Ad Hoc Networks 33 (2015) 190-208

Contents lists available at ScienceDirect =

m\d Hoc

etworks ‘

Ad Hoc Networks |

journal homepage: www.elsevier.com/locate/adhoc

Multi-objective hierarchical algorithms for restoring Wireless
Sensor Network connectivity in known environments

@ CrossMark

Thuy T. Truong *, Kenneth N. Brown, Cormac J. Sreenan

CTVR, Department of Computer Science, University College Cork, Ireland

ARTICLE INFO

ABSTRACT

Article history:

Received 13 December 2014
Received in revised form 5 May 2015
Accepted 7 May 2015

Available online 15 May 2015

Keywords:

Wireless Sensor Network
Node deployment
Connectivity repair

A Wireless Sensor Network can become partitioned due to node failure, requiring the
deployment of additional relay nodes in order to restore network connectivity. This intro-
duces an optimisation problem involving a tradeoff between the number of additional
nodes that are required and the costs of moving through the sensor field for the purpose
of node placement. This tradeoff is application-dependent, influenced for example by the
relative urgency of network restoration. We propose a family of algorithms based on hier-
archical objectives including complete algorithms and heuristics which integrate network
design with path planning, recognising the impact of obstacles on mobility and communi-
cation. We conduct an empirical evaluation of the algorithms on random connectivity and
mobility graphs, showing their relative performance in terms of node and path costs, and
assessing their execution speeds. Finally, we examine how the relative importance of the
two objectives influences the choice of algorithm. In summary, the algorithms which pri-
oritise the node cost tend to find graphs with fewer nodes, while the algorithm which pri-
oritise the cost of moving find slightly larger solutions but with cheaper mobility costs. The
heuristic algorithms are close to the optimal algorithms in node cost, and higher in mobil-
ity costs. For fast moving agents, the node algorithms are preferred for total restoration
time, and for slow agents, the path algorithms are preferred.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

of interest along with a small number of sink nodes which
gather and process data. Sensors play dual roles: generat-

Wireless Sensor Networks (WSNs) consist of multiple
sensing and relay nodes organised into a cooperative net-
work which communicate with each other using radios,
exchanging information, making joint decisions on net-
work and sensing configurations, and transmitting their
data over multiple hops to one or more sink nodes. The
sink nodes have access to the wider world and are more
powerful than sensor and relay nodes in terms of memory,
power, computation, etc. Many sensor nodes with limited
resources are deployed in the vicinity of the phenomenon

* Corresponding author.
E-mail addresses: t.truong@cs.ucc.ie (T.T. Truong), k.brown@cs.ucc.ie
(K.N. Brown), cjs@cs.ucc.ie (CJ. Sreenan).

http://dx.doi.org/10.1016/j.adhoc.2015.05.005
1570-8705/© 2015 Elsevier B.V. All rights reserved.

ing data and relaying data from other sensors to a sink.
Wireless Sensor Networks have been used widely in
industry, science, transportation, civil infrastructure, and
security. Many applications expose WSNs to danger such
as direct attack in a battlefield or accidental damage from
wildlife and weather, and collapsed buildings. In addition,
sensor nodes have limited power sources, and thus they
can fail due to depleted batteries. Network connectivity
can be significantly degraded upon the loss of just a few
nodes. The loss may partition the network, in which groups
of nodes may only be able to communicate with each
other, with no route to the wider network. This leads to a
longer delay in the messages or a network that no longer
functions due to many nodes being disconnected.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2015.05.005&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2015.05.005
mailto:t.truong@cs.ucc.ie
mailto:k.brown@cs.ucc.ie
mailto:cjs@cs.ucc.ie
http://dx.doi.org/10.1016/j.adhoc.2015.05.005
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208 191

Therefore, to overcome sensor node failure and to restore
network connectivity, network repair should be initiated,
where we must place new nodes in the environment to
restore connectivity to the sink for all sub-partitions. It is
this issue that we consider in this paper.

There are four main subtasks in the problem: (i) deter-
mining what damage has occurred (i.e. which nodes have
failed and what radio links have been blocked); (ii) deter-
mining what changes, if any, have happened to the acces-
sibility of the environment (i.e. what positions can be
reached, and what routes are possible between those posi-
tions); (iii) deciding on the positions for the new radio
nodes; and (iv) planning a route through the environment
to place those nodes. The problem thus involves both
exploration and optimisation, and depending on circum-
stances may require the placement of nodes before the
changes to connectivity and accessibility have been fully
mapped. In this paper, we consider the simpler problem
in which we assume the exploration tasks have already
been completed, and so our aim is to optimise our use of
resources in the static fully observed problem. We assume
possible locations for new radio nodes are limited to a
finite set of positions where a node can be securely placed
and which can be accessed. Physically moving around the
environment may be expensive in energy use, may take
significant time, or may expose the agent placing the nodes
to danger, and thus solutions which allow cheaper path
plans are also preferred. Depending on the application,
either one of the two objectives may be more important:
placing expensive nodes in, for example, agricultural pollu-
tion monitoring favours solutions with fewer nodes, while
restoring connectivity during disaster response favours
solutions that can be deployed quickly even if they require
more nodes. Thus the network repair problem is
multi-objective.

In general, WSN applications require the minimum
number of deployed nodes not only to reduce the node cost
but also to reduce the maintenance cost. Some of these
applications might require a quick recovery, e.g. intrusion
detection, or air pollution monitoring (which monitors
the concentration of dangerous gases), etc. One specific
application where the joint optimisation of connectivity
restoration and route planning could be pursued is the
intrusion detection where a deployed WSN may be
destroyed by intruders or by accidents and new nodes
need to be positioned quickly to restore the system.
Another application could be firefighters search and rescue
in a building, where a deployed WSN was wiped out by a
fire. However, information for evacuation such as fire
spreading and locations of survivors in the building need
to be collected quickly. In these scenarios, the joint optimi-
sation can be pursued to minimise the cost of new posi-
tioning nodes and also the time to repair the network.
Our contribution is the novel problem of simultaneous net-
work connectivity restoration with constrained route plan-
ning, in the presence of obstacles, and the development
and analysis of a family of hierarchical algorithms includ-
ing complete algorithms and heuristic algorithms. We
assume a known connectivity graph which includes all
possible new node locations and existing nodes, and where
the edges indicate that two positions could communicate

with each other. We also assume a mobility graph over
the same set of positions, but where the edges represent
a possible motion path between two positions.

We first consider hierarchical objectives, and propose
two complete algorithms (Optimal Node Algorithm
(N-OPT) and Optimal Path Algorithm (P-OPT)). We then
study an algorithm for finding the Pareto set, which con-
tains all non-dominated solutions - that is, solutions that
improve on all other solutions on at least one of the objec-
tives. Because the runtimes of the complete algorithms are
not very efficient (long runtimes), we propose two heuris-
tic algorithms which prioritise the different objectives:
Shortest Cheapest Path algorithm (SCP) prioritises node
cost and Integrated Path algorithm (IP) prioritises mobility
cost. We evaluate our proposed algorithms on randomly
generated graphs, varying the number of terminals and
the graph density, comparing the node cost and mobility
cost for each algorithm. We also assess the total time for
restoration, incorporating CPU time, movement time and
installation time, for different speeds of agent. We have
found that the SCP algorithm tends to find graphs with
fewer nodes, while the IP algorithm finds slightly larger
solutions but with cheaper mobility costs. The SCP algo-
rithm is significantly faster, particularly on dense graphs.
Both SCP and IP are close to N-OPT in node cost (approxi-
mately one extra node for SCP, and two extra nodes for
IP compared to N-OPT), and higher in mobility costs than
P-OPT (approximately between 16% and 22% for SCP, and
between 10% and 13% for IP). In addition, SCP and IP are
close to the Pareto frontier in node cost but quite far from
the Pareto frontier in mobility cost. We have also found
that the capacity of an agent impacts the choice of heuris-
tics. For fast moving agents, the SCP algorithm is faster in
total restoration time, and for slow speed moving agent,
the IP algorithm will be faster.

In the remainder of the paper, we discuss research
background and some related work, then we introduce
the network repair problem, followed by details of the pro-
posed algorithms. We then describe the experiments and
results, and finish with the conclusions.

2. Background and related work

The wireless communication network and the mobility
problem can be represented as graphs. An undirected
graph G is a pair (V,E), where V is a set of vertices, and E
is a set of edges E = {{x,y} : x € V,y € V}. We can augment
a graph with a cost function, which is normally either a
vertex-weight w : V — N assigning a weight to each vertex,
or an edge-weight c: E — R assigning a weight to each
edge. The vertex-weight of G is then X,.yw(v), while the
edge-weight of G is Z..cc(e). A subgraph S of G is a graph
S=(V',E), where V' CV and E' CE. A path P from vertex
Xo to X, in a graph G is a sequence of oriented edges
((x0,X1), (X1,X2), .- ., (Xn_1,Xn)), Where {x; 1,x;} € E, for each
i from 1 to n. The edge weight of a path P is Z..pc(e). A cir-
cuit is a path in which x,, = xo. A cycle is a circuit in which
Xo(= Xy) is the only vertex that appears twice. A connected
graph is one in which there is a path between every pair of
vertices. A graph is said to be k-connected if it remains con-
nected whenever fewer than k vertices are removed. Given

192 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

a graph G = (V,E), a metric closure graph for a set of ver-
tices V' C V is a complete graph over the nodes in V', where
each edge has a weight equal to the shortest path between
the two endpoints in the original graph.

A tree is a connected graph with no cycles, and a subtree
of a graph is simply a subgraph that is also a tree. For a
graph G = (V,E), a spanning tree is a subtree T = (V,E’) con-
taining all the vertices in V. A graph may have many span-
ning trees. The weight of a tree is just the sum of weights of
its edges. Different trees can have different weights. A min-
imum spanning tree for a given graph is a spanning tree
with minimum weight for the graph.

Given a graph G = (V,E) and a subset of nodes 7 of V
called terminals, a Steiner tree for 7 in G is a subtree
T = (V',E') in which T CV’; equivalently, T is a tree in G
that spans all vertices of 7. The difference between a span-
ning tree and a Steiner tree is that the spanning tree spans
all the vertices in V while the Steiner tree of T spans all ver-
tices in 7. A Steiner minimal tree for a given graph
G = (V,E) and a subset of terminals T CV is a subgraph
of G which is a tree and connects the terminals in T with
minimum weights. The problem of finding a Steiner mini-
mal tree in an edge-weighted graph is NP-hard, and
remains NP-hard even if all edge-costs are equal [1-3]. If
the edge weights are all the same, then the problem is
equivalent to that of finding a minimal vertex-weighted
Steiner tree with equal weights.

2.1. Related work

The subject of network restoration for wireless net-
works has been an active area of research. The different
approaches can be classified as (i) deploying redundant
nodes so as to be able to cope with a pre-determined num-
ber of failures, (ii) use of mobile (actor) nodes that can be
moved into position in order to restore connectivity, (iii)
dispatching mobile nodes in a pre-emptive manner to
avoid failures in connectivity, (iv) the deployment of addi-
tional nodes to restore connectivity after failures have
occurred, and (v) sensor relocation by mobile robots.

2.1.1. Deploying redundant nodes to achieve a level of
connectivity

In [4-8], the goal is to deploy redundant nodes with the
intention of achieving k-connectivity. The main idea of
these papers are to place redundant nodes at some calcu-
lated locations to create a k-connected graph, those redun-
dant nodes start in sleeping mode and only wake up to
cover the current node if it fails. These networks are suit-
able for fault-tolerant and multiple failure applications
but require many redundant nodes, which may be expen-
sive. Finally, the main focus is not on repairing the dam-
aged network, but on achieving fault tolerance.

2.1.2. Repairing connectivity in Wireless Sensor and Actor
Network (WSAN)

Wireless Sensor and Actor Networks (WSANs) are net-
works of sensors and actors that communicate via a wire-
less medium to perform distributed sensing and actuation
tasks. Like in WSNs, the sensors gather information about

the phenomenon/phenomena. The actors usually take
decisions and perform suitable actions upon the informa-
tion collected from those sensors. In this network, ideally,
the sensors should be able to communicate with an actor.
The actors collect data from the nearby sensors and can
exchange information with other actors to make the right
decisions. Several papers consider the use of mobile actor
nodes in network restoration, e.g. [9-17]. The papers work
on the Wireless Sensor and Actor Network with the
assumption that all the sensors are connected and the
work is to propose different strategies to choose the mov-
ing actors, for example, based on estimating the shortest
moving distance and/or degree of connectivity to achieve
goals of connectivity or coverage for the actor network
(an overlay network of all actors). Ref. [10] is the first
work presenting a centralised algorithm to re-establish
connectivity for a disconnected actor network. The paper
considers the minimum connected dominating set
(MCDS) of each sub-network (partition, segment) and
picks the appropriate actor(s) to move to sustain the con-
nectivity. Because one node moving to replace a faulty
node may also cause other nodes to be disconnected, this
paper also selects additional intermediate nodes to per-
form cascaded movement in order to maintain the net-
work connectivity. This cascaded movement approach is
preferred to reduce the energy drain due to movement.
The goal is to minimise the number of movements, the
maximum distance travelled, and to distribute the move-
ment load among other nodes to prevent the bottleneck
problem where a node is depleted of its energy due to
long movement.

Abbasi et al. [9] uses cascaded movement for a number
of suitable actors toward the failure node. It proposes a
Distributed Actor Recovery Algorithm (DARA) which is a
localised, distributed algorithm to efficiently restore the
connectivity of the actor network. In this paper, the actor
nodes are selected to move based on three simple rules:
the actors with the lowest degree first, i.e. connectivity
degree or a number of connected neighbour actors, and
then for those actors with the same degree, the selection
will be the actors which have the shortest distance to the
failed node, and finally for those actors with equal dis-
tances, they select the actors with smallest ID. DARA pre-
vents further partitioning that result from moving nodes
by pursuing cascaded node relocation and uses the three
simple rules above to select the moving nodes.

Akkaya and Janapala [11] focuses on achieving the max-
imal actor coverage while meeting the actor connectivity
requirements (all the actors in the network must stay con-
nected). It applies repelling forces to spread actors in the
area of interest for maximised connected coverage of all
the actors. In this work, all actors will be involved in move-
ment. A neighbour j of node i will form a force Fj; on node i
which has its direction from node j to node i, and also node
i will form a force F; on node j where F; = —Fj; (opposite
direction). The composite force F; of a node i will be
defined by the addition of two forces from two neighbours,
and then the actor can move in the direction of that force a
distance that is proportional to its magnitude. The travel
distance will be restricted to sustain the connectivity with
the neighbours.

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208 193

Unlike the above approaches that change the network
topology by cascaded or block movement, Tamboli and
Younis [14] proposes a Coverage Conscious Connectivity

Restoration (C?R) algorithm which strives to keep most of
the network topology intact. This approach will involve
the neighbours of the faulty node in movement. For exam-
ple, if a node i has failed, then the neighbours N of node i
will be involved in movement to recover node i unless they
are performing another recovery for another node. In par-
ticular, they will make a schedule and follow the schedule
to substitute the faulty node. This approach gives a better
solution in coverage but requires more movement com-
pared to the above approaches.

Zamanifar et al. [13] also uses a different movement
scheme to move all disconnected partitions towards one
another based on its proactive restoration policies, i.e. it
uses a number of policies to find suitable candidate actors
in the neighbours of the failed node and then moves those
candidate actors towards each other. After that, it
re-applies the policies for space replacement (selecting
the next candidate actors following the policies and mov-
ing them toward the previous moved actors). However,
the work only connects two sub-networks at a time.

In contrast, [15,17] apply block movement for only the
smallest partition for minimal topology changes. In [15],
the authors propose a Least-Disruptive topology Repair
(LeDiR) algorithm which relies on the local view of a node
to relocate the least number of nodes to cover the discon-
nection. Upon the detection of the network partitioning,
LeDiR identifies the smallest block and limits the move-
ment to that block only.

The repair methods listed in this category are for restor-
ing the connectivity in Wireless Sensor and Actor
Networks for a single node failure at a time only. The work
is extended in [18] to deal with multiple failures. It proac-
tively pre-computes cut-nodes and Connected Dominating
Set (CDS), and designates the appropriate neighbours to
cover them if they fail and then applies cascaded move-
ment for replacement. Therefore, this work involves all
dominatees to the cut-node. Although there are many
papers on restoring damage in Wireless Sensor and Actor
Networks, the solutions are quite limited. Most of the work
focuses on dealing with a single failure and re-connecting
just two networks at a time, and with an assumption that
mobility is unimpeded by obstacles in free space.

2.1.3. Dispatching mobile nodes to avoid disconnection

Dai and Chan [19] proactively deploys additional helper
mobile nodes, controlling their trajectories in response to
predicted network disconnection events. The work
assumes that the mobile nodes are always fast enough to
reach the desired destination in case of a predicted discon-
nection event, and that a full map of the physical terrain
and radio environment is available. Details of how to
determine the number of mobile nodes that are needed
and the related path planning are not provided.

Henkel and Brown [20] deploys mobile robotic helper
nodes to physically carry the data to the base station or
the helper nodes will carry traffic from one disconnected
site to the base station. The work designates the speed

for those mobile helpers in order to carry data with
delay-tolerance. However, this work is only suitable for
applications with delay-tolerance and where those helper
nodes can move in free space to bring the data back.

2.1.4. Deploying additional nodes to repair the connectivity

Senel et al. [21-25] assume multiple simultaneous fail-
ures involving many failed nodes and a network that is
partitioned into many segments. The approach is to
re-connect those segments in a centralised manner with
the main objective of using the smallest number of addi-
tional nodes. Senel et al. [21] uses a spider web approach
to reconnect the segments. In [24], the authors propose a
Distributed algorithm for Optimized Relay node placement
using Minimum Steiner tree (DORMS). This approach
forms a connectivity chain from each segment toward a
centre point and then seeks to optimise the number of
additional nodes that are needed.

Also [22,23] model the area into a grid of Rv2 size
squares where R is the transmission range of a node and
then map the problem of finding the optimal number
and position of relay nodes into the problem of finding
the cell-based least-cost paths that connect all partitions
in the network and also meet the QoS requirement.

In [25], the authors also consider different aspects of a
segmented network such as the sizes and shapes of seg-
ments, and possible holes in segments. Besides the node
cost, the paper also minimises the average path length
from a centre point of each segment to the sink. The paper
assumes a static segmented network and a uniform distri-
bution of mobile/relay nodes (MNs), and proposes cen-
tralised and distributed connectivity restoration. The
centralised approach uses a genetic algorithm which
applies a heuristic to reduce the search space. The dis-
tributed approach establishes the connection between
two adjacent segments without considering all the seg-
ments in a network. Therefore, the distributed approach
has lower overhead but it is more costly (longer path
length to the sink, more MNs used) than the centralised
approach.

All the above works assume a free space where nodes
can move freely to achieve minimum travel distance or
other goals (minimum number of nodes, etc.). The works
also assume uniform transmission range where each node
has equal transmission range as a disk (centre at the node’s
location and radius as the transmission range). The
assumption is not realistic due to radio propagation obsta-
cles and physical movement obstacles. The last one is clos-
est to our research but different in two respects, firstly in
that we optimise both the number of additional nodes as
well as the path length needed for their deployment, and
secondly in that we explicitly take into account the impact
of obstacles that can alter both the available paths and the
ability of nodes to communicate directly.

Our work in this paper extends from the paper [26]
where we introduce the network repair problem with node
and movement cost constraints in the presence of obstacles.
We focus on multiple failures and placing new nodes in the
environment to restore connectivity for all sub-partitions to
a sink. In [26], we simply define two heuristics, one

194 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

prioritises the node cost and the other prioritises the move-
ment cost. In this paper, we develop two complete algo-
rithms, and an algorithm to find the Pareto set, and
compare all the algorithms in more extensive experiments.

2.1.5. Sensor relocation by mobile robots

Random deployment or sensor failures in Wireless
Sensor Network may cause sensing holes and redundant
sensors. The work in this category deploys a team of robots
to relocate sensors and improve the area coverage. Existing
work focuses on two main approaches: centralised
approaches [27-29] where one or more robots are located
at a base station which has full knowledge of the network
and the algorithms to find robot trajectory to repair the
network coverage are run globally; and localised solutions
[30-32] where each robot may carry at most one sensor
and makes decision that depends only on locally detected
information.

2.1.6. Other related work

Senturk et al. [33] uses game theory to reconnect the
network. Again, the work assumes a free space where the
mobile nodes can move freely and new nodes can be
placed in any positions. Some papers [34,35] consider
more realistic terrain with obstacles, assuming all terrain
and all network conditions are known in advance. The
methods focus on networks where the nodes themselves
are mobile, and consider single instances of moving a node
to re-establish a link without breaking other links.

There is also research on topology control using mobile
agents. Batalin and Sukhatme [36] deploys a robot with
unlimited nodes and drops nodes from time to time based
on certain ordering rules. Zavlanos and Pappas [37] con-
trols the agent’s motion to explore the environment while
dropping nodes and preserving the connectivity of the net-
work. Poduri et al. [38] assumes a mobile sensor network
where nodes can use repulsion and attraction forces to
arrange the topology. These papers focus on topology con-
trol and deployment but do not consider repair/restoration
after damage has occurred.

3. The network repair problem

The network repair will focus on placing new nodes in
the environment to restore connectivity to the sink for all
sub-partitions. Our aim is to optimise our use of resources
in the static fully observed problem. We develop two com-
plete algorithms, two heuristic algorithms, and an algo-
rithm to find the Pareto set, and compare all the
algorithms in experiments.

In this paper, we assume symmetric links are required for
the network operation, and so we ignore any asymmetric
connections. This is because many protocols across different
layers require symmetric links for proper functioning, e.g.
the MAC layer relies on symmetric links for acknowledge-
ments and many routing protocols assume symmetric links.
We assume a survey has been completed, and so we know all
possible accessible locations for the radio (relay and/or sen-
sor) nodes and the potential viable radio links between
them. We assume a set of terminal nodes which are the

desired locations from which we want to get data reports
but we cannot due to the damage, and our aim is to select
enough new locations for radio nodes to reconnect those ter-
minal nodes. We are considering the extreme version of the
problem, where everything has been destroyed except the
connected component around the sink node. We represent
this problem as a set 7, where each v € 7 is a terminal, and
a connectivity graph Gc = (V, Ec), where T C V and each ver-
tex v € V is a possible location, and each edge (v;, ;) € Ec
represents a potential radio link between the two locations.
We assume all radio nodes have the same cost, and so we
associate a unit vertex weight function w with G, such that
w(v) = 1foreach v € V, representing the cost of positioning
aradio at that position. Our first aim is then to find a Steiner
tree S in G¢ for 7; that is, a connected set of vertices that
includes all terminals in 7. If we find a Steiner minimal tree
(minimising w(S) where w(S) is the total cost of positioning
radio nodes at all vertices in S) then we ensure as few radio
nodes are used as possible.

We assume accessibility paths are known between the
different candidate radio positions, and that there is a
known cost of moving between any pair of positions,
where the cost may represent time, energy, distance or
hazard. We represent this as a graph Gy = (V,Ey) with
an associated edge cost function c. For any set V' C V, a cir-
cuit P in Gy that visits all vertices in V' represents a tour for
the agent, and we can compute the associated path cost.
For any given Steiner tree S = (V', E;.), a circuit P in Gy that
visits every vertex v € V' then represents a possible tour in
which the agent can place all necessary radio nodes to
reconnect the network. Minimising c(P) ensures that the
cheapest circuit is selected. Finding a cheapest circuit in
a graph which visits all specified vertices of a graph is
the set TSP (generalisation of the Traveling Salesman
(TSP)) problem [39]. Note that the two objectives may con-
flict: a larger Steiner tree may allow a cheaper path, and a
more expensive path may be required for a smaller Steiner
tree. The problem of finding a minimal Steiner tree and the
problem of finding a minimal cost circuit visiting a set of
vertices in a graph are both NP-hard [2,39,40]. The sum-
mary of notation is in Table 1.

We can now state the formal problem:

e PROBLEM: Multi-Objective Network Repair in Known
Environments.

o INSTANCE: A graph Gc = (V,Ec) with a unit vertex
weight function (w(v)=1, for all veV), a graph
Gu = (V,Ey) with an edge cost function c, and a termi-
nal set tCV.

e OBJECTIVE: Find a Steiner tree S for 7 in Gc, where
S = (V',E.), and a circuit P in Gy, such that each v € V'
appears in the path P, which minimises the pair of
objectives (w(S), c(P)).

As an example, Fig. 1 shows a connectivity graph and a
mobility graph for a set of terminals T = {ty,t;,t3} and a
set of candidate locations {a,b,d,e,f,g, h,j}. The minimal
Steiner tree in the connectivity graph has the vertex set
{t1,t2,t3,a,d,g,f}. However, this is not an easy tree for
the agent to create, since there is no short path between

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208 195

d and g. The Steiner tree {t1,t,,ts5,h,b,e.f,g,j} requires two
extra radio nodes, but allows a shorter circuit. Which of
these solutions should be selected will depend on the rel-
ative cost of the radio nodes compared to the path cost.
Applications which require the use of expensive radio
nodes will prefer the first tree, while applications which
involved high mobility costs (high energy movement,
etc.) will prefer the second tree.

The novelty of this problem formulation is in the inte-
gration of the connectivity restoration problem and the
route planning problem over graphs with the same vertex
set. We first consider hierarchical objectives, and propose
two complete algorithms which prioritise the different
objectives, Optimal Node Algorithm (N-OPT) first finds
the optimal node cost, and then finds the optimal path
for that node cost while Optimal Path Algorithm (P-OPT)
finds the optimal path that reconnects the network and
then finds the optimal node cost for that path. We then
study an algorithm for finding the Pareto set, which con-
tains all non-dominated solutions. We then propose two
heuristic algorithms, prioritising the two different objec-
tives. Shortest Cheapest Path (SCP) prioritises node cost,
and first tries to optimise the number of nodes required
to heal the network; it then tries to optimise the path cost
which visits all the new nodes. Integrated Path (IP) inte-
grates the two objectives by adding weights into the con-
nectivity graph to approximate the mobility cost of
establishing each link, and then searches for the cheapest
tree that connects all required nodes. We evaluate our pro-
posed algorithms on a randomly generated graphs, varying
the number of terminals and the graph density, comparing
the node cost and mobility cost for each algorithm. We also
assess the total time for restoration, incorporating CPU
time, movement time and installation time, for different
speeds of agent.

4. Optimal Node Algorithm (N-OPT)

This approach first finds the optimal node cost and for
that it finds the optimal path cost. The pseudo-code of
N-OPT is as in Algorithm 1. We use the algorithm
SMT-generation in [41] which generates all the Steiner
Minimal Trees for a fixed number of terminals on the con-
nectivity graph (Algorithm 2), and then for each Steiner
Minimal Tree, we apply the Branch and Bound algorithm

Table 1
Table of notation.
Notation Description
Vv Set of possible locations/positions for radio
nodes
Ec Set of potential radio links between locations
Ge = (V,Ec) A connectivity graph
w(),veV Cost of positioning a radio node at location v

Ey Set of accessibility paths between locations

Gy = (V,Em) A mobility graph

c(e = (v;,v5)) € Ey Cost of moving from v; to v; or vice versa in
Gum

P A path in Gy

T,TCV Set of terminals

A Set of live/existing nodes

in [40] to find an optimal path visiting all the nodes in
the mobility graph (Algorithm 3).

Algorithm 1. N-OPT Algorithm

Data: A graph G¢ = (V, E¢), agraph Gy, = (V, Ey),

a set of terminals 7 C V.
Result: a set of required nodes N for 7 in G¢ and

an optimal path P visiting all nodes in N in G,

1 begin
2 L = SMT-generate(Gc, 7) (Algorithm 2)
3 mincost = INFINITY
4 for each MST tree T in L do
5 Gr(Vr, E7) = metric_closure(Vy,Gc)
6 Path = BranchAndBound-search(Gr, Vr) (Algorithm 3)
7 if cost(Path) < mincost then
8 mincost = cost(Path)
9 N = V7, all nodes in T
10 P = Path

11 return < N, P >

In order to generate all the Steiner Minimal Trees
(SMTs), the algorithm firstly constructs the set RCV\ T
such that |R| < |t| — 2. To understand this set R, let T be a
Steiner tree on G for T and T(V) be the set of vertices in tree
T. Then the set of Steiner nodes will be S = T(V) \ 7, which
can be divided into two partitions R and L. The nodes in R,
called routers, are the Steiner nodes with a degree greater
than 2, and the nodes in L, called linkers, are the Steiner
nodes with the degree equal to 2. For any Steiner
Minimal Tree T connecting the terminal set , it is proved
that |R| < |t] — 2 [41]. Now, for each set of routers R, the
algorithm constructs a complete graph Gg: = (Vge, Ege)
with Vg, =RJ7 and the weight of an edge uv € Eg, is
equal to the minimum path length between two nodes u
and v. In other words, it constructs a metric closure graph
(complete graph) for the set Vg, = R(J 7 in the graph G. We
then find all minimum spanning trees in the graph Gg.,
using the algorithm in [42]. We then consider each edge
in that tree in turn and, if the end points are not yet con-
nected in the new tree, select the corresponding shortest
path from the original graph. If this shortest path contains
no more than 1 vertex already added, we add all edges into

(a) Connectivity Graph

(b) Mobility Graph

Fig. 1. Example connectivity graph and mobility graph where t,t; and t3
are terminals.

196 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

the tree, with their required vertices; if it contains more
than 1 vertex already added, then we add those edges that
are not already in the graph, and their associated vertices if
needed. Because we only consider the set of Steiner nodes
to re-connect the terminals, we will remove those Steiner
trees which output the same Steiner nodes but different
edges or output a tree whose nodes are a superset of any
set of nodes of the trees found so far.

The time complexity of Algorithm 2 is dominated by two
main components: the computation for the shortest path for
all pairs u, v € Vin line 2, and the constructing Gg; in line 4
and finding all minimum spanning trees at line 5 for each
graph Gg, generated in line 3. The first component is in line
1 which can be done in O(|V|?). For the second component,
firstly, we have the total number of graphs Gi, satisfying
the condition in line 3 is O(|V(Gg;)|""?) where V(Gz,) is the
set of vertices in the graph Gg.. Each single execution of line
4 takes O(|V(Gg:)|?) time by using the distances calculated in
line 2. Line 5 takes O(|V (Gg.)|.|E(Gg:)| 10g(|E(Gr:|) + |V(Gr)|*)
[42]. Therefore, by neglecting the constants, the total time
complexity of Algorithm 2 is O(|V[] + (V(Gg:)|™72).
((IV(Gro)I*) + (IV(Gre)|-|E(Gre) | 10g(|E(Gre]) + |V (Gre)[*))))-

Algorithm 2. SMT-Generate Algorithm

Data: A graph G¢ = (V, E¢), a set of terminals 7 C V.
Result: A list L of Steiner Tree 7 = (V', E¢.) for T in Gc.
1 begin

2 Compute shortest path for all pairs u,v € V

3 | foreach R C V\t such that |R| < |r| - 2 do

4 Construct — Gry

5 LT’ = Generate_Minimum_Spanning_Trees(Gg.) ([42])

6 for each tree T' € LT' do

7 Te0

8 for each edge e,, € E(T;) do

9 if node u and node v are not connected in T then

10 P = shortest_path(e,,) \\ compute in line 1

11 if P contains less than two vertices in T then

12 | AddProT

13 else

14 Add to T all edges in P which are not already in the tree T, and do not create a
L cyclein T

15 if T'is connected and includes all terminals then

16 | break

17 bool replaced = true

18 for each element T; in L do

19 if Vr isSubsetOf{Vr;) then

2 | Remove 7; from L

21 else if replaced==true then

2 if Vi isSubsetOf(Vy) then

23 L | replaced=false

24 if replaced==true then

25 | Add7;into L

2 return L

After listing all the Steiner Minimal Trees (all the trees
which have the same minimum number of required
nodes), N-OPT algorithm will find for each SMT an optimal
path in the mobility graph which visits all the nodes in the
tree, and then selects the SMT tree which has the least path
cost. For each SMT tree T, it will find a metric closure graph
for all vertices Vr in T in the mobility graph Gy, which is a
complete graph over the nodes, where each edge has a
weight equal to the shortest path between the two end-
points in the original graph. We obtain the metric closure
graph by repeated application of Dijkstra’s algorithm.
Then the algorithm applies Branch and Bound search
(Algorithm 3) for finding a tour visiting all nodes Vr in
the graph.

Algorithm 3. Branch and Bound search

Data: A graph G = (V, E), and cost function w

Result: A tour P visiting all node in V with minimum total edge cost.
1 begin
2 Find LB (lower bound) and initialise r
3 //r is the root of the search tree Add r into aset S, S = {r}
4 initialise bestSol variable and bestCost=co
5 while S is not empty do
6
7
8
9

Select a node nin S such that LB(n)< LB(p) Vp € S
Extract n from S
if n is a tour then
if cost(n) < bestCost then
10 bestCost = cost(n)
11 L bestSol = n
12 else
13 if LB(n) < bestCost then
14 create leftChild n; and calculate LB(n;)
15 create rightChild n, and calculate LB(n,)
16 if LB(n;) < bestCost then
17 L Add n, into §
18 if LB(ny) < bestCost then
19 L Add n, into S

20 | Return P=bestSol

The Branch and Bound search is based on a principle that
if the best solution found so far is less than the lower bound
(LB) for a subset, we do not need to explore this subset.
However, if this subset has a lower bound which is less than
the best cost so far, we will need to explore the subset as it
might contain a better solution. To find a lower bound for a
tour for visiting all nodes V in a graph G = (V,E), we note
that the cost of any tour is >1/2%",., (Sum of the costs
of the two least cost edges adjacent to »). Thus a lower
bound on the cost of any tour is >1/2%",., (Sum of the
costs of the two least cost edges adjacent to v). Now we
want a lower bound on the cost of a subset of tours. Note
that a tour will be defined by a set of edges that must be
in the tour and a set of edges that may not be in the tour.
These constraints allow us to branch from a node (a search
point) two possible branches: first branch (leftChild) con-
tains the next unvisited edge and the second branch
(rightChild) must not contain the edge. From these, we have
different choices of the two lowest cost edges at each node
(search point). Each time it branches, by creating two chil-
dren of a node (leftChild and rightChild), it also checks
which edges must be included or excluded by two rules:
(i) an edge must be included if excluding this edge would
make it impossible for a vertex to have two edges adjacent
to it in the tour, and (ii) an edge must be excluded if it
would cause any vertex to have more than two edges adja-
cent to it in the tour or create a cycle in the partial solution
(a solution is not a tour but has a cycle). When branching
the two children, however, the algorithm only adds
into the search tree the children which have a lower bound
is less than the best cost so far. The algorithm will termi-
nate when the search tree is empty. This algorithm is based
on [40], and the time complexity of Branch and Bound in
the worst case is as high as that of exhaustive
search. However, in real-life test cases it proved to
speed up the search considerably because the Branch and
Bound algorithm can be used to help us prune the search
tree.

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208 197

5. Optimal Path Algorithm (P-OPT)

This approach finds the optimal path that reconnects
the network and then finds the optimal node cost for that
path. The algorithm will list all the Steiner Trees (STs)
(instead of all Steiner Minimal Trees as above) which con-
nects terminals in the connectivity graph and then per-
forms Branch and Bound search on the mobility graph for
each Steiner tree to find the optimal path. P-OPT will pro-
duce the optimal path which also connects the terminals.
The pseudo code of P-OPT is in Algorithm 4.

Algorithm 4. P-OPT Algorithm

Data: A graph G¢ = (V, E¢), a graph Gy = (V, Ey),

a set of terminals 7 C V.
Result: a set of required nodes N for 7 in G¢ and

an optimal path P visiting all nodes in N in G

1 begin
2 L = ST-generate(G¢, 1) (Algorithm 5)
3 mincost = co
4 for each ST tree T in L do
5 Gr(Vr, Er) = metric_closure(Vr,Gc)
6 Path = BranchAndBound-search(G7, Vr) (Algorithm 3)
7 if cost(Path) < mincost then
8
9

mincost = cost(Path)

N =V, allnodes in T
10 P = Path
11 if cost(Path) = mincost then
12 N’ =Vy,all nodes in T
13 if cost(N’) < cost(N) then
14 N=N
15 L P = Path

16 return < N, P >

Because the original algorithm in [41] only lists all
Steiner Minimal Trees for a graph, we modified this algo-
rithm to generate all Steiner trees for that graph
(ST-Generate Algorithm 5). The algorithm firstly constructs
the set RCV\ 7 such that |R| < |t| — 2. It then finds all
spanning trees in the graph Gg., using the Algorithm in
[42]. We then consider each edge in that tree in turn and,
if the end points are not yet connected in the new tree,
select the corresponding shortest path from the original
graph. If this shortest path contains no more than 1 vertex
already added, we add all edges into the tree, with their
required vertices; if it contains more than 1 vertex already
added, then we add those edges that are not already in the
graph, and their associated vertices if needed. Because we
only consider the set of Steiner nodes to re-connect the ter-
minals, we will remove those Steiner trees which output
the same Steiner nodes or output a tree which is a super
tree of any current tree found so far.

As discussed above, the only difference between
Algorithms 2 and 5 is that the former lists all minimum
spanning trees for graph Gg, while the later generates all
spanning trees for that graph. In the worst case, where
all the spanning trees have the same weight, then listing
all minimum spanning trees is the same as listing all span-
ning trees. Therefore, the time complexity of Algorithm 5 is
equal to that of Algorithm 2.

Algorithm 5. ST-Generate Algorithm

Data: A graph G¢ = (V, E¢), a set of terminals 7 C V.
Result: A list L of Steiner Tree 7' = (V', E¢) for in Gc.
1 begin

2 Compute shortest path for all pairs u,v € V/

3 for each R C V\7 such that |R| < || - 2 do

4 Construct — Gg,

s LT’ = Generate_S panning_Trees(Gry) ([42])

6 for each tree T' € LT’ do

7 T <0

8 for each edge e,, € E(T;) do

9 if node u and node v are not connected in T then

10 P = shortest_path(e,,) \\ compute in line 1

11 if P contains less than two vertices in T then

12 | AddPtoT

13 else

14 Add to T all edges in P which are not already in the tree 7', and do not create
acyclein T

15 if T is connected and includes all terminals then

16 | break

17 bool replaced = true

18 for each element T; in L do

19 if Vr isSubsetOf(Vr;) then

20 | Remove 7; from L

2 else if replaced==true then

» if Vi, isSubsetOf(Vr) then

23 L L replaced=false

24 if replaced==true then

2 | AddTiinto L

26 return L

Each Steiner tree produces a set of required nodes to
reconnect the terminals. The algorithm then applies a
Branch and Bound algorithm (Algorithm 3) to find the opti-
mal path visiting those nodes in order to populate new
radio nodes.

6. The Pareto set

The Network Repair Problem has two objective func-
tions to be optimised simultaneously. For a
multi-objective problem, the Pareto optimal solutions are
those solutions for which there is no other feasible solution
that is better in all objectives. A solution s; dominates a
solution s, if and only if s; is no worse than s, in all objec-
tives, and s; is strictly better than s, in at least one objec-
tive. In order to assess the quality of the solutions
developed by the previous algorithms, we now develop a
simple algorithm for finding the Pareto set for the
multi-objective network repair problem.

To find the Pareto set, we find all alternative solutions
for the problem, and then remove any dominated solu-
tions. First, we find all the Steiner trees for connecting all
terminals (Algorithm 5). Then, we find the optimal path
for each Steiner tree (Algorithm 3). We store all the alter-
native solutions with node cost and optimal path cost for
those nodes in each solution T; = (N;P;), i.e. a solu-
tion which needs N; extra nodes and costs P; unit in
mobility.

Obviously, both the cheapest path and cheapest node
solutions always belong to the Pareto set, and in fact, they
are its endpoints. We then find the other solutions (if any)
on the Pareto set using Algorithm 6. We first sort the alter-
native solutions according to one of the objectives (in this
case, the node cost). The algorithm starts with the cheapest
node cost solution and skips successive solutions in order
of increasing node cost until it finds one with a cheaper
path cost. This solution is then added to the frontier and
the search is restarted from it.

198 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

Algorithm 6. Finding Pareto Set Algorithm

Data: List of 7| =< Ny, Py >,
T) =< N>, P, >,...,T,, =< Ny, P,, > in increasing order of node costs
where ties are broken by order of path costs.

Result: A Pareto Frontier F.

1 begin

2 i=1

3 while rrue do

4 AddT;toF

5 Find smallest j > i such that P; < P;
6 if there is no such j then

7 L break;

8 i=j

Although N-OPT, P-OPT and the Pareto algorithm all
generate optimal solutions, they will have high runtimes,
and so are not expected to scale to larger problems.
Therefore, we propose two heuristic algorithms, Shortest
Cheapest Path and Integrated Path, which prioritise differ-
ent objectives.

7. The Shortest Cheapest Path (SCP) algorithm

Our heuristic assigns an ordering to the objectives. The
SCP (Algorithm 7) first tries to minimise the number of
nodes required to connect all terminals. Given a minimal
set of nodes, we then try to find the cheapest circuit for
the agent that visits all of those nodes.

Algorithm 7. Shortest Cheapest Path algorithm

Data: A graph G¢ = (V, E¢), graph Gy = (V, Ey),
an edge cost function ¢ for Gy, a set of terminals 7 C V.
Result: Number of nodes placed and a tour in G visiting those nodes.
1 begin
T =(V',E") = Steiner_MST(Gc,7);
L P = Greedy TSP(V',Gy);

2
3
4 return [V',P] ;

Algorithm 8. Steiner-MST Algorithm

Data: A graph G¢ = (V, Ec), a set of terminals 7 c V.
Result: A Steiner Tree 7 = (V', E¢.) for 7 in Gc.

1 begin

2 G(7, Er,w;) = metric_closure(t,G¢)

3 | T. = Minimum_S panning_Tree(G-)

4 T <0

for each edge e,, € E(T;) do

6 if node u and node v are not connected in T then

7 P = shortest_path(e,)

8 if P contains less than two vertices in T then

9 | AddPtoT

0 else

1 Add to T all edges in P which are not already in the tree 7', and do not create a cycle

L inT

N if T is connected and includes all terminals then

13 | break;

return T

Since the Minimum Steiner Tree in Graphs problem is
NP-Hard [3], we use a heuristic algorithm, adapted from
[43] (Algorithm 8). First, we create a metric closure graph
for the terminals, which is a complete graph over the termi-
nal nodes, where each edge has a weight equal to the short-
est path between the two endpoints in the original graph.
We obtain the metric closure graph by repeated application
of Dijkstra’s algorithm [44]. We then find a minimum span-
ning tree in that graph, using Kruskal’s algorithm [44]. We
then consider each edge in that tree in turn and, if the end

points are not yet connected in the new tree, select the cor-
responding shortest path from the original graph. If this
shortest path contains no more than 1 vertex already
added, we add all edges into the tree, with their required
vertices; if it contains more than 1 vertex already added,
then we add those edges that are not already in the graph,
and their associated vertices if needed.

The complexity of Algorithm 8 is based on three compo-
nents. The first component is the complexity of calculating
the metric closure graph for T which we repeatedly applied
Dijkstra’s algorithm (which has complexity of O(|V|?) [44])
for each terminal in 7. The second is the complexity of find-
ing a minimum spanning tree in the graph G, = (t,E;)
(which we wuse Kruskal algorithm which yields
O(E;log(7)) in complexity [44]). Finally, the third one is
the complexity of replacing each edge in E(T,). Therefore,

it is O(|7||[V[?) + O(E: log(1)) + O(E(T:)) = O(|t||V]?).

Algorithm 9. Greedy-TSP Algorithm

Data: A graph G = (V. E).
Result: A tour visi all nodes in V.
1 begin
2 sort the edges in the increasing order of costs
3 r =0 //empty set
4 while r is not a tour do
s n = first(E) //get the first element in £
6 if n does not cause a vertex to have degree three or more AND does not form a cycle unless it

completes the tour then
7 | add ninto r

8 return r

For the problem of finding the shortest circuit
(Algorithm 10), we take all the nodes in the Steiner tree
created above, and then for those vertices create a metric
closure graph from the mobility graph Gy. We then apply
[40]’s Greedy-TSP heuristic (Algorithm 9) which is based
on Kruskal’s algorithm - we sort the edges in increasing
order of cost, and we then iteratively add the lowest cost
edge which does not increase any vertex’s degree to 3, and
which does not create a cycle unless it completes the tour.

The complexity of Algorithm 10 is that of calculating
the metric closure graph for V' in Gy which we repeatedly
applied Dijkstra’s algorithm (which has complexity of
O(|VP%)) for each node in V/, plus the complexity of
Greedy-TSP (Algorithm 9). Therefore, it is O(|V/||V[*) +
O(|V'*log|V'[) = O(|V'||V[?).

Algorithm 10. GreedyTour

Data: A set of vertices V', a graph Gy = (V, Ey, ©)
Result: a tour in Gy visiting all nodes in V’
1 begin
2 G" = (V" ,E" W) = metric_closure(V',G)
3 P = Greedy_TS P(G”)
4 return [P]

Fig. 2 shows the SCP algorithm being applied to the
example of Fig. 1. First we create the metric closure on
the terminal nodes, then we create a spanning tree from
that (Fig. 2(a)). We then extract the corresponding
Steiner tree from the connectivity graph (b). We extract

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208 199

af: 6 t1t;, 10 df, 13

(d)

Fig. 2. A sample execution of Shortest Cheapest Path.

the new locations (c), construct the metric closure for
those vertices (d), and then create the tour (e). This
requires 7 new nodes in total, with a mobility cost of 56
units.

8. The Integrated Path IP algorithm

The SCP algorithm prioritises the number of nodes over
the mobility cost. The IP approach attempts to combine the
two objectives, adding approximate mobility costs into the
connectivity graph, and then searching for a minimal
Steiner tree on this modified graph (Algorithm 11). First,
for each edge in the connectivity graph we compute the
shortest path between the vertices in the mobility graph
using Dijkstra’s algorithm, and add that as an edge cost
to the connectivity graph. We then apply the SCP algorithm
on this new problem, with the difference being in the step
where we create the Steiner tree from the minimum span-
ning tree of the metric closure, since the edges in the con-
nectivity graph now have non-uniform costs.

The complexity of Algorithm 11 is based on three com-
ponents. The first component is the complexity of calculat-
ing the weighted connectivity graph for V which we
repeatedly applied Dijkstra’s algorithm (which has com-

plexity of O(|V|*)) for each node in V. The second is the
complexity of Steiner-MST (Algorithm 8). The third is the

(e)

complexity of Greedy-TSP (Algorithm 10). Therefore, it is
O(IVP®) + O(T||V|*) + O(|V'[*log V') = O(|V]’).

Algorithm 11. Integrated Path Algorithm

Data: A graph G¢ = (V, E¢), graph Gy = (V, Ey),
an edge cost function ¢ for Gy, a set of terminals 7 C V.

Result: Number of nodes placed and a tour in G, visiting those nodes.
1 begin
Ge# = (V, Ec,wx) = weighted_connectivity_graph(Ge, G y)
T =(V',E") = Steiner_MS T(G ¢+, T)(Algorithm8)
P = Greedy_TS P(V’,Gy) (Algorithm 9)
return [V’,P]

[SR

Fig. 3 shows the IP algorithm being applied to the exam-
ple of Fig. 1. First we create the weighted connectivity
graph (Fig. 3(a)), then metric closure on the terminal
nodes, followed by its spanning tree from (b). We then
extract the corresponding Steiner tree from the weighted
connectivity graph (c). We extract the new locations (d),
and then create the tour (e). This requires 9 new nodes in
total, with a mobility cost of 42 units.

9. Adapted DORMS

For the purpose of comparison, we select the algorithm
in [24] (discussed in Section 2.1) which appears closest to

200 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

t1

(b)

Fig. 3. A sample execution of Integrated Path.

our approach, and which has a smaller number of deployed
nodes compared to other similar algorithms. This algo-
rithm, called DORMS, will re-connect each partition
toward a centre point and then seeks to optimise the total
additional nodes that are needed. However, DORMS
assumes free space for mobility, and so the mobility paths
are simply straight lines. In our adaptation, we select a
location which is closest to the centre of the area. We
use A* search [45] to find the shortest path from each ter-
minal toward the centre location in the connectivity graph,
i.e. A* uses a best-first search and finds a least-cost path
from a start node to a goal node. Then for each pair of adja-
cent terminals, we find a graph which contains all nodes
and edges in the connectivity graph which are in the small-
est area which is bounded by the two connectivity paths
from the terminals toward the centre location. Then we
find a Steiner minimal tree (Algorithm 8) in that graph
which spans the two terminals and the centre location.
After finding all Steiner minimal trees for all pair of adja-
cent terminals with the centre location, each terminal is
now considered in two separate Steiner minimal trees
formed by its neighbouring terminals, the algorithm
chooses the best Steiner minimal trees among those trees
to reconnect all the terminals. After finding the set of
required nodes, the algorithm applies the Greedy-TSP in
Algorithm 10 to find the path to visit those locations. The
adapted DORMS (DORMS-AD) algorithm is given in
Algorithm 12.

Algorithm 12. The Adapted Dorms Algorithm

Data: A graph G¢ = (V, E¢), a set of terminals 7 C V.
Result: A list L of required nodes.

1 begin

2 centre = Find_Centre_Location()

3 for each t € T do

4 L p: = Find_S hortest_Connectivity_Path(t, centre, G¢)

5 for each t € T do

6 ta = Find_ad jacent_terminal(t)

7 G’ = Find_bounded_graph(p;, p:a, centre,G¢)
8 T, = Steineryinimalyree(G’, t, ta, centre)

9 while any t € 7 is not in L do
10 T = Find_Smallest_tree_for_t()
11 Add T into L

10. Evaluation

Our focus is on evaluating repair algorithms rather than
network protocols, so we use a custom Java simulation. We
evaluate the above algorithms on randomly generated
problems, to compare the quality of their solutions on both
objectives, and on their runtimes. To generate the prob-
lems, we create graphs from an underlying spatial grid,
to represent a physical area for the deployment. The wire-
less connectivity graph is based on the distance between
points in the grid, but modified by randomly placed obsta-
cles. Similarly, the mobility graph is computed from grid

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

locations and the presence of obstacles. Note that in these
experiments we are not evaluating the operation of the
network, and so we do not use a network simulator.

We generate graphs within a rectangular area consist-
ing of nxm squares, each of size 10 units squared.
Within this space, we place o mobility obstacles, where
each obstacle is a random polygon contained within a ran-
domly selected pair of neighbouring cells. For each square,
we generate a random position within it; if that position is
inside an obstacle, we discard it, otherwise we designate it
as a candidate location. Each obstacle is given a random
weight w between 0 and 1, representing the difficulty it
creates for the agent to traverse it, and such that any obsta-
cle with a weight greater than 0.2 is assumed to be not able
to be traversed.

We then create the connectivity graph by adding edges
indicating that two candidate locations are within wireless
transmission range. For each pair of locations, if they are
within 10 units apart, we add an edge with probability
0.85; if they are between 10 and 20 units apart, we add
an edge with probability 0.2. This is to simulate the RF
propagation caused by the multi-path effects. For the
mobility graph, we add an edge between any pair of loca-
tions which are less than 45 units apart and which can be
connected by a straight line that does not cross an obstacle.
The weight of the edge is simply the length of the connect-
ing line. For any pair of locations separated by a distance of
less than 45 and which has a straight line that traverses all
obstacle with a weight less than or equal to 0.2, we add
those edges into the mobility graph, the cost of the edge
is the distance plus 10xweight for each obstacle it crosses
(to add the difficulty when traversing the obstacles). The
grid is only used to create an underlying structure for the
abstract graphs, allowing us to generate connectivity links
and mobility costs based on geometric properties. In

201

general, we can evaluate our algorithms in any graphs.
We have tried different values and different grid sizes,
etc. in our evaluation, and we received the same relative
results for our algorithms in node cost, mobility cost and
runtimes.

10.1. A glance at Pareto optimality

First, we want to compare the relative quality of the
solutions produced by the different algorithms. We do this
by running all algorithms and comparing to the Pareto set.
As the runtime of Pareto search (Section 6) explodes, even
for a small problem size, here we only plot three random
instances of the experiments with small problem settings.
Figs. 4-6 show all solutions of minimal Steiner sets associ-
ated with their minimal paths, the Pareto set and the
results of N-OPT, P-OPT, SCP, IP algorithms for selected
instances with 4, 5, 6 terminals (T) to be connected.

The figures show that there is a wide range of solution
costs, and there is clearly a trade-off to be managed
between node cost and mobility cost. We only plot the
results of the minimum paths for the minimal Steiner sets,
and yet in each case node cost varies by up to 50%, and
mobility cost varies by 40-70%. We see that in all three
cases both SCP and IP are within 1 node of the optical node
cost (shown by N-OPT). However, their mobility costs
range from 20% to 50% higher than the optimal cost
(P-OPT), with IP consistently better than SCP, although
not by a large margin.

10.2. More experiments

For the rest of the experiments, we consider two differ-
ent problem sizes: (i)a 5 x 10 grid, and thus a maximum of
50 candidate locations, and 10 obstacles, and (ii)a 10 x 10

An instance of the problem with T=4 in area 5x10

450 -
SCP @
400 - o
8 0 P ¢
> & n-oPT e
) o

]

€ 350 - o
a

300 -

11 12

o a solution

o

@O0 @00 0O O O 00

oo

®® a» 0 o

000

node cost

Fig. 4. An instance of the problem with T=4 (number of terminals to be connected) in area 5 x 10. All solutions are displayed in the figure. The points
which belong to the Pareto set are denoted as red triangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

202 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

An instance of the problem with T=5 in area 5x10

250 -
v SCP
o
o
230 -
o o
7] o P o
(o]
(8]
>
2 o
3 210- o o 1
o
€ o
o
190- o 5
4 N-OPT o
i 8
a P-OPT
1 1 1 1 1
7 8 9 10 11
node cost

Fig. 5. An instance of the problem with T=5 (number of terminals to be connected) in area 5 x 10. All solutions are displayed in the figure. The points
which belong to the Pareto set are denoted as red triangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

grid, and thus a maximum of 100 candidate locations, and We compare the proposed algorithms including the
20 obstacles. For each of the two problem sizes, for each adapted DORMS. As the network repair includes both the
data point, we generate 50 instances, and present the aver- node cost (defined by the number of nodes placed) and
age solution cost (mobility cost, number of nodes needed) the mobility cost (or the cost of moving for the agent to
and runtime. For each instance, we randomly select candi- place new nodes at required locations), we are interested
date locations as terminals. in the relative performance of the proposed algorithms in

An instance of the problem with T=6 in area 5x10

o a solution
o
500 -
o
i]
8 I i
8
v ScP i g i
o
450 - BIP 5 g + é g
9 8 8 o g 1
Q 8 o 8 8 9
o o 8 8 H
z N T i
= ° 8 g E 8 1 ¢
S 400- anopT ° o - i
o
€ 8 8 g g 8
° o 7 o
] o e
g o o
o
350 - L 8 g L °
8 o
a
o
o
8
300 - AP-OPT
12 14 16 18
node cost

Fig. 6. An instance of the problem with T=6 (number of terminals to be connected) in area 5 x 10. All solutions are displayed in the figure. The points
which belong to the Pareto set are denoted as red triangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

terms of node cost and mobility cost. We also evaluate
their runtime (computation time), and the total time to
restore connectivity for the network.

10.2.1. Node cost

Fig. 7 shows the number of nodes placed by each algo-
rithm, as we vary the number of terminals from 4 to 7. As
the number of terminals to be connected increases, the
number of nodes required to connect the terminals by all
algorithms also rises. The number of nodes required by
DORMS-AD is noticeably higher than the others because
DORMS-AD connects all terminals to a centre point which
could require more nodes compared to the SCP and IP
which calculate a minimal Steiner tree. Note that the IP
algorithm finds a MST on the weighted connectivity graph
while the SCP finds a MST on the original connectivity
graph. Therefore, the IP algorithm requires more nodes
than the SCP algorithm, although on average no more than
1.5 extra nodes. The SCP requires no more than one extra
node compared to the N-OPT algorithm. Obviously, the
node costs of all algorithms increase with the problem size

203

(from 5 x 10 to 10 x 10), while the relative costs between
the different algorithm remains the same. We note that the
complete P-OPT algorithm, which prioritises mobility cost,
is competitive on node cost with the heuristic SCP algo-
rithm, which prioritises node cost.

10.2.2. Mobility cost

Fig. 8 shows the mobility costs as we vary the number
of terminals from 4 to 7. Again, the costs rise as we
increase the number of terminals. DORMS-AD is again
noticeably poorer than the other algorithms with the same
reason above. SCP is between 6% and 9% poorer than IP,
which in turn is between 10% and 15% poorer than
P-OPT. This is because the SCP has the node cost in higher
priority than the path cost while the IP intends to find a
better path to connect the terminals. We note that the
complete N-OPT, which prioritises node cost, consistently
produces mobility paths that are shorter than the heuristic
algorithm IP which attempts to balance node and mobility
costs.

Node cost with varying number of terminals. Area 5x10

15.0 -
3
3 -~ SCP
o
s - P
S
@ 125- —— DORMS-AD
£ - N-OPT
2 P-OPT

10.0 -

1 1 1 1
4 5 6 7
number of terminals
Node cost with varying number of terminals. Area 10x10

20.0 -
3
g 175- -e- SCP
= - P
o
5 — DORMS-AD
o 15.0 -
15 —« N-OPT
2 P-OPT

12.5 -

10.0 -

4 5
number of terminals

6

Fig. 7. Node cost with varying number of terminals.

204

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

Mobility cost with varying number of terminals. Area 5x10

450 -
‘g -e- SCP
S 400 - - P
2
= —— DORMS-AD
Q
g —& N-OPT

350 -

P-OPT
300 -
1 1 1 1
4 5 6 7
number of terminals
Mobility cost with varying number of terminals. Area 10x10

700 -

600 -
@ -e- SCP
o
2 - P
2
% 500 - —— DORMS-AD
= —« N-OPT

P-OPT
400 -

1
5

g

1
6

~N -

number of terminals

Fig. 8. Mobility cost with varying number of terminals.

10.2.3. Runtime

Table 2 shows the runtime for the three heuristics.
N-OPT and P-OPT were designed to examine the extremes
of the multi-objective problem, and were not expected to
be competitive in runtime, and so are not included in the
table. For example, on average for 4 terminals, N-OPT
requires 915.35s and P-OPT takes 7252.37 s to run an
instance. P-OPT requires lots of effort to find the optimal
path that can reconnect the terminals as it searches over

Table 2
Runtime (s) with varied number of terminals.
4 5 6 7

(a) Area 5 x 10
SCP 0.08 0.10 0.11 0.13
DORMS-AD 0.10 0.12 0.14 0.18
P 1.19 1.22 1.21 1.36
(b) Area 10 x 10
Ned 0.80 0.99 1.10 1.27
DORMS-AD 1.00 1.23 1.44 1.66
P 18.45 19.05 18.42 19.32

the mobility graph for the cheapest path for all Steiner
trees found in the connectivity graph to reconnect the ter-
minals while the N-OPT only needs to do the search over
the mobility graph for the smallest Steiner trees connect-
ing the terminals in the connectivity graph. The SCP and
DORMS-AD algorithms are significantly faster compared
to IP algorithm, with a speed-up factor between 10 and
23. As shown in Section 8, the runtime of IP is dominated
by the computation time of the weighted connectivity
graph which depends on the network size (size of connec-
tivity graph and mobility graph).

10.2.4. Density of the possible candidate locations in the
network

We note that the number of terminals for a fixed size
problem does not have a significant impact on the runtime,
but that there is a significant difference as we increase the
network size. Therefore, we perform another experiment
in which we vary the density of the candidate locations.
More specifically, we vary the maximum number of candi-
date locations able to be placed in a single grid square from

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

Table 3

Runtime (s) with varied density and the number of terminals.
Runtime (s) SCP P DORMS-AD
Location density =1, T=4 0.03 0.30 0.03
Location density =1, T=5 0.03 0.31 0.03
Location density=1,T=6 0.04 0.32 0.04
Location density=1, T=7 0.05 0.34 0.05
Location density =2, T=4 0.09 3.65 0.11
Location density =2, T=5 0.11 3.58 0.13
Location density =2, T=6 0.12 3.71 0.14
Location density =2, T=7 0.15 3.72 0.18
Location density =3, T=4 1.32 132.36 1.73
Location density =3, T=5 1.70 137.04 2.16
Location density =3, T=6 1.92 136.73 2.54
Location density =3, T=7 2.21 131.11 2.89
Location density =4, T=4 6.49 1180.93 8.91
Location density =4, T=5 7.29 1124.07 10.39
Location density =4, T=6 9.41 1130.51 12.79
Location density =4, T=7 10.81 1109.95 14.34

1 to 4. During generation, for each square, we randomly
select the number of candidate locations to be placed,
and then select their positions. As we increase this

205

parameter, the number of edges per location increases sig-
nificantly, and particularly so for the mobility graph. The
results are shown in Table 3. For SCP, the runtime increases
highly with the density parameter. For IP, the runtime
appears to grow dramatically. Note that the density
parameter relates to the density of the locations packed
into the same geographic area, and so a higher value
involves more nodes as well has a higher average degree
for each node in the graph. SCP complexity is the product
of the square of the number of candidate locations and
the size of the Steiner tree. As more locations are added,
the density increases, and we expect the Steiner tree to
grow sub-linearly. However, the complexity of the IP algo-
rithm is the cube of the number of nodes, and so increasing
the density parameter should have a more significant
effect, as indicated by the increasing runtime.

In Fig. 9, we examine the results of density parame-
ter=4 in more detail. Although the IP algorithm saves
about 20% of the mobility costs, it is two orders of
magnitude slower in runtime (Table 3), and requires
slightly more nodes on average compared to the SCP
algorithm.

Node cost with varying number of terminals. Area 5x5. Density 4

12 -

number of nodes

1 1
4 5

IP
/ o
8-

6

-e- SCP

~ -

number of terminals

Mobility cost with varying number of terminals. Area 5x5. Density 4

240 -

220 -

mobility cost
N
o
o
1

-

[e}

o
1

160 -

140 -
1
5

N

P
—+ DORMS-AD

6

-~ SCP

~ -

number of terminals

Fig. 9. Node and mobility costs with density 4, area 5 x 5.

206 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

10.2.5. Total restoration time

To decide which algorithm should be selected in practi-
cal applications will require greater knowledge of the rela-
tive cost of the new radio nodes versus the mobility costs.
We should also take into account the runtime of the algo-
rithm, since as the graphs grow in size, the runtime will
become more significant: waiting for the algorithm to com-
plete may remove any benefit gained from a shorter path. If
we regard the mobility cost as the time to traverse the cir-
cuit, we can then consider the total time for restoring the
network as being the runtime of the algorithm plus travel-
ling time of the agent, plus any time required to place the
nodes in position. We assume it takes the robot 30 s to posi-
tion a new node and the distance for the grid squares is
10 m. We consider three scenarios, the first represents a
small robot moving at the speed of 0.1 ms~!, the second rep-
resents a human walking speed agent at 1.4 ms~!, and the
third represents a fast moving vehicle over a rough terrain
at the speed of 4 ms—'. The results are shown in Tables 4-6.

For the slow small robot, prioritising the mobility cost
results in a faster restoration time for all parameter set-
tings, as the mobility costs outweigh the time to place

Table 4
Total restoring time (s) with a slow speed agent v = 0.1 ms~'.
4 5 6 7
(a) Area 5 x 10
SCP 3667.28 3973.50 4371.71 4760.53
IP 3419.39 3763.02 4181.81 4519.96
DORMS-AD 4058.90 4432.52 4927.94 5396.18
(b) Area 10 x 10
Ned 4554.00 5395.19 5945.10 6543.27
P 4247.85 5084.05 5671.62 6242.13
DORMS-AD 5242.80 6064.83 6944.84 7650.07
Table 5
Total restoring time (s) with a medium speed agent v = 1.4 ms™'.
4 5 6 7
(a) Area 5 x 10
Scp 523.33 580.31 633.28 706.20
P 527.82 584.15 638.56 716.90
DORMS-AD 609.26 678.86 760.51 855.84
(b) Area 10 x 10
SCP 643.04 767.37 843.53 940.46
P 660.96 785.32 873.51 969.70
DORMS-AD 768.76 902.35 1032.81 1153.04
Table 6
Total restoring time (s) with a high speed agent v =4 ms~'.
4 5 6 7
(a) Area 5 x 10
SCP 366.13 410.65 446.36 503.49
P 383.24 425.20 461.40 526.75
DORMS-AD 436.78 491.18 552.14 628.82
(b) Area 10 x 10
SCP 447.50 535.98 588.45 660.32
P 481.62 570.39 633.60 706.08
DORMS-AD 545.06 644.22 737.21 828.19

Table 7

IP or SCP.
Criteria SCP P
Energy (movement) No Yes
Expensive nodes Yes No
Small network, low speed agent No Yes
Small network, medium speed agent Yes Yes
Small network, high speed agent Yes No
Large network, low speed agent No Yes
Large network, medium speed agent Yes Yes
Large network, high speed agent Yes No
Very dense deployment Yes No

nodes and the increased runtime. For a human, the time
to restore for the two heuristics is similar as the node cost,
path cost and runtime are balanced. For the vehicle, priori-
tising the node cost becomes more important, since the
reduction in mobility cost by the path-based algorithms
has difficulty compensating for the increased runtime
and the increased node-placement cost. Thus, the WSN
restoration problem is subtle, with the choice of approach
clearly dependent on the details of the specific problem.
Solution methods must take into account the main objec-
tives (minimising infrastructure and minimising time),
but also consider the capabilities of the agent that will
implement the eventual solution.

Table 7 gives a summary of the conditions under which
we would prefer one algorithm to the other. For high node
costs, or fast moving agents, we expect to prefer the SCP
algorithm, while for cases where energy costs are signifi-
cant, or where agents are relatively slow, then the IP algo-
rithm will be preferred. The optimal solutions can be used
for small network or can be run offline for the expensive
node or energy costs.

11. Summary

We have defined the new problem of simultaneous net-
work connectivity restoration with constrained route plan-
ning, in the presence of obstacles, in a static observed
problem. We formalise the problem as a multi-objective
problem of minimising a Steiner tree in a connectivity
graph and minimising a tour of the nodes in that tree in
a mobility graph. We present two complete algorithms:
Optimal Node Algorithm (N-OPT) first finds the optimal
node cost, and then finds the optimal path for that node
cost while Optimal Path Algorithm (P-OPT) finds the opti-
mal path that reconnects the network and then finds the
optimal node cost for that path. We then study an algo-
rithm for finding the Pareto set, and present two heuristic
algorithms, Shortest Cheapest Path (SCP) and Integrated
Path (IP). Shortest Cheapest Path prioritises node cost, first
optimises the number of nodes required to heal the net-
work, then optimises the path which visits all the new
node positions. Integrated Path combines the two objec-
tives by adding weights into the connectivity graph to
approximate the mobility cost of establishing each link,
and then searches for the cheapest tree that connects all
existing nodes. We conducted an empirical evaluation of
the two algorithms on random connectivity and mobility

T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208 207

graphs. We compared our proposed heuristic algorithms
with the optimal solutions and an adaptive existing algo-
rithm and analyse the choice of the algorithms in each
specific application. The SCP algorithm tends to find graphs
with fewer nodes, while the IP algorithm finds slightly lar-
ger solutions but with cheaper mobility costs. The SCP
algorithm is significantly faster, particularly on dense
graphs. Both SCP and IP are close to N-OPT in node cost
(approximately one extra node for SCP, and two extra
nodes for IP compared to N-OPT), and higher in mobility
costs than P-OPT (approximately between 16% and 22%
for SCP, and between 10% and 13% for IP). In addition,
SCP and IP are close to the Pareto frontier in node cost
but quite far from the Pareto frontier in mobility cost.
We also evaluate the total restoration time as a function
of an agent’s speed for the choice of heuristics. For fast
moving agents, the SCP algorithm is faster in total restora-
tion time, and for slow speed moving agent, the IP algo-
rithm will be faster.

There are many areas for potential future work. The
paper uses the graph-based model where the candidate
locations are decided and fixed into a number of positions.
Future work will address the real world of potential areas
for node placement where continuous positions can be
investigated. It would have been certainly desirable to fur-
ther analyse the Pareto sets and validate the efficiency of
each multi-objective approach under consideration with
some well-known Pareto metrics. We should also develop
a hierarchical routing approach, which will allow us to
handle dense mobility graphs, by initially merging adja-
cent location nodes into a super-node to reduce the com-
plexity. There is a need to develop distributed algorithms,
allowing multiple agents and sensor nodes to collaborate
to determine the damage to the network in large scale
problems. The work in this paper should be extended to
consider a continually changing network and environment.
Future work can also implement the network repair sce-
nario with a real robot.

Acknowledgments

This work was funded by the HEA PRTLI4 project
NEMBES, and by the SFI Centre CTVR (10/CE/I1853).

References

[1] FK. Hwang, D.S. Richards, P. Winter, The Steiner tree problem, in:
Annals of Discrete Mathmatics, 1992.

[2] HJ. Promel, A. Steger, The Steiner tree problem. A tour through
graphs, algorithms, and complexity, Adv. Lect. Math. (2002).

[3] G. Robins, A. Zelikovsky, Tighter bounds for graph Steiner tree
approximation, J. Discr. Math. 19 (2005) 122-134.

[4] B. Khelifa, H. Haffaf, M. Merabti, D. Llewellyn-Jones, Monitoring
connectivity in wireless sensor networks, in: IEEE Symposium on
Computers and Communications (ISCC), 2009, pp. 507-512.

[5] H.M. Almasaeid, A.E. Kamal, On the minimum k-connectivity repair
in wireless sensor networks, in: IEEE International Conference on
Communications (ICC), 2009, pp. 1-5.

[6] N. Atay, B. Burchan, Mobile wireless sensor network connectivity
repair with k-redundancy, in: 8th International Workshop on the
Algorithmic Foundations of Robotics, vol. 57, 2008, pp. 35-49.

[7] L. Sitanayah, K.N. Brown, CJ. Sreenan, A fault-tolerant relay
placement algorithm for ensuring k vertex-disjoint paths in
wireless sensor networks, J. Ad Hoc Networks 23 (2014) 145-162.

[8] L. Sitanayah, K.N. Brown, CJ. Sreenan, Planning the deployment of
multiple sinks and relays in wireless sensor networks, J. Heurist.
(2014) 1-36.

[9] A.A. Abbasi, K. Akkaya, M. Younis, A distributed connectivity
restoration algorithm in wireless sensor and actor networks, in:
32nd IEEE Conference on Local Computer Networks (LCN), 2007, pp.
496-503.

[10] F. Senel, K. Akkaya, M.F. Younis, An efficient mechanism for
establishing connectivity in wireless sensor and actor networks, in:
IEEE Conference on Global Telecommunications (GLOBECOM), 2007,
pp. 1129-1133.

[11] K. Akkaya, S. Janapala, Maximizing connected coverage via
controlled actor relocation in wireless sensor and actor networks,
J. Comput. Telecommun. Network. 52 (14) (2008) 2779-2796.

[12] K. Akkaya, F. Senel, Detecting and connecting disjoint sub-networks
in wireless sensor and actor networks,]. Ad Hoc Networks 7 (2009)
1330-1346.

[13] A. Zamanifar, M. Sharifi, O. Kashefi, Self actor-actor connectivity
restoration in wireless sensor and actor networks, in: 1st Asian
Conference on Intelligent Information and Database Systems
(ACIIDS), 2009, pp. 442-447.

[14] N. Tamboli, M. Younis, Coverage-aware connectivity restoration in
mobile sensor networks, in: IEEE International Conference on
Communications, 2009, pp. 1-5.

[15] A. Abbasi, M. Younis, U. Baroudi, Restoring connectivity in wireless
sensor-actor networks with minimal topology changes, in: IEEE
International Conference on Communications (ICC), 2010,
pp. 1-5.

[16] M. Sir, 1. Senturk, E. Sisikoglu, K. Akkaya, An optimization-based
approach for connecting partitioned mobile sensor/
actuator networks, in: 3rd International Workshop on Wireless
Sensor, Actuator and Robot Networks (INFOCOM), 2011, pp. 525-
530.

[17] A. Abbasi, M. Younis, U. Baroudi, Recovering from a node failure in
wireless sensor-actor networks with minimal topology changes,
IEEE Trans. Veh. Technol. 62 (2013) 256-271.

[18] K. Akkaya, F. Senel, A. Thimmapuram, S. Uludag, Distributed
recovery from network partitioning in movable sensor/actor
networks via controlled mobility, IEEE Trans. Comput. 59 (2010)
258-271.

[19] L. Dai, V. Chan, Helper node trajectory control for connection
assurance in proactive mobile wireless networks, in: 16th
International Conference on Computer Communications and
Networks (ICCCN), 2007, pp. 882-887.

[20] D. Henkel, T. Brown, Delay-tolerant communication using mobile
robotic helper nodes, in: 6th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks and
Workshops (WiOPT), 2008, pp. 657-666.

[21] F. Senel, M. Younis, K. Akkaya, A robust relay node placement
heuristic for structurally damaged wireless sensor networks, in: IEEE
34th Conference on Local Computer Networks (LCN), 2009, pp. 633-
640.

[22] S. Lee, ML.F. Younis, Qos-aware relay node placement in a segmented
wireless sensor network, in: IEEE International Conference on
Communications (ICC), 2009, pp. 1-5.

[23] S. Lee, MLF. Younis, EQAR: effective QoS-aware relay node placement
algorithm for connecting disjoint wireless sensor subnetworks, IEEE
Trans. Comput. 60 (12) (2011) 1772-1787.

[24] S. Lee, M. Younis, Recovery from multiple simultaneous failures in
wireless sensor networks using minimum Steiner tree, J. Parallel
Distrib. Comput. 70 (2010) 525-536.

[25] M. Won, R. Stoleru, H. Chenji, W. Zhang, On optimal connectivity
restoration in segmented sensor networks, in: Proceeding of 10th
European Conference on Wireless Sensor Networks, 2013, pp. 131-
148.

[26] T.T. Truong, K.N. Brown, CJ. Sreenan, Integration of node
deployment and path planning in restoring network connectivity,
in: The 29th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSig), 2011.

[27] R. Falcgn, X. Li, A. Nayak, I. Stojmenovic, The one-commodity
traveling salesman problem with selective pickup and delivery: an
ant colony approach, in: IEEE Congress on Evolutionary
Computation, 2010, pp. 1-8.

[28] L.-M. Mou, X.-L. Dai, A novel ant colony system for solving the one-
commodity traveling salesman problem with selective pickup and
delivery, in: ICNC, 2012, pp. 1096-1101.

[29] R. Falcen, X. Li, A. Nayak, I. Stojmenovic, A harmony-seeking firefly
swarm to the periodic replacement of damaged sensors by a team of
mobile robots, in: ICC, 2012, pp. 4914-4918.

http://refhub.elsevier.com/S1570-8705(15)00095-5/h0010
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0010
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0015
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0015
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0055
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0055
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0055
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0060
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0060
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0060
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0085
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0085
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0085
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0090
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0090
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0090
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0090
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0115
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0115
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0115
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0125
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0125
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0125

208 T.T. Truong et al./Ad Hoc Networks 33 (2015) 190-208

[30] K. Magklara, D. Zorbas, T. Razafindralambo, Node discovery and
replacement using mobile robot, in: Ad Hoc Networks - 4th
International ICST Conference, 2012, pp. 59-71.

[31] Y. Wang, A. Barnawi, RF. de Mello, I. Stojmenovic, Localized ant
colony of robots for redeployment in wireless sensor networks,
Multiple-Valued Logic Soft Comput. 23 (1-2) (2014) 35-51.

[32] H. Li, A. Barnawi, I. Stojmenovic, C. Wang, Market-based sensor
relocation by robot team in wireless sensor networks, Ad Hoc Sensor
Wireless Networks 22 (3-4) (2014) 259-280.

[33] LF. Senturk, S. Yilmaz, K. Akkaya, Connectivity restoration in delay-
tolerant sensor networks using game theory, J. Ad Hoc Ubiquitous
Comput. 11 (2/3) (2012) 109-124.

[34] LF. Senturk, K. Akkaya, On the performance of sensor node
repositioning under realistic terrain constraints, in: IEEE 37th
Conference on Local Computer Networks (LCN), 2012, pp. 336-339.

[35] LF. Senturk, K. Akkaya, Energy and terrain aware connectivity
restoration in disjoint mobile sensor networks, in: 12th IEEE
International Workshop on Wireless Local Networks (LCN), 2012,
pp. 767-774.

[36] M. Batalin, G.S. Sukhatme, The design and analysis of an efficient
local algorithm for coverage and exploration based on sensor
network deployment, IEEE Trans. Robot. 23 (4) (2007) 661-675.

[37] M.M. Zavlanos, GJ. Pappas, Distributed connectivity control of
mobile networks, IEEE Trans. Robot. 24 (6) (2008) 1416-1428.

[38] S. Poduri, S. Pattem, B. Krishnamachari, G.S. Sukhatme, Using local
geometry for tunable topology control in sensor networks, IEEE
Trans. Mobile Comput. 8 (2009) 218-230.

[39] M. Fischetti, J.-]. Salazar-Gonzalez, P. Toth, The generalized traveling
salesman and orienteering problems, in: G. Gutin, A.P. Punnen
(Eds.), The Traveling Salesman Problem and Its Variations,
Combinatorial Optimization, vol. 12, Springer, 2004, pp. 609-662.

[40] E.L. Lawler, J. Lenstra, A. Rinnooy Kan, D. Shmoys, The Traveling
Salesman Problem, John Wiley & Sons, 1985.

[41] M.C. Dourado, R.A. de Oliveira, F. Protti, Generating all the Steiner
trees and computing Steiner intervals for a fixed number of
terminals, Electron. Notes Discr. Math. 35 (2009) 323-328.

[42] K. Sorensen, G.K. Janssens, An algorithm to generate all spanning
trees of a graph in order of increasing cost, J. Pesquisa Oper. 25
(2005) 219-229.

[43] B.Y. Wu, K.-M. Chao, Spanning Trees and Optimization Problems,
Chapman & Hall/ CRC Press, USA, 2004.

[44] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, second ed., The MIT Press, 2001.

[45] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic
determination of minimum cost paths, IEEE Trans. Syst. Sci.
Cybernet. 4 (2) (1968) 100-107.

Thuy T. Truong received a Ph.D. degree in
Computer Science from University College
Cork in 2014, and MSc degree in Advanced
Distributed System from the University of
Leicester, UK in 2009, and a BSc degree in
Computer Science and Engineering from Ho
Chi Minh University of Technology, Vietnam
in 2007. Currently, she is a post-doctoral
researcher in Insight/MISL Lab, University
College Cork under guidance of Dr. Kenneth N.
Brown and Prof. Cormac Sreenan. Her
research interests are in network embedded
systems and wireless networks.

Kenneth N. Brown joined UCC Computer
Science Department as a senior lecturer in
2003, where he is the UCC Deputy Director of
Insight, the centre for data analytics, and the
UCC Principal Investigator on CTVR, the
telecommunications research centre. Prior to
that he was a lecturer at the University of
Aberdeen, a Research Fellow at Carnegie
Mellon University, and a Research Associate at
the University of Bristol. His research interests
are in the application of Al, optimisation and
distributed reasoning, with a particular focus

Cormac J. Sreenan received the Ph.D. degree
in computer science from Cambridge
University. He is a full professor of computer
science at University College Cork (UCC) in
Ireland. Prior to joining UCC in 1999 he was
on the Research Staff at AT&T Labs-Research,
Florham Park, NJ, and at Bell Labs, Murray Hill,
NJ. He is currently on the editorial boards of
IEEE Transactions on Mobile Computing, ACM
Transactions on Sensor Networks, and
ACM/Springer Multimedia Systems Journal.
He is a member of the IEEE and the ACM and
was elected a Fellow of the BCS in 2005. His research interests include
Wireless Sensor Networks, mobile networks and video streaming.

http://refhub.elsevier.com/S1570-8705(15)00095-5/h0160
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0160
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0160
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0165
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0165
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0165
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0120
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0120
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0120
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0180
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0180
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0180
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0185
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0185
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0190
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0190
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0190
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0195
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0195
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0195
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0195
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0195
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0195
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0195
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0200
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0200
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0200
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0205
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0205
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0205
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0210
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0210
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0210
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0215
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0215
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0215
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0220
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0220
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0220
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0225
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0225
http://refhub.elsevier.com/S1570-8705(15)00095-5/h0225

	Multi-objective hierarchical algorithms for restoring Wireless Sensor Network connectivity in known environments
	1 Introduction
	2 Background and related work
	2.1 Related work
	2.1.1 Deploying redundant nodes to achieve a level of connectivity
	2.1.2 Repairing connectivity in Wireless Sensor and Actor Network (WSAN)
	2.1.3 Dispatching mobile nodes to avoid disconnection
	2.1.4 Deploying additional nodes to repair the connectivity
	2.1.5 Sensor relocation by mobile robots
	2.1.6 Other related work

	3 The network repair problem
	4 Optimal Node Algorithm (N-OPT)
	5 Optimal Path Algorithm (P-OPT)
	6 The Pareto set
	7 The Shortest Cheapest Path (SCP) algorithm
	8 The Integrated Path IP algorithm
	9 Adapted DORMS
	10 Evaluation
	10.1 A glance at Pareto optimality
	10.2 More experiments
	10.2.1 Node cost
	10.2.2 Mobility cost
	10.2.3 Runtime
	10.2.4 Density of the possible candidate locations in the network
	10.2.5 Total restoration time

	11 Summary
	Acknowledgments
	References

