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Abstract Heating, ventilation, air conditioning (HVAC) systs are significant
consumers of energy, however building managemestésys do not typically op-
erate them in accordance with occupant movements.tB the delayed response
of HVAC systems, prediction of occupant locatioasiecessary to maximize en-
ergy efficiency. In this paper we present two apphes to occupant location pre-
diction based on association rule mining whichalfarediction based on histori-
cal occupant movements and any available real tif@mation, or based on
recent occupant movements. We show how associatiermining can be adapted
for occupant prediction and evaluate both approaegainst existing approaches
on two sets of real occupants.

1 Introduction

Office buildings are significant consumers of energuildings typically account
for up to 40% of the energy use in industrialisedrdries [1], and of that, over
70% is consumed in the operation of the buildimgulgh HVAC and lighting. A
large portion of this is consumed under static m@megimes, in which heating,
cooling and lighting are applied according to fixahedules, specified when the
buildings were designed, regardless of how thedingk are actually used. To im-
prove energy efficiency, the building managemendteay should operate the
HVAC systems in response to the actual behaviotitee of the occupants.
However, heating and cooling systems have a deleggubnse, so to satisfy the
needs of the occupants, the management systempneuaitt the occupant behav-
iour. The prediction system should be accurateo#tt bulk and individual levels:
the total number of occupants of a building or aezdetermine the total load on
the HVAC system, while knowing the presence andhtitie of an occupant of an
individual office allows us to avoid waste througinecessary heating or cooling
without discomforting the individual.

We believe that in most office buildings, the babav of occupants tends to be
regular. An occupant’s behaviour may relate to tthee of day, the day of the
week or the time of year. Their behaviour on a giday may also depend on their
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location earlier on that day or on their most récmguence of movements. We
require a system which is able to recognize thiese and feature based patterns
across different levels of granularity from obsehgata. Further, many office us-
ers now use electronic calendars to manage the&dstes, and information in
these calendars may support or override the redpdbaviour. The reliability of
the calendar data will depend on the individual nte&ning it, so the prediction
system needs to be able to learn occupant-spgeifierns from the calendars.

We propose the use of association rule miningdarfing individual occupant
behaviour patterns. We wish to find patterns of &md which can be used to
predict occupant movements, for which associatid& mining is ideal as it is de-
signed to find any useful patterns in a dataset.ud&ethe Apriori algorithm [2],
and show how the algorithm can be extended to sepietime series, incorporat-
ing calendar entries. We then propose a numbean$formations of the learning
mechanism, pruning itemsets and rules to focusimseful rules, and extending
the generation of itemsets in areas where usefténpa will be found. Finally we
describe a further modification of this approachiaolth incorporates time-
independent sequences. We evaluate the perfornmante&o sets of actual occu-
pant data, and show up to 76% and 86% accuracpamset respectively.

The remainder of this paper is organized as follo8sction 2 provides an
overview of association rules and the existing worklocation prediction. Sec-
tions 3 and 4 detail the modifications we make torigri to make timeslot-
specific and timeslot-independent predictions regpely. In Section 5 we outline
the datasets we use for evaluation and the oth@maphes we evaluate against
and present our results. We conclude the papegdtidh 6.

2 Related Work

Existing methods for predicting occupant locationdude bayesian networks [3],
neural networks [4], state predictors [5], hiddearkov models [6], context pre-
dictors [7], eigenbehaviours [8].

The Bayesian network approach presented in [3]ipiethe occupant’s next
location based on the sequence of their previocatitins and the current time of
day and day of the week. Based on the current radnthe day/time, it also pre-
dicts the duration of the occupant’s stay in theent room. This results in sepa-
rate predictions for the occupant’s next locatiad &or the time they will move.

The neural network approach uses a binary codificabf the location se-
guences as input to a neural network. In [4] bottal and global predictors are
considered. A local predictor is a network whichréned on and predicts a par-
ticular occupant, and thus deals only with codifiecation sequences. The global
predictor takes all occupants’ location sequenaks)g with associated occupant
codes, as training data, and can make predictamasny occupant.

The state predictor approach in [5] uses a twollewntext predictor with two-
state predictors. This method selects a two-stadigtor based on the occupant’s
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sequence of previous locations. Each state withénselected predictor is a pre-
diction; the current state is used as the predictmd the state may then change
depending on whether the prediction was accuragingBa two-state predictor,
each possible location has two corresponding statea maximum of two incor-
rect predictions for any given sequence is necggssachange future predictions,
resulting in fast retraining if an occupant chantiesr behaviour. The second lev-
el of this predictor can alternatively store theginencies of the possible next loca-
tions for each sequence. This makes it equivateatrharkov model approach.

These approaches all predict the occupant’s nestitin, and with the excep-
tion of the Bayesian network, only use the occupametcent locations. Our appli-
cation requires longer term predictions and weelvelithere may be more general
associations between the occupants’ locationsfigrelnt times which allow for
such predictions. Association rule mining is inteddo discover general patterns
in data and so we propose to investigate whettscation rule mining can be
used to predict occupant locations.

Association rule mining was introduced in [2] asuarsupervised approach to
finding patterns in large datasets. The origingdligption was discovering pat-
terns in datasets of transactions, where eachatttinoa was a market basket, i.e. a
set of purchased items. In that application iteregewiterals, simple strings which
are either present or absent in a transaction; hemthe algorithm can be applied
without modification to sets of attribute/value 1gaiWe chose Apriori as it is the
most basic association rule mining algorithm angtsimplest to modify.

Let U be a universe of items. A datagets a set of instanced {... I,,}, where
each instance is a set of items frbmAn itemsetX is a subset df). The frequen-
cy of X, freq(X), is the number of instancésn D for which X < I, while the
support issupp(x) = freq(X)/|D|. An association rule is an implication of the
form X = Y whereX andY are itemsets such thatn Y = @. This rule states that
each instance which contaitends to contairY. The support of the rule is
supp(X UY). The confidence of the rule is how often it isrect as a fraction of
how often it appliesonf (X = Y) = supp(X U Y)/supp(X).

The purpose of an association rule mining algoritbrto find the set of rules
which are above user-specific thresholds of confideand support. The first step
is to find all itemsets which are ‘frequent’ accogito the support threshold. As-
sociation rules are then generated from these @smnand any rules which fall be-
low the user-specified minimum confidence are dided. Confidence is used to
measure the reliability of a rule in terms of hofteaq it is correct according to the
training data. Finding the frequent itemsets is ti@re difficult step, as the de-
sired itemsets must be found among2Heé — 1 itemsets which can be generated.

Apriori uses breadth first search to find all freqtiitemsets. First all itemsets
of size 1 are enumerated. Itemsets whose suppisrbtdow the support threshold
(infrequent itemsets) are removed, as any supefsat infrequent itemset will al-
so be infrequent. Candidate itemsets of size 2heme generated by combining all
frequent itemsets of size 1, and infrequent itemsétsize 2 are removed. This
process continues, finding frequent itemsets o sizby generating candidates
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from the itemsets of size n-1 and removing infrequemsets, until an n where
no frequent itemsets exist is reached.

Once the frequent itemsets have been found, fan &aguent itemseX all
rules of the form = X — Y whereY c X andY # @ are generated, and those
which do not obey the confidence threshold areadlded.

3 Adapting Association Rule Mining For Occupant Prediction

The first task in applying association rule miniago determine the format of the
dataset. We define an instance to be a single alag §ingle occupant, recording
for each time slot the location of the occupantl$b includes a set of scheduled
locations, specifying where the occupant's caleststed they would be. Finally,
each instance records which occupant and day ofvéek it applies to. Thus the
set of attributes in our datasetds= {d, o,[; ... l;, s; ... 5;}, whered is the dayp is
the occupantl, is the occupant’s location at time siptands,, is the location the
occupant was scheduled to be in at timeOur objective then is to find rules
which predict the value of an attribute ify {.[;} based on the other attributes. In
order to be able to compare confidences meaningfui restrict our attention to
rules which predict single attributes.

Although this format is all that is needed to rupriri, it is unlikely to pro-
duce usable results. The items in our dataset awventics which are critical for
the eventual application, but Apriori by defaultats them all as equivalent. The
location attributes § ... [;} represent an ordered list of time/location paikgciv it
is our objective to predict. However, Apriori has concept of the importance of
or ordering over these items, so it will produckesuwhich run counter to the or-
der, i.e. rules which use later locations to predalier locations, and which make
useless predictions, e.g. predicting timetableiestr

A further important attribute distinction is th@t; ...[;} and {s; ... s;} are actual
location data, whereasando are data labeling the location data, i.e. meta-dat
Due to this their values are in a sense fixed.éx@ample, in an instance which de-
scribes occupant A’'s movements on a Mondbando are fixed at Monday and A
respectively, whereas all the other attributes @arprinciple, take any value in
their domain. This affects the meaning of the supp®tric as the maximum sup-
port for any itemset which includesor o will be less than 1. Since support is used
to determine which itemsets are considered frequeatterns which occur fre-
quently for certain days and/or agents will be dads less frequent due to the in-
clusion of other days and agents in the dataset.

A problem with regard to the content of the datth& the many common pat-
terns tend to be the least interesting, while vegiire low frequency patterns to be
found in order to make predictions in unusual ainstances. Consider for exam-
ple an occupant who has a 90% chance of beingein tffice in any timeslot
from 9am to 5pm. In this case, any pattern of threnf“in at N implies in at M”
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where N and M are between 9-5 will have supporatakast 80%, thus all such
patterns will be found. But there is no real catiein there; all these patterns
could be summarized simply as “the occupant idyike be in”. At the extreme
opposite end, we have days when the occupant daesinm up at all, due to ill-
ness or other reasons — a very obvious patternhwivimuld be represented by
rules such as "out at 9,10,11 implies out at 12¢tISrules could have confidence
close to 100% if the occupant tends to be in inntloening, but if absences are ra-
re the itemset behind the rule will have such loyport it won’t even be a candi-
date. Since enumerating every itemset is not fegsibe wish to eliminate the
common uninteresting ones and focus on the lessnmomibut interesting ones.

3.1 Candidate/Rule Pruning

As mentioned above, standard Apriori has no conokfite relationships between
the items in an instance which exist in occupanatadDue to this it will by de-
fault generate some useless rules. The importattrfes are that the location at-
tributes {; ...[;} represent an ordered list and that they are tihe aitributes we
wish to predict. As an itemset which does not congany of these attributes can-
not produce a rule which predicts any of them, liraipate itemsets which do not
contain some subset ofl;{..;} during candidate elimination.

With regard to rule generation, we only wish todice the future based on the
past (i.e. rules which obey the ordering df .{[;})), and we only wish to predict
a single location at a time in order to allow meagfil comparison of the rules at
rule selection time. Thus our rule generation isfabws: for every itemset
{l; ...1;, x; ... x;}}, wherel is a location item and is any other type of iteni; is
the consequent and all other items are the antatede

3.2 Support Modification

In 2.1 we provided the typical definition of suppdhe proportion of the instances
which contain the itemset/rule. To deal with thdugtion in support for itemsets
which contain metadata items, we redefine supperkwwp(X) = freq(X)/
max(freq(X)). For market basket items, which can in principtew in every
instance, this is the same definition. In the caSeur metadata attribute/value
pairs however, this definition results in a differealue which is normalized such
that the maximum value afupp(X) is always 1 for comparison to other support
values.

Using this modified support threshold in Aprioricats it to find itemsets when
have a lower support due to their metadata atgdbhutiowever this greatly in-
creases the area of the itemset lattice which Hoead for any given support
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threshold. Thus, in order to conserve memory, weergiach possible combination
in a separate pass. For every combination of mtattributes/value€, we ini-
tialize Apriori with all itemsets of siz&'| + 1 which are a superset 6f instead
of standard 1-itemsets. This allows the generaifogvery itemset which contains
that metadata combination in a separate pass.

3.3 Windowing

Some important patterns have such low supportttiizig to find them by simply
lowering the support threshold would result in anbinatorial explosion. Instead
we will use the structure of the data to targetrthepecifically. An example of
such a pattern is a full day of absence: a veryaalsvpattern, but one which oc-
curs so infrequently that it won’t be learned. As tocation attributes form an or-
dered list we can define subsets of them whiclcansecutive, temporal windows
over the location data. By mining these subsetgviithdally, we can reduce the
size of the space of itemsets while still discavgrthe itemsets which describe
consecutive elements of the low support patterns.

We define a window ad¥in(n,m) =< d, 0,1, _n4m,Si..; > Wherei andj de-
note the first and last timeslots, ancandm denote the beginning and length of
the window respectively. In the windowing phase,sgarch within every window
of the chosen length. This approach ignores pattetrich span times which do
not fit within a window. We choose to focus on pats which occur in consecu-
tive time slots as predicting occupant locationseloiaon their most recent move-
ments has been shown to work by the other apprsatibeussed in section 2.

For distinct patterns windowing is sufficient tadi rules which will make the
correct predictions should the pattern recur. Tgkime example of an occupant
who is absent all day, within each window we wélain that consecutive hours of
absence imply absence in the next hour. Taken imbgmation, these rules will
state that at any hour of the day, consecutiveratesanplies continued absence,
although we are still not learning sequences irstimae sense as the approaches in
section 2, as the individual rules are still tiedspecific time slots. These rules are
added to the rules mined from the complete instance

3.4 Rule Selection

Once the rules are generated we need a mechanishoése a rule to make a
prediction. When a prediction is required, valumsany subset of the possible at-
tributes can be supplied as an iteméeA target for the predictiof is also given.
We search the generated rules for all rifes Y whereX c V andY = {I;}.
From these we select the rule with the highestidente as the prediction.
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4 Ordered Association Rules

In order to be able to predict occupant locatidmes timeslot-specific approach
above requires that the occupant's behaviour @ezwith the time of day. Our
evaluation shows that on occupants for whom thesdwt hold the approach per-
forms poorly. However, existing approaches whicid fpatterns that don't relate
to specific times are able to make accurate priedi€ton such occupants. We now
describe a modification to Apriori which allowstid find time-independent se-
guences of locations using the order of the tinieslas with the other timeslot-
independent approaches, this approach relies ondtigpant’s most recent loca-
tions, and cannot make predictions beyond the tireeis|ot.

4.1 Ordered | temsets

In order to represent time-independent sequencedefilee a new set of attributes
{go .--q;} which represent an ordered list of consecutivatioos. These attrib-
utes are similar to the timeslot attributds.{ [;}, but rather than being a list of
time/location pairs, 4, ... q;} is a list of ordering/location pairs. Thus thesfiat-
tribute is always ‘0", as it is the first elementthe list. As we deal only with con-
secutive sequences, for any list of lenjgth, all element®...j must be present.

Ordered itemsets are itemsets of the fofgy:... q;}. Each ordered itemset is
essentially the set of itemsefy ... [j,x} : n < k < m — j}, wheren andm are
the minimum and maximum timeslots in the datasgpeetively, represented as a
single list. An ordered itemset may be instantiateé time specific itemset by
choosing a starting timeslktand addind to every attribute in the list, turning the
itemset{q, ... ¢;} into the itemsefl; ... ;,, } for the chosen timesldt

For example, take the ordered itemset {0=>0, 1=2A50}, which signifies
that an occupant is in their office, leaves forhamr, and then returns. If we det
to be 12:00, this itemset becomes {12=>0, 13=>A53d}, which states that an
occupant is in their office at 12:00, leaves aD03and returns at 14:00.

The individual timeslot-specific itemsets which thedered itemset represents
could be found separately by our original approachyever it would require each
of them to occur separately with sufficiently higimpport, and for rules to be gen-
erated for each variation it would similarly reguigach to separately have suffi-
ciently high confidence. Searching for the sequentemovements over all
timeslots provides two advantages. First, thatteepawhich recurs will be sup-
ported even if it recurs at different times, resgitin low support for each indi-
vidual instance of the pattern, allowing us to famgattern we otherwise wouldn't.
Second, that when we generate an ordered rule dronrdered itemset, it can ap-
ply in cases where the pattern had low supporgven in a timeslot where the
pattern has never occurred previously.
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4.2 Confidence and Support

Confidence and support are defined in the same faaprdered itemsets as for
timeslot-specific itemsets. Howevdreq(X) for an ordered itemset counts the
number of occurrences of the sequence in eachectos, i.e.freq({qo ...q;}) =

Yier freq({li ... lj+x}). This results in values greater than 1 for supgmwever
the anti-monotonicity property still holds, and gsing a support threshold to
eliminate candidates is still valid for this defiah of support, although the
threshold no longer represents the fraction ofddaset in which the itemset oc-
curs. We considered alternative definitions forpznp for ordered itemsets, how-
ever they failed to correctly represent the reafrequency of the itemsets of dif-
ferent sizes and/or broke the anti-monotonicityperty Apriori relies on.

Confidence for ordered rules is still the fractmfithe times that it applies that
it is correct, however as with support it is nowsiolered over all occurrences of
the time-independent sequence that the rule iglbase

4.3 Candidate Generation

To generate itemsets we use a modified form of &psi candidate generation.
Since the first attribute of any ordered itemsesthe ‘0’ and the attributes must
be consecutive, any two itemsets of the same lenitinave the same attributes.
This means that we cannot generate candidatesrlgioing itemsets of the same
length, as the only case where a longer itemsetdimeigenerated would be when
the itemsets have different values for the sanmmibates, which will result in a
support of zero.

Instead, for every possible pair of ordered itemsdtlengthj, we increment
the attributes of one of the itemsets by one, isigifthe sequence to the right by
one timeslot, and then combine them. Thus we coenbi itemset{q ... q;}
and{ry .1} if vn: 1 <n < j — 1: qu41 = 1., €SSentially if the latter sequence can
provides one item to be appended onto the formgresee. Aside from this mod-
ification, candidate generation proceeds as prealyalescribed.

4.4 Rule Selection

Rule selection proceeds in the same manner aseirtitteslot-dependent ap-
proach, except that ordered rules are instanti@metheck their applicability. Giv-
en the prediction targéf and the attributes/values to predict ¥nfor each or-

dered rule{qq ...q;-1} => {q;}, we sej = t to get the rulgl,_; ...l,_, } => {l,},
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before checking Whetheﬁtt_j lt_l} c V. As before, the applicable rule with the
highest confidence is chosen. The ordered and litggecific rules can be com-
bined into a single ruleset and used simultanegusywever simply combining
them provides no advantage over selecting and usihg the more appropriate
ruleset for the dataset.

5 Experimental Evaluation

To test our approach we use two datasets: datadeatdy occupants of the 4C
lab in UCC, and data from the Augsburg Indoor LaeafTracking Benchmarks
[9]. We also evaluate three methods which were usé¢6] and [10], a HMM, an
Elman net and a frequency predictor. The HMM anddfl net were evaluated us-
ing the respective tools in MATLAB, while we implemted the frequency predic-
tor ourselves based on the frequency analysis xpptedictor in [5].

To gather data to test our approach, six occupafntise 4C lab in University
College Cork including the authors manually recdrtieeir movements over a pe-
riod of 5-15 months using google calendar. Eaclupant recorded their location
by room code if within a campus building, or markedmselves as ‘away’ if off
campus. The data was recorded from 8am to 6pmhwitfkhour granularity, with
any occupancy of significantly shorter durationrtt8) minutes filtered out. The
occupants also recorded their timetables for thee tperiod, which recorded the
locations they were scheduled to be in in the stmmmat as the record of their ac-
tual movements. 20 locations were frequented byadbteupants including the
‘away’ location. The test set for this evaluatioasathe most recent 2 months of
data for each occupant, while the training set aththe preceding data each oc-
cupant had recorded, which covered between 3 amdoh3hs.

The Augsburg dataset contains data on 4 occupants-2 weeks in summer
and 1-2 months in fall. The format of the datased iseries of timestamped loca-
tions for each occupant. As the data is not brad@wn into timeslots, we only
compare the sequence based approaches on thisrvefdhe dataset. In order to
be able to apply our timeslot-dependent approadhedadata, we converted it to
the same timeslot format as our gathered data. doupgant’s location in each
timeslot is the location in which they spent thearity of that timeslot. Following
this conversion there are 7 locations frequentedth®y occupants including
‘away’. We compare all approaches on this versioihe dataset.

5.1 Experiments

We generate time-dependent rules from each traisétgising a minimum sup-
port and confidence of 0.2 and 0.5 respectivelyimduwindowing we use a win-
dow size of 3 slots and a minimum support of O\®. generate time-independent
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rules using no support or confidence thresholdrdento maximize the coverage
of the resulting ruleset. Instead of the suppadghold we limit the length of gen-
erated rules to 2 items as shorter sequences hlaverpto be more reliable pre-
dictors of occupants’ next locations.

Following are the configurations used for the corgma approaches. In the
frequency predictor we use a maximum order of 3jrague to shorter sequences
being more reliable predictors. For the hidden marknodel we use 7-8 hidden
states depending on the dataset as this maximizagtacy. The elman net uses
the MATLAB default settings for layer delays andidién layer size as no other
combinations of values tested produced higher dvacauracy.

A feature of the frequency predictor is that it tiones to train as it predicts; in
our evaluation we allow all the sequence-basedigiad to retrain with the days
they have already predicted included in their frgjnset, in order to maximize
their accuracy. Timeslot Apriori predicts with ortlye initial training run, as the
time taken to train makes retraining after evesdpsted day unfeasible.

We test all approaches on their accuracy in priegjdhe occupant’s exact lo-
cation in every time slot. As the sequence-basg@dogghes use only recent occu-
pant movements they can only predict for the nemeslot. Timeslot Apriori is
tested on its ability to predict Next-Slot and N&ay, and with or without time-
table data available. The former determines whdthet,,_, are available, where
n is the time slot being predicted, 'Next Slot’ fifig information is available, and
‘Next Day’ if not. The latter determines whethee talues of; ...s; are available

when predicting, and is marked ‘no Timetable’ éyhare not.

5.2 Resaults

Table 1. Timeslot Apriori accuracy by prediction type on O@ataset

Next-Slot Next-Day Next-Slot (No TT) Next-Day (NA'T
86% 75% 85% 71%

Table 1 shows the accuracy of Timeslot Apriori makdifferent types of pre-
dictions on the UCC dataset. The highest accura@chieved on Next-Slot pre-
dictions, which confirms that recent occupant moests, on which all the se-
quence-based approaches rely, are the most relmbblictor of an occupant’'s
next location. For Next-Slot predictions, the tiatde only helps marginally.
Next-Day predictions are significantly less acceras they must be made based
solely on the occupants’ historical data withouy &mowledge of their move-
ments during the day, however for these predicttbagimetable does make a dif-
ference to the accuracy.

Figure 1 below shows these results broken downdoymeant, and includes Or-
dered Apriori making Next-Slot predictions. Occup@’s movements are very
homogenous, so they are easily predicted by afligtien types. Occupant B has
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the most varied movements and the most schedulexdtswf all the occupants.
This makes them harder to predict than the othenmants, however the addition
of timetable data makes the largest differencen@dccupant, especially on next-
day predictions where it allows over 20% higherusacy. For the other occu-
pants, whose movements follow general patterns mitiimal scheduled events,
their predictability is primarily contingent on tlawailability of real-time location
data, resulting in one accuracy level for Next-Zaot a slightly lower one for
Next-Day. However, Timeslot and Ordered Aprioricry slightly on Next-Slot
predictions, indicating that they do not make elyatte same predictions.

qERNN

F
B Ord. Apriori = Next-Slot = Next-Day # Next Day (no timetable)

Accuracy %
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o

Fig. 1. Accuracy across all occupants on the UCC dataset
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Fig. 2. Accuracy across the day on all occupants in th€ détaset

Figure 2 breaks the prediction accuracy down byesiat, showing how the
different prediction types fare at different tinefsday. In general we can see that
they match in the morning, evening and around lunahen the occupants are
most predictable. Outside those times, Next-Dagipt®ns drop down as the oc-
cupants’ activities at those times are more vagiabhd real-time information is
required to maintain the accuracy level. Due toupant B, Next-Day predictions
are improved with the use of timetable data, paldity in the morning.
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Table 2. Occupant B and E Confusion Matrices for Timeslptiéri Next-Slot predictions

o|M|B| A olM[B| A
| O0[304] o] 1] 66 o 148 1 3 6
SElm|11]19] 0] 2 M| 1| 6] 0] o
<3| B |21 145 7 B| 3 3 o0
A | 37 0| 214 Al 29 581

Table 2 shows the confusion matrices for occupBngnd E, classifying the
location either as in their own office (O), in aesfiic group meeting (M), any
other room in the building (B) or away (A). The mz¢s show that the primary
source of errors is reversing Office and Away, beimcertain whether the occu-
pant will be in. For the group meeting and evetdswehere in the building, both
occupants tend to be either predicted correctlpredicted to be in their office;
recognizing that the occupant is in, but not thaytwill be leaving their office.

Table 3. All approaches accuracy for Next-Slot on UCC dettas

HMM

Elman Net

Freg. Predicto

Timeslot Aprio

Owlipriori

7%

86%

87%

86%

86%

Table 3 shows that the sequence predictors geparatch Timeslot Apriori
for making Next-Slot predictions on the UCC data3éie HMM performs worse
because retraining it on a dataset this size wésasible, and so it was only
trained on the initial training set, unlike the etlsequence-based approaches.

Table 4. All approaches accuracy for Next-Slot on Augshdaitpset

HMM
74%

Elman Net
76%

Freg. Predicto
77%

Timeslot Apriofi
39%

Owlpriori
76%

Table 4 shows the results of Next-Slot predictionsthe Augsburg dataset.
The results for all methods are approximately egeredept for Timeslot Apriori,
which performs poorly. The occupants in the Augghdaitaset follow predictable
patterns in their movements, however they folloesthpatterns at irregular times.
Timeslot Apriori cannot learn patterns independefittm the time at which they
occur; if an occupant repeats the same sequenceowéments in a different
timeslot, Timeslot Apriori will attempt to learn [za@rate rules for each timeslot.
This is exacerbated by the fact that the Augsbatgskt contains very little train-
ing data; Timeslot Apriori could potentially leaavery possible instantiation of
the occupants’ patterns separately, but there ae@o'ugh examples present to do
s0. The other approaches are successful as theypkr¢o learn the sequences in-
dependent of the time at which they occur. Ordekedori is similarly time-
independent and thus matches the other sequened-bpproaches. As Timeslot
Apriori performs poorly on this dataset, we do atémpt Next-Day predictions.



Predicting Occupant Locations Using AssociationeRuining

Table 5. Comparison of Sequence Learners on Original Augsbataset

Occupant HMM Elman Net Frequency Predictor Ordridp
A 62% 57% 60% 59%
B 55% 58% 58% 58%
C 47% 46% 47% 47%
D 54% 50% 56% 56%
All 55% 53% 55% 55%

Table 5 shows the accuracy of the sequence leaometise unmodified Augs-
burg dataset. As this version of the dataset doehave timeslots, predictions are
of the occupant’s next location only with no coniceptime. While the average
accuracy across all four occupants is approximatedysame for three of the ap-
proaches, there are minor variations in accuracyeach individual opponent.
These results show that Ordered Apriori is als@ adlmatch existing methods on
pure sequence data. The results are lower thacotihesponding results in [10] as
we include predictions when the occupant is leath®jr own office and cases
where a prediction was not made.

6 Conclusions and Future Work

In this paper we presented two approaches for agphssociation rule mining to
the problem of predicting future occupant locatioée implemented our ap-
proaches using modifications of a standard assoniatile mining algorithm and
presented experimental results which show thatmedifications can predict ac-
tual occupant movements with a high degree of aogur

Compared to standard approaches, our timeslot-deperapproach has some
advantages and disadvantages. Our aim with thisoapb is to predict for any
time slot using whatever information is availabidwether it be the occupant’s re-
cent movements on the same day or simply theiotigstl patterns, allowing it to
use a wider variety of data to make a wider vargdtgredictions. This is success-
ful on the UCC dataset, however it performs poorythe Augsburg set even for
Next-Slot predictions due to the time-independexttire of their movements.

Our sequence based approach matches the capabditi¢he existing ap-
proaches, giving it the same accuracy as thoseapbpes, although the same limi-
tations in terms of the information which is usew avhat predictions can be
made. Using the rulesets generated by both appeeaele are essentially able to
predict with whichever approach is more suitabledoy given prediction. Thus
we can match the accuracy of existing methodshemptredictions they can make,
while being able to make a wider array of preditsio

Since Timeslot Apriori and Ordered Apriori do noake exactly the same pre-
dictions for Next-Slot prediction, it is possiblet intelligent selection of the rules
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from both sets that we could improve accuracy ot either approach achieves
alone. We intend to investigate this possibilitypast of our future work.

The approaches evaluated in this paper only conpilterns in the occupant’s
specific location. There may be patterns which supmore general predictions,
such as that an occupant will be out of their effisithout predicting exactly
where they will be. There is existing work [11] extending Apriori to mine asso-
ciation rules with taxonomies. As part of our f@gwork we intend to similarly
extend our approach, allowing us to make more @dimed predictions.

The eventual goal is to integrate this approach wicupant localization sys-
tems such as [12], and predictive control systamé sis [13]. Using occupant lo-
calization data, a system based on our approadtd poovide the predictions nec-
essary for more energy efficient building control.
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