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Abstract   Heating, ventilation, air conditioning (HVAC) systems are significant 
consumers of energy, however building management systems do not typically op-
erate them in accordance with occupant movements. Due to the delayed response 
of HVAC systems, prediction of occupant locations is necessary to maximize en-
ergy efficiency. In this paper we present two approaches to occupant location pre-
diction based on association rule mining which allow prediction based on histori-
cal occupant movements and any available real time information, or based on 
recent occupant movements. We show how association rule mining can be adapted 
for occupant prediction and evaluate both approaches against existing approaches 
on two sets of real occupants. 

1 Introduction 

Office buildings are significant consumers of energy: buildings typically account 
for up to 40% of the energy use in industrialised countries [1], and of that, over 
70% is consumed in the operation of the building through HVAC and lighting. A 
large portion of this is consumed under static control regimes, in which heating, 
cooling and lighting are applied according to fixed schedules, specified when the 
buildings were designed, regardless of how the buildings are actually used. To im-
prove energy efficiency, the building management system should operate the 
HVAC systems in response to the actual behaviour patterns of the occupants. 
However, heating and cooling systems have a delayed response, so to satisfy the 
needs of the occupants, the management system must predict the occupant behav-
iour. The prediction system should be accurate at both bulk and individual levels: 
the total number of occupants of a building or a zone determine the total load on 
the HVAC system, while knowing the presence and identity of an occupant of an 
individual office allows us to avoid waste through unnecessary heating or cooling 
without discomforting the individual. 

We believe that in most office buildings, the behaviour of occupants tends to be 
regular. An occupant’s behaviour may relate to the time of day, the day of the 
week or the time of year. Their behaviour on a given day may also depend on their 
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location earlier on that day or on their most recent sequence of movements. We 
require a system which is able to recognize these time and feature based patterns 
across different levels of granularity from observed data. Further, many office us-
ers now use electronic calendars to manage their schedules, and information in 
these calendars may support or override the regular behaviour. The reliability of 
the calendar data will depend on the individual maintaining it, so the prediction 
system needs to be able to learn occupant-specific patterns from the calendars. 

We propose the use of association rule mining for learning individual occupant 
behaviour patterns. We wish to find patterns of any kind which can be used to 
predict occupant movements, for which association rule mining is ideal as it is de-
signed to find any useful patterns in a dataset. We use the Apriori algorithm [2], 
and show how the algorithm can be extended to represent time series, incorporat-
ing calendar entries. We then propose a number of transformations of the learning 
mechanism, pruning itemsets and rules to focus in on useful rules, and extending 
the generation of itemsets in areas where useful patterns will be found. Finally we 
describe a further modification of this approach which incorporates time-
independent sequences. We evaluate the performance on two sets of actual occu-
pant data, and show up to 76% and 86% accuracy on each set respectively. 

The remainder of this paper is organized as follows: Section 2 provides an 
overview of association rules and the existing work on location prediction. Sec-
tions 3 and 4 detail the modifications we make to Apriori to make timeslot-
specific and timeslot-independent predictions respectively. In Section 5 we outline 
the datasets we use for evaluation and the other approaches we evaluate against 
and present our results. We conclude the paper in Section 6. 

2 Related Work 

Existing methods for predicting occupant locations include bayesian networks [3], 
neural networks [4], state predictors [5], hidden markov models [6], context pre-
dictors [7], eigenbehaviours [8]. 

The Bayesian network approach presented in [3] predicts the occupant’s next 
location based on the sequence of their previous locations and the current time of 
day and day of the week. Based on the current room and the day/time, it also pre-
dicts the duration of the occupant’s stay in the current room. This results in sepa-
rate predictions for the occupant’s next location and for the time they will move. 

The neural network approach uses a binary codification of the location se-
quences as input to a neural network. In [4] both local and global predictors are 
considered. A local predictor is a network which is trained on and predicts a par-
ticular occupant, and thus deals only with codified location sequences. The global 
predictor takes all occupants’ location sequences, along with associated occupant 
codes, as training data, and can make predictions for any occupant. 

The state predictor approach in [5] uses a two-level context predictor with two-
state predictors. This method selects a two-state predictor based on the occupant’s 
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sequence of previous locations. Each state within the selected predictor is a pre-
diction; the current state is used as the prediction, and the state may then change 
depending on whether the prediction was accurate. Being a two-state predictor, 
each possible location has two corresponding states, so a maximum of two incor-
rect predictions for any given sequence is necessary to change future predictions, 
resulting in fast retraining if an occupant changes their behaviour. The second lev-
el of this predictor can alternatively store the frequencies of the possible next loca-
tions for each sequence. This makes it equivalent to a markov model approach. 

These approaches all predict the occupant’s next location, and with the excep-
tion of the Bayesian network, only use the occupant’s recent locations. Our appli-
cation requires longer term predictions and we believe there may be more general 
associations between the occupants’ locations at different times which allow for 
such predictions. Association rule mining is intended to discover general patterns 
in data and so we propose to investigate whether association rule mining can be 
used to predict occupant locations. 

Association rule mining was introduced in [2] as an unsupervised approach to 
finding patterns in large datasets. The original application was discovering pat-
terns in datasets of transactions, where each transaction was a market basket, i.e. a 
set of purchased items. In that application items were literals, simple strings which 
are either present or absent in a transaction; however the algorithm can be applied 
without modification to sets of attribute/value pairs. We chose Apriori as it is the 
most basic association rule mining algorithm and thus simplest to modify. 

Let U be a universe of items. A dataset D is a set of instances {��… ��}, where 
each instance is a set of items from U. An itemset X is a subset of U. The frequen-
cy of X, ���	(�), is the number of instances I in D for which � ⊆ �, while the 
support is ����(�) = ���	(�)/|�|. An association rule is an implication of the 
form � ⇒ � where X and Y are itemsets such that � ∩ � = ∅. This rule states that 
each instance which contains X tends to contain Y. The support of the rule is 
����(� ∪ �). The confidence of the rule is how often it is correct as a fraction of 
how often it applies ����(� ⇒ �) = ����(� ∪ �)/����(�). 

The purpose of an association rule mining algorithm is to find the set of rules 
which are above user-specific thresholds of confidence and support. The first step 
is to find all itemsets which are ‘frequent’ according to the support threshold. As-
sociation rules are then generated from these itemsets, and any rules which fall be-
low the user-specified minimum confidence are discarded. Confidence is used to 
measure the reliability of a rule in terms of how often it is correct according to the 
training data. Finding the frequent itemsets is the more difficult step, as the de-
sired itemsets must be found among the 2|�| − 1 itemsets which can be generated. 

Apriori uses breadth first search to find all frequent itemsets. First all itemsets 
of size 1 are enumerated. Itemsets whose support falls below the support threshold 
(infrequent itemsets) are removed, as any superset of an infrequent itemset will al-
so be infrequent. Candidate itemsets of size 2 are then generated by combining all 
frequent itemsets of size 1, and infrequent itemsets of size 2 are removed. This 
process continues, finding frequent itemsets of size n by generating candidates 
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from the itemsets of size n-1 and removing infrequent itemsets, until an n where 
no frequent itemsets exist is reached. 

Once the frequent itemsets have been found, for each frequent itemset X all 
rules of the form � ⟹ � − � where � ⊂ � and � ≠ ∅ are generated, and those 
which do not obey the confidence threshold are discarded. 

3 Adapting Association Rule Mining For Occupant Prediction 

The first task in applying association rule mining is to determine the format of the 
dataset. We define an instance to be a single day for a single occupant, recording 
for each time slot the location of the occupant. It also includes a set of scheduled 
locations, specifying where the occupant's calendar stated they would be. Finally, 
each instance records which occupant and day of the week it applies to. Thus the 
set of attributes in our dataset is % = {', �, )* … )+ , �* …�+}, where d is the day, o is 
the occupant, )� is the occupant’s location at time slot n, and �� is the location the 
occupant was scheduled to be in at time n. Our objective then is to find rules 
which predict the value of an attribute in {)* … )+} based on the other attributes. In 
order to be able to compare confidences meaningfully, we restrict our attention to 
rules which predict single attributes. 

Although this format is all that is needed to run Apriori, it is unlikely to pro-
duce usable results. The items in our dataset have semantics which are critical for 
the eventual application, but Apriori by default treats them all as equivalent. The 
location attributes {)* … )+} represent an ordered list of time/location pairs which it 
is our objective to predict. However, Apriori has no concept of the importance of 
or ordering over these items, so it will produce rules which run counter to the or-
der, i.e. rules which use later locations to predict earlier locations, and which make 
useless predictions, e.g. predicting timetable entries. 

A further important attribute distinction is that  { )* … )+} and {�* …�+} are actual 
location data, whereas d and o are data labeling the location data, i.e. meta-data. 
Due to this their values are in a sense fixed. For example, in an instance which de-
scribes occupant A’s movements on a Monday, d and o are fixed at Monday and A 
respectively, whereas all the other attributes can, in principle, take any value in 
their domain. This affects the meaning of the support metric as the maximum sup-
port for any itemset which includes d or o will be less than 1. Since support is used 
to determine which itemsets are considered frequent, patterns which occur fre-
quently for certain days and/or agents will be rated as less frequent due to the in-
clusion of other days and agents in the dataset. 

A problem with regard to the content of the data is that the many common pat-
terns tend to be the least interesting, while we require low frequency patterns to be 
found in order to make predictions in unusual circumstances. Consider for exam-
ple an occupant who has a 90% chance of being in their office in any timeslot 
from 9am to 5pm. In this case, any pattern of the form “in at N implies in at M” 
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where N and M are between 9-5 will have support of at least 80%, thus all such 
patterns will be found. But there is no real correlation there; all these patterns 
could be summarized simply as “the occupant is likely to be in”. At the extreme 
opposite end, we have days when the occupant does not turn up at all, due to ill-
ness or other reasons – a very obvious pattern which would be represented by 
rules such as "out at 9,10,11 implies out at 12”. Such rules could have confidence 
close to 100% if the occupant tends to be in in the morning, but if absences are ra-
re the itemset behind the rule will have such low support it won’t even be a candi-
date. Since enumerating every itemset is not feasible, we wish to eliminate the 
common uninteresting ones and focus on the less common but interesting ones. 

3.1 Candidate/Rule Pruning 

As mentioned above, standard Apriori has no concept of the relationships between 
the items in an instance which exist in occupancy data. Due to this it will by de-
fault generate some useless rules. The important features are that the location at-
tributes {)* … )+} represent an ordered list and that they are the only attributes we 
wish to predict. As an itemset which does not contain any of these attributes can-
not produce a rule which predicts any of them, we eliminate itemsets which do not 
contain some subset of  {)* … )+} during candidate elimination. 

With regard to rule generation, we only wish to predict the future based on the 
past (i.e. rules which obey the ordering of  {)* … )+})), and we only wish to predict 
a single location at a time in order to allow meaningful comparison of the rules at 
rule selection time. Thus our rule generation is as follows: for every itemset 
{ )* … )+, �* …�+}}, where l is a location item and x is any other type of item, )+ is 
the consequent and all other items are the antecedent. 

3.2 Support Modification 

In 2.1 we provided the typical definition of support, the proportion of the instances 
which contain the itemset/rule. To deal with the reduction in support for itemsets 
which contain metadata items, we redefine support as ����(�) = ���	(�)/
,-�(���	(�)). For market basket items, which can in principle occur in every 
instance, this is the same definition. In the case of our metadata attribute/value 
pairs however, this definition results in a different value which is normalized such 
that the maximum value of ����(�) is always 1 for comparison to other support 
values. 

Using this modified support threshold in Apriori allows it to find itemsets when 
have a lower support due to their metadata attributes. However this greatly in-
creases the area of the itemset lattice which is explored for any given support 
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threshold. Thus, in order to conserve memory, we mine each possible combination 
in a separate pass. For every combination of metadata attributes/values C, we ini-
tialize Apriori with all itemsets of size |.| + 1 which are a superset of C, instead 
of standard 1-itemsets. This allows the generation of every itemset which contains 
that metadata combination in a separate pass. 

3.3 Windowing 

Some important patterns have such low support that trying to find them by simply 
lowering the support threshold would result in a combinatorial explosion. Instead 
we will use the structure of the data to target them specifically. An example of 
such a pattern is a full day of absence: a very obvious pattern, but one which oc-
curs so infrequently that it won’t be learned. As our location attributes form an or-
dered list we can define subsets of them which are consecutive, temporal windows 
over the location data. By mining these subsets individually, we can reduce the 
size of the space of itemsets while still discovering the itemsets which describe 
consecutive elements of the low support patterns. 

We define a window as: 01�(�,,) =< ', �, )�…�34, �*…+ > where i and j de-
note the first and last timeslots, and n and m denote the beginning and length of 
the window respectively. In the windowing phase, we search within every window 
of the chosen length. This approach ignores patterns which span times which do 
not fit within a window. We choose to focus on patterns which occur in consecu-
tive time slots as predicting occupant locations based on their most recent move-
ments has been shown to work by the other approaches discussed in section 2. 

For distinct patterns windowing is sufficient to find rules which will make the 
correct predictions should the pattern recur. Taking the example of an occupant 
who is absent all day, within each window we will learn that consecutive hours of 
absence imply absence in the next hour. Taken in combination, these rules will 
state that at any hour of the day, consecutive absence implies continued absence, 
although we are still not learning sequences in the same sense as the approaches in 
section 2, as the individual rules are still tied to specific time slots. These rules are 
added to the rules mined from the complete instances. 

3.4 Rule Selection 

Once the rules are generated we need a mechanism to choose a rule to make a 
prediction. When a prediction is required, values for any subset of the possible at-
tributes can be supplied as an itemset V. A target for the prediction )6 is also given. 
We search the generated rules for all rules � ⇒ � where � ⊆ 7 and � = {)6}. 
From these we select the rule with the highest confidence as the prediction. 
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4 Ordered Association Rules 

In order to be able to predict occupant locations the timeslot-specific approach 
above requires that the occupant's behaviour correlates with the time of day. Our 
evaluation shows that on occupants for whom this does not hold the approach per-
forms poorly. However, existing approaches which find patterns that don't relate 
to specific times are able to make accurate predictions on such occupants. We now 
describe a modification to Apriori which allows it to find time-independent se-
quences of locations using the order of the timeslots. As with the other timeslot-
independent approaches, this approach relies on the occupant’s most recent loca-
tions, and cannot make predictions beyond the next timeslot. 
 

4.1 Ordered Itemsets 

In order to represent time-independent sequences we define a new set of attributes 
{	8…	+} which represent an ordered list of consecutive locations. These attrib-
utes are similar to the timeslot attributes {)* … )+}, but rather than  being a list of 
time/location pairs, {	8…	+} is a list of ordering/location pairs. Thus the first at-
tribute is always ‘0’, as it is the first element in the list. As we deal only with con-
secutive sequences, for any list of length j+1 , all elements 0…j must be present. 

Ordered itemsets are itemsets of the form: {	8…	+}. Each ordered itemset is 
essentially the set of itemsets {{)9 … )+39} ∶ � ≤ < ≤ , − =}, where n and m are 
the minimum and maximum timeslots in the dataset respectively, represented as a 
single list. An ordered itemset may be instantiated to a time specific itemset by 
choosing a starting timeslot k and adding k to every attribute in the list, turning the 
itemset {	8…	+} into the itemset >)9 … )+39? for the chosen timeslot k. 

For example, take the ordered itemset {0=>O, 1=>A, 2=>O}, which signifies 
that an occupant is in their office, leaves for an hour, and then returns. If we set k 
to be 12:00, this itemset becomes {12=>O, 13=>A, 14=>O}, which states that an 
occupant is in their office at 12:00, leaves at 13:00, and returns at 14:00. 

The individual timeslot-specific itemsets which the ordered itemset represents 
could be found separately by our original approach, however it would require each 
of them to occur separately with sufficiently high support, and for rules to be gen-
erated for each variation it would similarly require each to separately have suffi-
ciently high confidence. Searching for the sequence of movements over all 
timeslots provides two advantages. First, that a pattern which recurs will be sup-
ported even if it recurs at different times, resulting in low support for each indi-
vidual instance of the pattern, allowing us to find a pattern we otherwise wouldn’t. 
Second, that when we generate an ordered rule from an ordered itemset, it can ap-
ply in cases where the pattern had low support, or even in a timeslot where the 
pattern has never occurred previously. 



Conor Ryan1 and Kenneth N. Brown 

4.2 Confidence and Support 

Confidence and support are defined in the same way for ordered itemsets as for 
timeslot-specific itemsets. However, freq(X) for an ordered itemset X counts the 
number of occurrences of the sequence in each transaction, i.e. ���	({	8…	+}) =
∑ ���	({)9 … )+39})
4A+
9B� . This results in values greater than 1 for support, however 

the anti-monotonicity property still holds, and so using a support threshold to 
eliminate candidates is still valid for this definition of support, although the 
threshold no longer represents the fraction of the dataset in which the itemset oc-
curs. We considered alternative definitions for support for ordered itemsets, how-
ever they failed to correctly represent the relative frequency of the itemsets of dif-
ferent sizes and/or broke the anti-monotonicity property Apriori relies on. 

Confidence for ordered rules is still the fraction of the times that it applies that 
it is correct, however as with support it is now considered over all occurrences of 
the time-independent sequence that the rule is based on. 
 

4.3 Candidate Generation 

To generate itemsets we use a modified form of Apriori’s candidate generation. 
Since the first attribute of any ordered itemset must be ‘0’ and the attributes must 
be consecutive, any two itemsets of the same length will have the same attributes. 
This means that we cannot generate candidates by combining itemsets of the same 
length, as the only case where a longer itemset would be generated would be when 
the itemsets have different values for the same attributes, which will result in a 
support of zero. 

Instead, for every possible pair of ordered itemsets of length j, we increment 
the attributes of one of the itemsets by one, shifting the sequence to the right by 
one timeslot, and then combine them. Thus we combine two itemsets {	8…	+} 
and {�8…�+} if ∀�: 1 ≤ � ≤ = − 1:		�3� = ��, essentially if the latter sequence can 
provides one item to be appended onto the former sequence. Aside from this mod-
ification, candidate generation proceeds as previously described. 

4.4 Rule Selection 

Rule selection proceeds in the same manner as in the timeslot-dependent ap-
proach, except that ordered rules are instantiated to check their applicability. Giv-
en the prediction target )6 and the attributes/values to predict on V, for each or-
dered rule >	8…	+A�? => {	+}, we set = = F to get the rule >)6A+ … )6A�? => {)6}, 
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before checking whether >)6A+ … )6A�? ⊆ 7. As before, the applicable rule with the 
highest confidence is chosen. The ordered and timeslot-specific rules can be com-
bined into a single ruleset and used simultaneously, however simply combining 
them provides no advantage over selecting and using only the more appropriate 
ruleset for the dataset. 

5 Experimental Evaluation 

To test our approach we use two datasets: data recorded by occupants of the 4C 
lab in UCC, and data from the Augsburg Indoor Location Tracking Benchmarks 
[9]. We also evaluate three methods which were used in [6] and [10], a HMM, an 
Elman net and a frequency predictor. The HMM and Elman net were evaluated us-
ing the respective tools in MATLAB, while we implemented the frequency predic-
tor ourselves based on the frequency analysis context predictor in [5]. 

To gather data to test our approach, six occupants of the 4C lab in University 
College Cork including the authors manually recorded their movements over a pe-
riod of 5-15 months using google calendar. Each occupant recorded their location 
by room code if within a campus building, or marked themselves as ‘away’ if off 
campus. The data was recorded from 8am to 6pm with half-hour granularity, with 
any occupancy of significantly shorter duration than 30 minutes filtered out. The 
occupants also recorded their timetables for the time period, which recorded the 
locations they were scheduled to be in in the same format as the record of their ac-
tual movements. 20 locations were frequented by the occupants including the 
‘away’ location. The test set for this evaluation was the most recent 2 months of 
data for each occupant, while the training set was all the preceding data each oc-
cupant had recorded, which covered between 3 and 13 months. 

The Augsburg dataset contains data on 4 occupants for 1-2 weeks in summer 
and 1-2 months in fall. The format of the dataset is a series of timestamped loca-
tions for each occupant. As the data is not broken down into timeslots, we only 
compare the sequence based approaches on this version of the dataset. In order to 
be able to apply our timeslot-dependent approach to the data, we converted it to 
the same timeslot format as our gathered data. An occupant’s location in each 
timeslot is the location in which they spent the majority of that timeslot. Following 
this conversion there are 7 locations frequented by the occupants including 
‘away’. We compare all approaches on this version of the dataset. 

5.1 Experiments 

We generate time-dependent rules from each training set using a minimum sup-
port and confidence of 0.2 and 0.5 respectively. During windowing we use a win-
dow size of 3 slots and a minimum support of 0.05. We generate time-independent 
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rules using no support or confidence threshold in order to maximize the coverage 
of the resulting ruleset. Instead of the support threshold we limit the length of gen-
erated rules to 2 items as shorter sequences have proven to be more reliable pre-
dictors of occupants’ next locations. 

Following are the configurations used for the comparison approaches. In the 
frequency predictor we use a maximum order of 2, again due to shorter sequences 
being more reliable predictors. For the hidden markov model we use 7-8 hidden 
states depending on the dataset as this maximized accuracy. The elman net uses 
the MATLAB default settings for layer delays and hidden layer size as no other 
combinations of values tested produced higher overall accuracy. 

A feature of the frequency predictor is that it continues to train as it predicts; in 
our evaluation we allow all the sequence-based predictors to retrain with the days 
they have already predicted included in their training set, in order to maximize 
their accuracy. Timeslot Apriori predicts with only the initial training run, as the 
time taken to train makes retraining after every predicted day unfeasible. 

We test all approaches on their accuracy in predicting the occupant’s exact lo-
cation in every time slot. As the sequence-based approaches use only recent occu-
pant movements they can only predict for the next timeslot. Timeslot Apriori is 
tested on its ability to predict Next-Slot and Next-Day, and with or without time-
table data available. The former determines whether )* … )�A� are available, where 
n is the time slot being predicted, ’Next Slot’ if this information is available, and 
‘Next Day’ if not. The latter determines whether the values of �* …�+ are available 
when predicting, and is marked ‘no Timetable’ if they are not. 

5.2 Results 

Table 1. Timeslot Apriori accuracy by prediction type on UCC dataset 

Next-Slot Next-Day Next-Slot (No TT) Next-Day (No TT) 

86% 75% 85% 71% 
 

Table 1 shows the accuracy of Timeslot Apriori making different types of pre-
dictions on the UCC dataset. The highest accuracy is achieved on Next-Slot pre-
dictions, which confirms that recent occupant movements, on which all the se-
quence-based approaches rely, are the most reliable predictor of an occupant’s 
next location. For Next-Slot predictions, the timetable only helps marginally. 
Next-Day predictions are significantly less accurate as they must be made based 
solely on the occupants’ historical data without any knowledge of their move-
ments during the day, however for these predictions the timetable does make a dif-
ference to the accuracy. 

Figure 1 below shows these results broken down by occupant, and includes Or-
dered Apriori making Next-Slot predictions. Occupant A’s movements are very 
homogenous, so they are easily predicted by all prediction types. Occupant B has 
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the most varied movements and the most scheduled events of all the occupants. 
This makes them harder to predict than the other occupants, however the addition 
of timetable data makes the largest difference on this occupant, especially on next-
day predictions where it allows over 20% higher accuracy. For the other occu-
pants, whose movements follow general patterns with minimal scheduled events, 
their predictability is primarily contingent on the availability of real-time location 
data, resulting in one accuracy level for Next-Slot and a slightly lower one for 
Next-Day. However, Timeslot and Ordered Apriori do vary slightly on Next-Slot 
predictions, indicating that they do not make exactly the same predictions. 

 

 

Fig. 1. Accuracy across all occupants on the UCC dataset  

 

Fig. 2. Accuracy across the day on all occupants in the UCC dataset 

Figure 2 breaks the prediction accuracy down by timeslot, showing how the 
different prediction types fare at different times of day. In general we can see that 
they match in the morning, evening and around lunch, when the occupants are 
most predictable. Outside those times, Next-Day predictions drop down as the oc-
cupants’ activities at those times are more variable, and real-time information is 
required to maintain the accuracy level. Due to occupant B, Next-Day predictions 
are improved with the use of timetable data, particularly in the morning. 

0
10
20
30
40
50
60
70
80
90

100

A B C D E F

A
cc

u
ra

cy
 %

Ord. Apriori Next-Slot Next-Day Next Day (no timetable)

50

60

70

80

90

100

0
8

:0
0

0
8

:3
0

0
9

:0
0

0
9

:3
0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

1
2

:0
0

1
2

:3
0

1
3

:0
0

1
3

:3
0

1
4

:0
0

1
4

:3
0

1
5

:0
0

1
5

:3
0

1
6

:0
0

1
6

:3
0

1
7

:0
0

1
7

:3
0

1
8

:0
0

A
cc

u
ra

cy
 %

Ord. Apriori Next-Slot

Next-Day Next-Day (no timetable)



Conor Ryan1 and Kenneth N. Brown 

Table 2. Occupant B and E Confusion Matrices for Timeslot Apriori Next-Slot predictions 
  O M B A   O M B A 

A
ct

ua
l  

  
Lo

ca
tio

n O 304 0 1 66  O 148 1 3 65 

M 11 19 0 2  M 1 6 0 0 

B 21 0 145 7  B 3 0 3 0 

A 37 1 0 214  A 29 0 0 581 
  

Table 2 shows the confusion matrices for occupants B and E, classifying the 
location either as in their own office (O), in a specific group meeting (M), any 
other room in the building (B) or away (A). The matrices show that the primary 
source of errors is reversing Office and Away, being uncertain whether the occu-
pant will be in. For the group meeting and events elsewhere in the building, both 
occupants tend to be either predicted correctly or predicted to be in their office; 
recognizing that the occupant is in, but not that they will be leaving their office. 

Table 3. All approaches accuracy for Next-Slot on UCC dataset 

HMM Elman Net Freq. Predictor Timeslot Apriori Ord. Apriori 

77% 86% 87% 86% 86% 

 
Table 3 shows that the sequence predictors generally match Timeslot Apriori 

for making Next-Slot predictions on the UCC dataset. The HMM performs worse 
because retraining it on a dataset this size was unfeasible, and so it was only 
trained on the initial training set, unlike the other sequence-based approaches. 

Table 4. All approaches accuracy for Next-Slot on Augsburg dataset 

HMM Elman Net Freq. Predictor Timeslot Apriori Ord. Apriori 

74% 76% 77% 39% 76% 

 
Table 4 shows the results of Next-Slot predictions on the Augsburg dataset. 

The results for all methods are approximately equal, except for Timeslot Apriori, 
which performs poorly. The occupants in the Augsburg dataset follow predictable 
patterns in their movements, however they follow these patterns at irregular times. 
Timeslot Apriori cannot learn patterns independently from the time at which they 
occur; if an occupant repeats the same sequence of movements in a different 
timeslot, Timeslot Apriori will attempt to learn separate rules for each timeslot. 
This is exacerbated by the fact that the Augsburg dataset contains very little train-
ing data; Timeslot Apriori could potentially learn every possible instantiation of 
the occupants’ patterns separately, but there aren’t enough examples present to do 
so. The other approaches are successful as they are able to learn the sequences in-
dependent of the time at which they occur. Ordered Apriori is similarly time-
independent and thus matches the other sequence-based approaches. As Timeslot 
Apriori performs poorly on this dataset, we do not attempt Next-Day predictions. 
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Table 5. Comparison of Sequence Learners on Original Augsburg Dataset 

Occupant HMM Elman Net Frequency  Predictor Ord. Apriori 

A 62% 57% 60% 59% 

B 55% 58% 58% 58% 

C 47% 46% 47% 47% 

D 54% 50% 56% 56% 

All 55% 53% 55% 55% 
 

Table 5 shows the accuracy of the sequence learners on the unmodified Augs-
burg dataset. As this version of the dataset does not have timeslots, predictions are 
of the occupant’s next location only with no concept of time. While the average 
accuracy across all four occupants is approximately the same for three of the ap-
proaches, there are minor variations in accuracy on each individual opponent. 
These results show that Ordered Apriori is also able to match existing methods on 
pure sequence data. The results are lower than the corresponding results in [10] as 
we include predictions when the occupant is leaving their own office and cases 
where a prediction was not made. 

6 Conclusions and Future Work 

In this paper we presented two approaches for applying association rule mining to 
the problem of predicting future occupant locations. We implemented our ap-
proaches using modifications of a standard association rule mining algorithm and 
presented experimental results which show that our modifications can predict ac-
tual occupant movements with a high degree of accuracy. 

Compared to standard approaches, our timeslot-dependent approach has some 
advantages and disadvantages. Our aim with this approach is to predict for any 
time slot using whatever information is available, whether it be the occupant’s re-
cent movements on the same day or simply their historical patterns, allowing it to 
use a wider variety of data to make a wider variety of predictions. This is success-
ful on the UCC dataset, however it performs poorly on the Augsburg set even for 
Next-Slot predictions due to the time-independent nature of their movements. 

Our sequence based approach matches the capabilities of the existing ap-
proaches, giving it the same accuracy as those approaches, although the same limi-
tations in terms of the information which is used and what predictions can be 
made. Using the rulesets generated by both approaches, we are essentially able to 
predict with whichever approach is more suitable for any given prediction. Thus 
we can match the accuracy of existing methods for the predictions they can make, 
while being able to make a wider array of predictions. 

Since Timeslot Apriori and Ordered Apriori do not make exactly the same pre-
dictions for Next-Slot prediction, it is possible that intelligent selection of the rules 
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from both sets that we could improve accuracy over what either approach achieves 
alone. We intend to investigate this possibility as part of our future work. 

The approaches evaluated in this paper only consider patterns in the occupant’s 
specific location. There may be patterns which support more general predictions, 
such as that an occupant will be out of their office without predicting exactly 
where they will be. There is existing work [11] on extending Apriori to mine asso-
ciation rules with taxonomies. As part of our future work we intend to similarly 
extend our approach, allowing us to make more generalized predictions. 

The eventual goal is to integrate this approach with occupant localization sys-
tems such as [12], and predictive control systems such as [13]. Using occupant lo-
calization data, a system based on our approach could provide the predictions nec-
essary for more energy efficient building control.2 
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