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Abstract—Taxi-booking services have recently gained atten-
tion to address congestion and sustainability. However, current
booking services have a low success rate, due to uncoopera-
tive behaviours of passengers and drivers. In this paper, we
propose a centralized Carrying Reservation System (CRS) to
exchange real-time information for drivers and passengers and
support a taxi dispatch mechanism to balance real-time supply
and demand. Evolutionary game theory is applied to analyze
behaviour and optimize the utility for taxi drivers and passengers.
Global Position System (GPS) trajectory data from the Transport
Commission of Shenzhen Municipality is used to evaluate the
performance of proposed system. Results show that our model
could reduce locating time as much as 46%, which will in turn
lower passengers’ waiting times. With our game theory model,
drivers’ profit could be increased by over 18%. Compared with
an off-line mining and online recommendation method (OMOM),
our method improves the gain of drivers during non-rush hours.

Keywords—Algorithm, Recommend System, Evolutionary Game
Theory, GPS data

I. Introduction

Taxis play a prominent role in the transportation system
of metropolitan city areas [1], due to their personalized direct
door-to-door service. In China, cities such as Shenzhen and
Shanghai in particular suffer from a pressing problem: it is
difficult for passengers to find vacant taxis during rush hours,
but hard for drivers to locate passengers during non-rush hours.
The main reason for the problem is the contradiction between
demand and supply: limited taxicabs versus crowded service-
needed passengers during rush hours while abundant taxicabs
against few urgent passengers during Non-rush hours[2].

To solve this problem, many local governments introduced
a taxi-booking service that enable passengers to reserve a taxi
in real time or in advance[3, 4, 5]. However, the system has
been deemed to be ineffective, due to its high costs to the
taxi drivers, cumbersome maintenance and low response rate.
Drivers are reluctant to bear the cost of picking up distant
passengers, partly because of the risk of those passengers
breaking the appointment. The advance of communications
technology means it is now possible to maintain location traces
and to extract patterns from historical data. Recommender
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systems have been proposed to exploit this data. Such systems
recommend a sequence of pick-up points or a sequence of
potential parking positions to drivers.

Although various recommender systems have been pro-
posed, none of the existing work has systematically studied
real-time demand in the taxi market. Real-time demand was
discussed [6, 7, 8], although the systems make their rec-
ommendations mostly by relying on historical GPS traces
that recorded similar information, such as similar location,
similar time schedules and similar itineraries. Focusing on
historical information means the systems cannot exploit the
latest dynamic information in a city taxi market.

Our research aims to provide a solution to balance the
supply and demand of taxi-service market. We propose an
evolutionary game approach to maximize drivers’ profit and
minimize passengers’ cost. With the aid of widely deployed
Global Position System(GPS) technology, we assume that the
true location of taxis and passenger smartphones are already
available. By considering the incentive to drivers and the
true location of all participants, we develop a taxi dispatch
mechanism. We show the existence of stable equilibrium.
Finally, we use real-world data to evaluate the performance
of the proposed system.

The major contributions of this paper are summarized
below.

1) A systematic study about driver and passengers’ pref-
erence is presented, and we extract the key charac-
teristics of participants’ behaviors. Cooperating with
taxi drivers and passengers, we identify several facts
that contribute to the low success rate of current
booking service.

2) With the aid of GPS technology, we present an
efficient dispatch model, in which we consider both
the willingness of drivers and the locations of all
participants.

3) Using the routes of the drivers, we propose a evolu-
tionary game approach to optimize the driver revenue
passenger cost. To the best of our knowledge, it is
the first solution to the taxi problem that consider
participants to be bounded rational. We set parameters
according to the key characteristics extracted from the
behaviour study and construct a game model.



GPS trajectory data (WGS84 geodetic system) from
the Transport Commission of Shenzhen Municipality, which
recorded about 20,000 taxis in Shenzhen and 13,000 taxis in
Dongguan, was used to evaluate the performance of the system.
Comparing with the ground truth, our reservation system can
(i) reduce at least 52% of drivers’ locating time and the
improved scaled will be at most 46%; (ii) increase at least 18%
of the driver profit; (iii) lower the passenger waiting time.

The paper is organized in the following fashion. In Section
2 we discuss related work and in Section 3 define the methods
used in the system. Section 4 shows the simulation model,
and Section 5 shows the results obtained from the simulation to
estimate the effectiveness of the proposed method. Conclusions
are given in Section 6.

II. RelatedWorks

Supply and demand interaction in the taxi market is the
most challenge issue. Yang et al.[9] introduced a network
model to describe the demand and supply equilibrium of
taxi services under fare structure and fleet size regulation in
either competitive or monopoly markets. Results showed that it
could determine a number of system performance measures at
equilibrium such as utilization rate for taxis and level of service
quality, and predict the effects of alternative regulations on
system performance. The nature of equilibrium in the market
for taxi services was given by Manski et al.[10]. They showed
that in the taxi market supply generates demand, and vice
versa. This supply-demand interaction can be explosive but
eventually must stabilise. Yang et al.[11] developed a simulta-
neous equation system for passenger demand, taxi utilization
and level of services based on a taxi service situation found
in the urban area of Hong Kong over the last ten years. Yang
et al.[12] developed a meeting function to model search and
meeting frictions and established the existence of a stationary
competitive equilibrium achieved at fixed fare prices, which is
determined when the demand of the customers matches the
supply of taxis. However, the supply-demand interaction is
still vague for the unpredictable nature of passengers and their
destinations.

Under the condition of dynamic imbalance of supply and
demand, recommender systems[13] have been proposed to
reduce cost and maximise income for both drivers and passen-
gers. Many recommender system[14, 15, 16] that refer to use-
ful knowledge mined from massive amounts of accumulated
travel data, providing real-time decision making service for
people in travel, have been proposed. Ge et al.[17] proposed an
cost-aware tour recommendation, which aims to mine the cost
preferences and user interests simultaneously from the large
scale of tour logs. Balan et al.[18] introduced a real-time trip
information system that provides passengers with the expected
fare and trip duration of the taxi ride they are planning to take.
Ge et al.[19] developed a mobile recommender system which
has the ability to recommend a sequence of pick-up points for
taxi drivers or a sequence of potential parking positions. Jason
et al.[20] presented a simple yet practical method, which refers
to a derived Spatio-Temporal Profitability(STP) map, to reduce
cruising miles by suggesting profitable locations to taxicab
drivers. Chen et al.[21] showed that vacant taxis’ search
strategies are based on drivers’ experience and information
and gave a simulation model for cruising taxis.

However, the detail of taxi dispatch systems has received
little attention. Currently, Global Positioning System(GPS)
technology is widely applied for automatic vehicle location[1,
22]. An alternative dispatch system and a novel trip-chaining
strategy for taxi advance booking has been proposed by Wang
et al.[1], where the dispatch of taxis is determined by real-
time traffic conditions and the taxi assigned the booking job
is the one with the shortest-time path. A novel trip-chaining
strategy means that several bookings with demand time points
which are spread out within a reasonable period of time are
chained together, and with each pick-up point being within
close proximity to the previous drop-off location. However,
there is little work to target the following problem: when
two and more taxis are in close proximity according to GPS
information, which taxi should be dispatched?

III. Behaviour Analysis

In most cities, taxis are operated by many different com-
panies. Jiaotong, Guangjun, Huayuan and many other small
companies. Even worse, booking numbers are different even
between two nearby taxi companies in the same city, not to
mention companies in different cities.

We analyze participants’ behaviours to learn their key pref-
erences. A random survey was applied to collect participants’
information. Fig 1 gives a short description of our process to
extract the key characteristics.
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Fig. 1: Extract the key characteristics

Having cooperated with taxi driver and passenger, we
identified several factors that lead to the low success rate of
current booking services. Drivers are reluctant to bear the cost
of picking up assigned passengers, mainly due to the risk
of passengers breaking the appointment. Passengers are more
willing to phone for taxi service

1) during rush hours, and
2) when their location is remote and few taxis are

accessible.

However, in both cases, taxi drivers are reluctant to pick
up the passenger. Taxi drivers do not need to worry about
booking passengers during rush hours and do not have enough
motivation to pick up passengers from a remote place. In both
cases, passengers are also liable to take a vacant taxi that is
passing by. To account for this, we propose that passengers’
utility functions can best be represented by the expected
waiting time.

For drivers, they prefer passengers that

1) that request a long-distance ride, or
2) whose destination area is one of the driver’s preferred

areas.



Both cases will decrease the time required to locate passen-
gers, which could increase the revenue of drivers in turn. Thus,
we formulate drivers’ utility based on the current destination
and the next trip after arriving at the destination.

IV. Reservation system

CRS provides a platform through which, passengers can re-
serve a taxi service. There are mainly four major steps in CRS:
1) passengers send a request to Process Centre(PC), including
information about location, departure time and destination. 2)
PC broadcasts this information to nearby taxis. 3) drivers notify
their willingness to pick up which passengers. 4) PC works as
an auctioneer to compute the best match, so as to maximize
the utility for both passengers and taxi drivers, and inform the
result to both sides.

We give a detail description of the architecture. Passengers
send a request to the process center, including the information
of starting place, departure time and destination. Then the
Transmit-and Receive Modules(TR Module) broadcast the
information to nearby taxi drivers. Passengers that willing to
pick up the passengers will inform his willing to PC. Based on
both short-path allocation rules and willingness of drivers, the
Compute module will compute a route and a match to dispatch
a taxi to pick up the passenger. Another vital responsibility of
compute module is calculate some important parameters(e.g.,
average waiting time, average driving distance at certain time
in certain place). The clock is setting to handle the situation
that drivers do not respond within a time range. When the
waiting time exceed the setting time, this request information
will be ignored. Analysis module can verify that whether your
choosing action is the most optimal.

Fig. 2: Reservation Architecture

V. Model

The proposed model consists of three major components:
the knowledge and utility definition, the dispatch model and
and evolutionary game model. Once the utility is designed for
all participants, standard game theoretical methods are applied
to calculate the optimal strategies for the actors.

A. Knowledge and utility definition

It is important to note that drivers knows where and when to
locate passengers based on their experience. We define E as the

assertion of a quantitative measure of knowledge, which reflect
preference for an area. Higher E means that driver will locate
another passengers in the destination with a high probability.

From the study, it appears that the most optimal situation
for a driver is that a long-distance ride and destination is
located within one of his/her favourite areas. After reaching
the destination, drivers have to locate another passenger for the
next driving, so a favorite area will decrease the expected time
to locate passengers. Consequently, the utility function mainly
contains three aspects: the time cost to locate passengers, the
current trip and the next trip after reaching the destination.
More formally:

UD = Utim + Ucur + Unex (1)

where Utim = CT , and the unit time cost C is defined as

C =
G −Cc

T
(2)

where G, Cc, T denote the expected gain, total cost, the total
riding time respectively.

B. Dispatch model

We will address the problem of how to dispatch a taxi when
two or more taxis are in close proximity according to GPS
information in this section. Our dispatch principle is to find a
driver-passenger match that maximizes the utility function of
driver and minimizes the time consumption of passenger.

Fig. 3: Compute the Shortest Path by Arcgis

As the GPS location and city map information are avail-
able, we can compute the accurate time consumption TDk Pi

of driver Dk on the way to pick up the passenger Pi. The
MDP(Match for Driver-Passenger)algorithm is summarized as
follows:

C. Evolutionary game model

We have still to answer the question of under what cir-
cumstances are the drivers willing to pick up passengers and
passengers willing to wait for reserved taxi? In this section,
we will address this under the assumption that all drivers and
passengers know that each of them attempts to maximize his
or her own utility, and they are fully aware of the impact on



Algorithm 1 MDP
1: Let Ii j be shortest distance of unoccupied taxi i to available

passenger j (refer to figure 3).
2: Let Wi j ∈ [0, 1] be the willingness of driver i to pick up

the passenger j.
3: Let s = argmin(Ii j + αWi j) that α is a parameter that

balance the magnitude unit.
4: if no such s exists then.
5: random assign the chance to a driver .
6: else
7: assign the chance to the driver that subject to s.
8: end if

their own utilities from any combination of their individual
choices.

Such a strategic interaction can be modeled as a game G =
[N, S ,U], where N, S, and U denote the set of players (drivers
and passengers), the set of available strategies, and the set of
payoff functions, respectively. We consider two pure strategies
for driver and passenger respectively:

The driver has two pure strategies:

S D1 Driver pick up the passenger within the limited time.
S D2 Driver ignore the service request and stick by his driving

plan.

Note that in reality drivers could choose to pick up passen-
ger at the beginning but then change their mind when they see
another passenger on the way. However, the original choice
was chosen as the driver’s optimal action (and searching for
a passenger was a possible action). If the driver sticks to the
strategy, they can expect to pick up a passenger in the next
few minutes and locate another passenger easily after that trip.
However, picking up a passenger waiting on the roadside may
lead to an undesirable destination.

The passenger has two pure strategies:

S P1 Waiting until the taxi come.
S P2 Getting in a taxi that pass by.

We use an evolutionary game model[23, 24], instead of
classical game theory[25], to analyze this problem. Classical
game theory requires the assumption of rational players, while
evolutionary game theory only requires bounded rationality.
With the rationality assumption, driver (passenger) should
select the best strategy according to the strategy selected by
passenger (driver), which requires the driver (passenger) hav-
ing rational awareness, analytical reasoning ability, memory
capacity, and accuracy requirements[26]. It emphasizes that the
driver (passenger) must not make mistakes and must believe
that other drivers (passengers) also will not make mistakes
through the process of the game at any times.

However, it is unreasonable in reality, as driver (passen-
ger) might not choose the optimal strategy for himself. For
evolutionary game theory, driver (passenger) could continually
adjust their strategies by observing the other players according
to the payoff. It is a constant learning and evolution process
with dynamic adjustment.

TABLE I: parameter setting

L1 Average occupied driving distance when follow experience

L∗ Driving distance provided by passenger

L2 Expected occupied driving distance after deal has completed

L Average driving distance to pick up passengers

C1 Time cost per unit time

P1 The probability of taxi come across available passenger
per unit time

we Time consumption on the way to pick up the passenger

w The average waiting time in certain region

f Regulatory unit fare

E′ Preference of a random destination area

We assume some payoff parameters in our model.

Thus, we can get the probability PC of passenger finding
an available taxi during time we:

PC = P1 + (1 − P1)P1 + (1 − P1)2P1 + (1 − P1)3P1

+ · · · + (1 − P1)we−1P1

=
P1 − P1(1 − P1)we

1 − (1 − P1)
= 1 − (1 − P1)we (3)

Let x denote the proportion of the drivers who wish to play
strategy D1 and the rest 1−x refer to those drivers play strategy
D2. Likewise, y denote the proportion of the passengers play
the strategy P1 and strategy P2 is being tried by the rest
passengers. Based on the above parameters and assumptions,
we give the payoff matrix:

TABLE II: Game model encompassing the strategies

Passenger
Driver P1(y) P2(1 − y)
D1(x) (U11, V11) (U12, V21)

D2(1 − x) (U21, V12) (U22, V22)

• Driver’s payoff function by employing strategy D1
when passenger play strategy P1 :

U11 = EL2 f − LC1 + f L∗ (4)

• Passengers’s payoff function of employing P1 when
driver play strategy D1:

V11 = −we (5)

Likewise,

• U12: U12 = (1−Pc)(EL2 f + f L∗)+Pc(E′ f L2 + f L1)−
LC1

• V21: V21 = −Pcwe − (1 − Pc)w

• U21: U21 = E′ f L2 + f L1

• V12: V12 = −we

• U22: U22 = E′ f L2 + f L1

• V22: V22 = −Pcwe − (1 − Pc)w



The goal of the analysis module in the reservation system
is to learn a set of key characteristics and then set appropriate
parameters to model drivers’ and passengers’ behaviour. The
block diagram of the analysis process is given by Fig 4, in
which game theory is applied to calculate the conditions to
improve the success rate of reservation system.

Key character Conditions

Fig. 4: Analysis Model

VI. Analysis

We use the standard Jacobian Matrix (J) evaluated at
the equilibrium for evaluating the asymptotic stability of an
equilibrium strategy pair and obtain the ESS values here. Any
solution pair that satisfies the Eqnarray 6 is an ESS of the
game.

Tr(J) < 0, det(J) > 0 (6)

Theorem VI.1 No matter what actions the passengers will
make, the driver’s optimal actions are picking up the passen-
gers if the following formula holds:

E ≥ max(
(1 − Pc)(E′ f L2 + f L − f L∗) + LC1

L2 f (1 − Pc)
, (7)

L1 − L∗ + E′L2

L2
−

LC1

f L2
) (8)

where E, Pc denote the preference and the probability of a
taxi finding an available passenger during time we respectively.
This theorem shows that there is some interactive relationship
among these parameters. This also provides guidance informa-
tion for drivers to adjust their current strategies.

Theorem VI.2 Without outside incentive, when shortest-path
matching is applied by the driver, the passenger’s optimal
action is waiting until the taxi comes, if the following formula
holds:

w ≥ we (9)

where w,we denote the average waiting time and time con-
sumption to pick up passengers, respectively.

VII. Performance Evaluation

A. Preparatory phase

It is easy to confirm the true location of passengers
while it is difficult to confirm the exact arriving time. We
assume that a passenger was already waiting there when a
taxicab switched from cruising to occupied, and thus the
occupation index switching from 0 to 1 should be recorded.
We set the observation time to be 5 minutes, for two rea-
sons. Firstly, the sparseness and low-sampling-rate of the taxi

trajectories[27] discourage us from computing less than 5
minutes flow(e.g.,1 ∼ 5 minute, 2 ∼ 6 minute.). Secondly,
although on-the-call system is used by passengers, they still
appear to be unwilling to wait longer than 5 minutes.

For the nature of the service and the driver’s desire for
short-term profitability[20], we focus on some regions(e.g,
conference center, shenzhen university etc). Figure 5 gives a
detail description of the method. The green solid line is the
GPS trip of the taxi with ID number 94P79 and 02T46. When
passengers’ information is included, taxi 94P79 and 02T46
will choose the red dotted line routing instead, which could
decrease the locating time. It is reasonable to use shortest-past
matching and find passengers as soon as possible.

Fig. 5: Methodology

B. Result

1) Time consumption to locate passenger: Firstly, we need
to confirm whether passengers’ information involved will
increase some aspects of the on-the-call system. With the
aid of Arcgis and map information, we calculate the real
distance of the drivers’ route. Figure 6 shows the improve-
ment since shortest-path matching was applied during the five
different periods. It illustrates some observations: firstly, taxi
drivers could gain more profit when they use the shortest-path
allocation strategy during Non-rush hour. Secondly, driving
by experience is almost as good as driving by shortest-path
allocation rules. Since drivers’ locating time reduces, that will
decrease passengers’ waiting time.

Fig. 6: Time consumption to locate passengers



2) Convergence of participant : The PC broadcasts pas-
senger’s information to nearby taxi drivers (here we set the
broadcast range as 1 kilometer). The regulatory unit fare is 2.4
yuan per Kilometer. Suppose that a passenger send a request
in 22:00 and his/her destination is 12 kilometer away.
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Figure 7 shows the rate change of the driver. Whether the
percentage of drivers playing S D1 will converge to 1 relies
on driver’s preference E. Moreover, driver’s preference E that
satisfies theorem VI will converge to 1 finally.

We select a time period for which the time consumption to
pick up passengers we is 40s, and choose different average
waiting times w to imitate the convergence of passengers.
Figure 8 illustrate that the percentage will converge to 1 only
when w ≥ we holds. This is consistent with the analysis in the
former section. It implies that passengers are not patient and
prefer actions that keep waiting times shorter.

3) Optimal actions: But how should drivers handle this
situation to maximize their profit? Fig 9 describes the critical
convergence line with respect to different preferences E and
average occupied driving distance L1 when driving by expe-
rience. The figure denotes that personal drivers that locate in
the area between the line and x axis will converge to 1, i.e,
is willing to pick up the passengers and gain more profit. In
other words, the optimal action for those drivers is choosing
the strategy ”pick up”. However, the optimal actions will turn
to be the strategy ”ignore” when above this line.

Pc =0.9 Pc =0.8 Pc =0.6

Fig. 9: Distance vs. Preference
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Fig. 10: Distance vs. probability

The higher the preference E of the destination, the more
driver is willing to pick up the passengers, until the average
occupied driving distance L1 greatly exceeds the distance
passengers requested. Moreover, it will guide drivers to choose
their optimal actions. For a driver with a preference E = 0.8
and average occupied driving distance L1 = 12, the optimal
strategy is to follow CRS’s guide and pick up the passenger.

Fig 11 presents the game approach profit compared with
the ground truth, which could increase at least 18% of the

drivers’ profit. As the percentage of drivers who accept a
match increases, the profit the drivers will gain increases. It
shows that drivers will optimize their profit when all drivers
choose to pick up the passengers. The Non-game approach
profit fluctuates mainly because of its random destinations,
i.e., the preferences fluctuate between 0 and 1, while the game
approach profit fluctuates mainly for preference of destination
and percentage of cooperative drivers. The most probable
reason for this is that passengers choose their actions mainly
according to their evaluation of drivers’ behavior. When they
think the probability that the driver will pick them up is high,
they are more willing to wait, which will reduce the risk of
failing to meet the passengers and in turn increase the profit
of drivers.
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Fig. 11: Profit

4) Evaluation on Online Dispatch: We compare our dis-
patch method with the OMOR[8], which proposed that taxi
could earn more by waiting in parking places, rather than
cruising. The OMOR method first detected parking places and
then proposed a probabilistic model to calculate how likely the
driver would be to pick up a passenger in a parking place. Here
we denote ∆ as the waiting time in parking places, and we set
∆ = 30 secs and ∆ = 60 secs here. Intuitively, drivers could be
more likely to pick up a passenger when waiting more time.
We randomly select more than 20 places and compute the time
consumption and profit.
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Fig. 12: favorite area
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Figure 12 and 13 showed that drivers could gain more
when waiting in parking places for 60 secs rather than 30
secs. However, online dispatch could help idle drivers to



locate passengers more quickly in non-rush hours than in rush
hours. The most possible conclusion is that heavy demand
for taxi service always exist during rush hour. Also, the time
consumption to locate passengers during rush hour is longer
than during non-rush hour, because of high traffic congestion
and more rival drivers.

VIII. Conclusions

We proposed an efficient dispatch and decision model
for taxi-booking service and used evolutionary game theory
to optimize the behaviour of taxi drivers and passengers.
GPS trajectory data from Transport Commission of Shenzhen
Municipality was used to evaluate the performance of the
proposed system.

Our contributions are: i) a systematic study of participants’
behaviour, which shows that passengers’ natural unwillingness
to wait and drivers’ uncooperative behaviour contributes to the
low success rate of current booking services; ii) an efficient
dispatch and decision model to balance real-time supply and
demand which can reduce the time to find passengers by
between 2% and 46%; iii) an evolutionary game approach for
optimizing the revenue of drivers and costs of passengers, for
which results shows that we could increase driver profit by at
least 18%.
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