node-based heuristics in local focus, area 45 × 45: 100 candidates, five terminals, damage level 〈 b = 10%, r = 10% 〉 . 
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Fig. 12. Local focus, area 45 × 45: 100 candidates, five terminals, damage level 〈 b = 10%, r = 10% 〉 . 
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cations, and so requiring longer connectivity paths. The algorithm

that specifically prioritise the fewest number of nodes (L-N-f-FN)

is the only one to show reducing node costs. For mobility cost, L-

P-c-SCP shows the strongest improvement, with its more complex

heuristic and full replanning able to exploit the greater opportu-

nities to place nodes. Thus for both cost measures, the algorithms

that gave the best results show higher relative performance when
e increase the candidate locations. The runtime for all algorithms

ncreases significantly with the increasing number of candidates. 

Varying the number of terminals 

Next, we vary the number of terminals, from 5 to 15, and fix

he number of candidate locations, c , to 100 and the damage level

o (b = 10% , r = 10%) . In this setting, as expected, all the costs in-
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Local focus, area 45x45, 100 candidates, 5 terminals: varying number damage level
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Fig. 14. Local focus, area 45 × 45, 100 candidates, five terminals: varying damage levels. 

Local focus, 100 candidates, 5 terminals, damage level <b=10%, r=10%>: varying grids
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Table 6 

Local focus, 100 candidates, five terminals, damage level 〈 b = 10%, 

r = 10% 〉 : runtime (s) vs. grid granularity levels. 

45 × 45 150 × 150 200 × 200 300 × 300 

L-N-c-FN 2 .56 45 .13 122 .39 598 .19 

L-P-c-SCP 29 .11 37 .98 72 .96 314 .25 
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rease, more or less scaling linearly, with the increasing number of

erminals to be connected, and so the results are omitted. 

Varying the damage level 

We now vary the damage level ( b , r ) from (10%, 10%) to (30%,

0%), fixing the grid at 45 × 45, candidate locations at 100 and

umber of terminals at 5, creating problems in which the agent

s expected to revise its plans more often. The results are shown

n Fig. 14 where the top heuristics in node cost (L-N-c-FN) and

n path cost (L-P-c-SCP) are presented. We also compare these

op heuristics with their counterparts for different planning tech-

iques (L-N-f-FN and L-P-f-SCP respectively). As the damage level

ncreases, we expect the node and mobility costs to rise, as more

odes and longer paths are need to reconnect. However, from dam-

ge level 〈 20%, 20% 〉 to 〈 30%, 30% 〉 , the node costs for both heuris-

ics are similar. We believe this is due to the fixed size of the area,

nd so feasible problems for high damage tend to require simi-

ar numbers of nodes. The mobility costs are rising as the damage

ncreases—the number of candidate locations decreases, and there

re more obstacles blocking the route—and the lack of knowledge

f the true mobility problem causes the cost to increase. For both

ode and mobility costs, the replanning method (c) continues to

roduce better quality solutions. 

Varying the grid granularity 

We note that the representation of the physical area may have

n impact on the results—smaller grid squares allow a more finely

etailed model of physical obstacles, and may enable paths to be

ound that are effectively hidden by less finely grained representa-

ion, but increasing the number of grid squares is likely to increase

omputation time. To assess the impact of this, we vary the granu-

arity of the grid. First, we generate a problem for a 300 m × 300

 area with a 45 × 45 grid (square size 6.66 m), 100 candidate

ocations, five terminals, and damage level (20%, 20%). We then

x the physical locations for candidates, terminals, and blocked
quares. We also fix the radio links before and after damage for

hose candidate locations. We model the area using finer grids of

50 × 150, 200 × 200 and 300 × 300 with the square size of 2 m,

.5 m and 1 m respectively. The results are shown in Fig. 15 and

able 6 . Note that we now plot path distance for the mobility cost

nstead of simply the number of grid squares. Since all the algo-

ithms behave consistently, we plot just the two algorithms show

he best performance for the two measures. 

As expected, the number of required nodes shows only minor

ariation, since the grid size does not affect the connectivity graph.

he mobility cost reduces noticeably as the grid granularity in-

reases, as the agent is able to find paths between the obstacles.

he runtimes, however, do increase significantly, and have a higher

mpact on the node priority algorithms. 

.2. Global focus 

We now consider the approaches which have a global focus,

nd which select the next terminal to re-connect based on the ex-

ected cost of completing the plan after that. In Fig. 16 , we plot

he node cost, mobility cost and runtime for the four global focus

pproaches, with Dorms-AD for reference, on the standard setup of

00 candidate locations, five terminals, damage level set to 〈 b = 10%,

 = 10% 〉 in a 45 × 45 grid. Each global focus algorithm is plotted

mmediately before the best corresponding local focus approach,
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Global focus with the corresponding local focus approaches, Area 45x45: 100 candidates, 5 terminals, damage level <b=10%, r=10%>
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Fig. 16. Global focus with the corresponding local focus approaches, Area 45 × 45: 100 candidates, five terminals, damage level 〈 b = 10%, r = 10% 〉 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Impact of agent speed on total time to repair (seconds): 100 

candidates, five terminals, 〈 10%, 10% 〉 damage, 45 × 45 grid. 

V = 0.1 m s −1 V = 1.4 m s −1 V = 4 m s −1 

L-N-c-FN 11229 1023 512 

L-N-f-MD 9344 916 494 

L-N-f-FN 10441 988 516 

L-P-c-MD 8601 910 .68 526 .25 

L-P-c-SCP 8098 845 482 

L-P-f-SCP 8538 851 466 

G-N-c 9222 879 462 

G-N-f 9146 916 505 

G-P-c 8511 874 492 

G-P-f 8926 938 539 

dorms-AD 10995 1148 656 
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for comparison. We see that the node costs for the global ap-

proaches are all higher than the corresponding local approaches.

This may appear to be a counter-intuitive result, since the global

focus approach attempts to take a wider view of the problem, and

optimises the plan to reconnect all terminals, rather than greedily

focusing on the first terminal which may incur extra costs when

extended. However, the issue is the need to discover the state of

the environment as we execute the plan. The global approach is

planning with incorrect or incomplete knowledge, and the opti-

misations it makes for later stages in the plan may turn out to

be misguided, and must be revised. Thus both locally focused and

globally focus approaches frequently have to replan after recon-

necting the first terminal, and the local approaches benefit from

having first connected at lower cost. The advantage of more in-

tense optimisation in the global focus is lost. For mobility cost, the

node priority approaches show better performance for the global

approaches, but the path priority approaches follow the same pat-

tern as for the node cost graph. For runtime, there is a clear dif-

ference between the node and path priority approaches. The local

approaches with node priority faster than the global version. The

selected local approaches (L-P- ∗-SCP) with path priority are slower

than the global versions. This is due to the expensive procedure

for computing the shortest path to each terminal, which is recom-

puted each time the agent changes target terminal. 

We omit the graphs and results varying the features in the ex-

perimental set up (number of candidate locations, number of ter-

minals, damage level and grid granularity), since the global focus

patterns are the same as for the locally focused approaches. 

6.3. The impact of agent movement speeds 

The mobility costs in the above analysis are associated only

with the distance travelled. However, for repairing a disconnected

network, one of the most important objectives is the time re-

quired to complete the repair. Total time to repair is influenced

by distance, but also by the movement speed of the agent, the

time to probe for radio messages and obstacles, the time to place

each new node, and the time to plan and replan during execu-

tion. We now consider the impact of movement speed on the time

to repair. We consider three scenarios, one representing a small

robot which moves at 0.1 m s −1 , the second representing a human

walking at average speed 1.4 m s −1 , and the third representing a

larger vehicle moving over rough terrain at 4 m s −1 . For the 45

× 45 grid in the 30 0 m × 30 0 m area, the individual squares are of

size 6 . 6 6 m × 6 . 6 6 m . In each scenario, we assume that it takes the

agent 30 s to position a new node. 

First, we look at the relative performance of all the algorithms

for the standard setup of 100 candidates, five terminals, 〈 10%, 10% 〉
damage level, with the grid size set to 45 × 45. The result is shown
n Table 7 . For the slow moving agent, the path priority approaches

re faster than the node priority approaches, since the path length

ill be dominant, and outweigh the higher runtimes. The local

ath priority algorithms are faster than their global counterparts.

he global node variants are faster than their local counterparts

hich are affected by their higher path costs. At the human av-

rage walking speed, L-P-c-SCP is still the fastest algorithm, al-

hough the relative improvement over the repair method L-P-f-SCP

s less, and the lower runtimes start to benefit. The global node ap-

roaches are now competitive with the global path approaches, as

he path length advantage is less important. For the fast agent, the

lobal node replanning method (G-N-c) has become the fastest, as

he high runtimes for the replanning approach become more sig-

ificant than the improvement in path distance, and as the time

aken to place a new radio node also becomes more significant.

or all three scenarios, Dorms-AD is either the slowest or the sec-

nd slowest algorithm in the table, with the performance getting

elatively poorer as the agent speed increases. This shows the im-

ortance of choosing a quality heuristic that incorporates knowl-

dge of the restrictive physical environment - the fast computation

f Dorms-AD is not enough to balance the higher node and path

osts it generates. 

Since varying the grid granularity had the biggest impact on

untimes, we now show the relationship between total restoring

ime and grid granularity ( Fig. 17 ). The impact of the grid granular-

ty is expected to be high with heavier damage, therefore, we run

his experiment set with damage level of 〈 b = 20%, r = 20% 〉 . Again,

e omit the results of global focus because they produce similar

atterns. With the slow moving agent, the time to repair generally

educes with the finer grids, although starts to increase at the end

ecause of the high runtime. For the human walking speed, the

estoration time is lowest for the middle granularities, for the same

eason as above. The FN heuristic suffers most from this increase,
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Local focus, 100 candidates, 5 terminals, damage level <b=20%, r=20%>: varying grids
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Fig. 17. Local focus, 100 candidates, five terminals, 〈 20%, 20% 〉 damage level: Total restoring time with different mobility grids. 
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s  

a

s its path costs are very high, and it becomes uncompetitive. For

he fast moving the agent, the pattern is similar. We note that the

D heuristic is now starting to outperform the others, its reason-

ble mobility and path costs are combined with the fast runtime. 

. Conclusions 

Wireless Sensor Networks are being deployed in volatile envi-

onments, and thus are subject to damage and must be repaired.

he damage may involve failed nodes or broken links, and may

ause partitions in the network. New sensors or relay nodes must

e placed into the sensor field to reconnect data streams from im-

ortant sensors. However, movement through the field to make the

epair is likely to be constrained, and thus the choice of where to

lace new nodes will be influenced by the cost of moving through

he field to the chosen position. Further, in volatile environments,

t is likely that the physical environment will also be subject to

amage. The knowledge of the repairing agent will thus be incom-

lete: it will be aware of those nodes still connected to the sink,

nd of the location of other nodes before damage, but will not

now which nodes and links have survived beyond the connected

omponent; similarly, it may have a model of the environment be-

ore damage, but will not be aware of changes to the physical en-

ironment that may hinder its access. 

We have defined the new problem of simultaneous network re-

air and exploration, in the presence of unknown physical obsta-

les, in which the repairing agent must discover the damage as it

akes the repair. We have developed an algorithmic framework

hich allows agents to take a greedy or local focus in selecting

he next terminals to reconnect, or a global focus which consid-

rs all target terminals simultaneously when choosing its next tar-

et. We develop algorithms which prioritise the node cost or the

ath cost. For adapting to newly discovered knowledge of the net-

ork and the environment, we allow two variants, one which tries

o repair the sub-plan for reconnecting the current target termi-

al, and one which replans everything as soon as it discovers any

ignificant change. For each possible approach within this frame-

ork, we develop a number of heuristics for generating the plan.

e evaluate our algorithms empirically in a simulated sensor field,

nd we study the effect of varying the parameters of the simula-

ion, including the number of possible locations for placing node,

he number of target terminals, the level of damage to the field,

nd the internal representation of the physical environment. We

easure the quality of our algorithms in terms of total node cost,

otal path length, and runtime. We also consider the total time

o repair, which combines the movement time with the time to

lace new nodes and to compute the plans. For reference we com-

are our algorithms against an adapted version of the Dorms al-

orithm - the Dorms algorithm was originally designed assuming

ree movement through the sensor field, and we adapted it take

ccount of the physical objects in its execution. In almost all of

ur experimental settings, almost all of our approaches outperform
he adapted Dorms in node cost, path cost and total time to repair.

he physical environment is closely interlinked with the radio con-

ectivity problem, and these experiments demonstrate the need to

ake account of the physical environment when planning and ex-

cuting a repair. Our experiments also demonstrate the pitfalls of

remature optimisation when knowledge of the problem is incom-

lete. The algorithms with a global focus do not perform as well

s the algorithms with a greedy local focus. The plans generated

ith the global focus are better for the initial assumptions, but as

he agent discovers changes to those assumptions, it has already

xecuted costly actions, and it costs more to recover the plans to

dapt to the new knowledge. The local approaches, although start-

ng with a short-sighted view of the problem, make less commit-

ent to the initial assumptions, and have incurred less cost when

hey must also replan, and so their final solutions are better. Fur-

her, the experiments quantify the tradeoff between node cost and

ath cost, and measure the impact of the movement speed of the

epairing agent, and thus offer guidance to network repair opera-

ors in selecting a specific strategy. In all cases, the L-N-c-FN algo-

ithm, which used a greedy re-planning approach to prioritise the

ode cost, offers the lowest node cost, and thus algorithms of this

ype should be preferred where node cost dominates. Where the

istance travelled is the important metric, the L-P-c-SCP algorithm,

hich attempts to optimise path length at the same time as plan-

ing the node location, performs best, and algorithms of this type

hould be preferred. For slow moving agents, the path cost domi-

ates, and algorithms which generate the shortest path should be

referred. For fast moving agents, the path cost is less important,

nd the time taken for computation and for placing the node into

he environment start to dominate, and in those cases algorithms

hich prioritise node cost should be preferred. 

There are many areas for future work. We have assumed a

raph-based model where the candidate locations for nodes are

imited. It is likely that in real-world scenarios, the choice of loca-

ion would be less restrictive, and the repairing agent must exper-

ment with small adjustments to the positions. Our approach does

ot consider the quality of the network beyond being connected,

nd future approaches should consider parameters such as latency

nd throughput, and so avoiding long multi-hop connectivity paths

r bottleneck nodes. There is a need to develop distributed algo-

ithms, allowing multiple agents and sensor nodes to collaborate

o determine the damage to the network in large scale problems,

ncluding, for example, UAVs to scan the sensor field and provide

nformation to the repairing agent. 
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