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Abstract

A facility with front room and back room operations has the
option of hiring specialized or, more expensive, cross-trained
workers. Assuming stochastic customer arrival and service
times, we seek a smallest-cost combination of cross-trained
and specialized workers satisfying constraints on the ex-
pected customer waiting time and expected number of work-
ers in the back room. A constraint programming approach
using logic-based Benders’ decomposition is presented. Ex-
perimental results demonstrate the strong performance of this
approach across a wide variety of problem parameters. This
paper provides one of the first links between queueing opti-
mization problems and constraint programming.

Introduction

Scheduling and resource allocation problems have long been
studied in artificial intelligence and constraint programming
(CP) (Fox 1983). In the real world, these problems are of-
ten subject to uncertainty and change: it is not known in
advance what orders will arrive or what machines will need
repair. Hence, there has been recent work in scheduling un-
der uncertainty and a more general interest in applying CP to
stochastic optimization (Brown & Miguel 2006). One area
that has intensively studied the design and control of sys-
tems for resource allocation under uncertainty is queueing
theory (Gross & Harris 1998). Therefore, we are beginning
an investigation of the links between queueing theory and
CP in order to determine whether the techniques of one can
enhance the other, and to extend the range and richness of
problems that can be addressed by CP.

In this paper, we generalize an existing queueing design
and control problem (Berman, Wang, & Sapna 2005) and
propose a complete hybrid solution technique combining
logic-based Benders’ decomposition, an extension of an ex-
isting heuristic, and CP. This paper has two main contribu-
tions. Firstly, we provide the first complete method for a
generalization of a queueing control problem from the liter-
ature. Secondly, this paper is initial work towards a link be-
tween constraint programming and queueing theory, demon-
strating the applicability of CP and logic-based Benders’ de-
composition for solving queueing optimization problems.
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Problem Description

We consider a facility, such as a bank, with back room and
front room operations. In the front room, work depends on
a stochastic process of customer arrivals and service times.
If all front room workers are busy, customers form a queue
and wait to be served. In the back room, tasks include sort-
ing of material and paperwork, and do not directly depend on
customer arrivals. The facility can hire either cross-trained
workers, able to perform tasks in both rooms, or specialized
workers, able only to serve customers or only to work in the
back room. Cross-trained workers provide flexibility since
they may be switched between the back room and the front
room depending on demand. However, cross-trained work-
ers are more expensive than specialized ones because they
possess more skills. Managers of the facility are therefore
interested in finding the optimal number of workers of each
type and, if this combination includes cross-trained workers,
in knowing when to switch them between the two rooms.

Using the notation of (Berman, Wang, & Sapna 2005), let
S denote the maximum number of customers allowed in the
front room at any time. When there are S customers present,
arriving customers are blocked from entering. In order to
complete all the back room work, there is a known mini-
mum requirement, Bl, for the expected number of workers
in the back room. Wu denotes the upper bound on the ex-
pected customer waiting time, Wq. It is assumed that only
one worker is allowed to be switched at a time, and both
switching time and cost are negligible. Customers arrive ac-
cording to a Poisson process with rate λ. Customer service
times follow an exponential distribution with rate μ.

Berman et al. study two related problems with only cross-
trained workers. The objective of problem P1 is to determine
when to switch workers between the two rooms so that ex-
pected customer waiting time is minimized, but the require-
ment on the minimum number of back room workers is met.
In problem P2, the goal is to find the minimum number of
cross-trained workers such that a switching policy exists to
meet constraints on the expected customer waiting time and
on the expected number of back room workers.

We extend P2 to allow specialized front and back room
workers in addition to cross-trained ones. Given a different
staffing cost for each type of worker, the goal of this prob-
lem is to find the lowest-cost combination of specialized and
cross-trained workers so as to ensure that the expected wait-
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ing time of customers does not exceed Wu and that there
are enough workers in the back room to ensure that all back
room work is completed.

Let f be the number of specialized front room workers,
b the number of specialized back room workers, and x the
number of cross-trained workers in the facility. It is assumed
that the service rate of a worker in the front room is equal to
μ regardless of whether the worker is specialized or cross-
trained. Similarly, cross-trained and specialized employees
working in the back room are assumed to be able to perform
back room tasks equally well. Denote the staffing costs as
cf , cb and cx, respectively for front room, back room and
cross-trained workers. We assume that cx ≥ cf > 0, cx ≥
cb > 0 and cx ≤ cf + cb.

Given particular values of x, f and b, and a policy spec-
ifying when cross-trained workers are to be switched be-
tween the two rooms, one can calculate the expected cus-
tomer waiting time, Wq, and the expected number of work-
ers in the back room, B. (See below for the definition of
a switching policy and expressions for the calculation of B
and Wq). Since we are required to find both the optimal staff
mix and a satisfying switching policy, this problem is both a
queueing design and a queueing control problem.

The problem of finding the optimal staff mix given front
room and back room constraints can be stated as

minimize cff + cbb + cxx (1)
s.t. Wq ≤ Wu, B ≥ Bl.

Related Work

The problem addressed in this paper belongs to the class
of problems usually referred to as “optimal design and con-
trol of queues,” which has applications in many areas such
as communication systems and scheduling (Tadj & Choud-
hury 2005). It is also a problem which deals with the man-
agement of cross-trained workers. Various problems in-
volving this subject have been considered in the literature
using simulation (Chevalier & Tabordon 2003), and linear
and mixed-integer programming (Cezik & L’Ecuyer 2007;
Batta, Berman, & Wang 2007).

As noted, our paper is closely linked with the work pre-
sented in (Berman, Wang, & Sapna 2005). In addition,
(Terekhov & Beck 2007) apply constraint programming to
the P1 queue control problem. To our knowledge, no papers
have examined applying CP to a problem which deals with
both optimal queue design and control.

Benders’ Decomposition

Benders’ Decomposition was originally developed for solv-
ing mixed-integer programming problems (Benders 1962).
More generally, the method can be applied to any problem
in which the variables and constraints can be separated into
a master problem and a sub-problem, which are solved in an
alternating fashion until an optimality criterion is satisfied.
The master problem and the sub-problem may be modelled
and solved using linear or integer programming, or CP, as
in logic-based Benders’ decomposition (Hooker & Ottosson
2003; Tarim & Miguel 2005).

It is natural to decompose our problem into the master
problem of finding a combination of cross-trained and spe-
cialized workers (a queueing design problem) and the sub-
problem of finding a switching policy that satisfies the back
room and front room service level constraints given an em-
ployee configuration (a queueing control problem).

Our approach is, first, to derive a set of constraints on the
values of x, f and b by solving problem (1) with x = 0.
These constraints are then used to form the master problem,
which is solved in order to identify a cost-optimal, but possi-
bly infeasible, combination of cross-trained and specialized
workers, say x = x′, f = f ′ and b = b′. If a feasible sub-
problem solution can be found, then the master solution is
optimal. Otherwise, the cut (x > x′ || f > f ′ || b > b′)
is added to the master problem. The master problem and
the sub-problem are then re-solved in order to determine if a
feasible policy exists for the new master problem solution.

The “Specialized-Only” Solution

When x = 0, the number of workers required for the back
room is independent of the number of workers required for
the front room. Thus, to find the minimum-cost specialized-
only solution, one can independently determine Ftotal, the
smallest number of specialized front room workers suffi-
cient to satisfy the waiting time constraint, and Btotal, the
smallest number of specialized back room workers needed
to satisfy the back room constraint.

In order to find Ftotal, Wq is calculated for each value of
f ≥ 1 using the equation

Wq =
P0

∑i=S
i=1 (λ

μ )i−1 i
D(i)

μ[1 − (λ
μ )SP0

1
D(S) ]

− 1
μ

,

where D(i) =
∏i

j=1 d(j) with d(i) = i for i ≤ f , and

d(i) = f for i > f , and P0 = 1 +
∑i=S

i=1 (λ
μ )i 1

D(i) , until
the constraint Wq ≤ Wu is satisfied for some value of f .
This equation is a re-formulation of the expression for Wq

in an M/M/f /S queue (Gross & Harris 1998). Btotal is sim-
ply �Bl� because, when there are no cross-trained workers,
this is the smallest possible number of back room workers
required to complete all of the back room work.

By definition of Ftotal and Btotal, there have to be at
least Ftotal cross-trained and front room workers in the fa-
cility in order for the constraint on Wq to be satisfied, and
at least Btotal cross-trained and back room workers in or-
der for the back room constraint to be satisfied. Thus, con-
straints f + x ≥ Ftotal and b + x ≥ Btotal are valid for
problem (1). In any feasible solution, the number of special-
ized front room workers does not ever have to exceed Ftotal,
and the number of specialized back room workers does not
ever have to exceed Btotal because these values already sat-
isfy the constraints in their respective rooms, and having
more workers would only incur additional cost. Therefore,
Ftotal − 1 is an upper bound for f , Btotal − 1 is an upper
bound for b, and Ftotal +Btotal −1 is an upper bound for x.

Additionally, since one needs at least Ftotal workers in the
facility in order to satisfy the front room constraint, and at
least Btotal workers in the facility in order to satisfy the back
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room constraint, it is clear that at least max(Ftotal, Btotal)
workers need to be hired. The lower bound on x is 1, since
the best solution with x = 0 has already been determined.

The cost of the specialized-only solution is an upper
bound on the cost of the optimal solution. The lower bound
on the optimal cost is the maximum of cfFtotal and cbBtotal.

Master Problem

Given the constraints derived from the specialized-only so-
lution, the master problem can be stated as

minimize cost = cff + cbb + cxx (2)
s.t. f + x ≥ Ftotal, b + x ≥ Btotal

0 ≤ f ≤ Ftotal − 1, 0 ≤ b ≤ Btotal − 1
1 ≤ x ≤ Ftotal + Btotal − 1

f + b + x ≥ max(Ftotal, Btotal)
max(cfFtotal, cbBtotal) ≤ cost ≤ cfFtotal + cbBtotal

cuts

where cuts are constraints that are added to the master prob-
lem each time the sub-problem is not able to find a feasible
solution. These cuts remove the current optimal solution of
the master problem because it does not result in a feasible
policy. The master problem is re-solved each time a new cut
is added, and the resulting values of f , b and x define the
sub-problem. We solve the master problem with a CP model
identical to (2). As it is a simple minimization problem with
three integer variables, finding a solution is trivial.

Solving the Sub-Problem

Given values for f , b and x, the goal of the sub-problem
is to find a policy K such that the constraints Wq ≤ Wu

and B ≥ Bl are satisfied. The method we use for solving
the sub-problem is a modification of the PSums-Heuristic
Hybrid method proposed in (Terekhov & Beck 2007), which
combines a CP model with Berman et al.’s heuristic.

Switching Policy A policy is a sequence of “switching
points,” ki for i = 0, 1, . . . , x + f , with the interpretation
that the number of “busy” workers (ones who are currently
serving a customer) in the front room is i whenever the num-
ber of customers in the front room is between ki−1 + 1 and
ki. Switching points with index i < f state that as another
customer arrives to the front room, the number of special-
ized workers who are busy increases; switching points with
index i ≥ f specify when to switch cross-trained work-
ers between the front room and the back room. Switching
point kx+f is a constant and equal to S. Thus, a policy is
vector of kis, (k0, k1, . . . , kx+f ), such that ki < ki+1 for
i = 0, 1, . . . , x + f − 1, kx+f = S, ki = i ∀i < f and
ki ≥ i ∀i ≥ f .

For example, if f = 2, x = 1 and S = 6, the policy
(0, 1, 3, 6) states that whenever the number of customers is
1, there is 1 busy worker in the front room, whenever the
number of customers is 2 or 3, there are 2 busy workers in
the front room. When the number of customers becomes
k2 + 1 = 4, a cross-trained worker is switched to the front

room. Other policy definitions have been considered. How-
ever, these either result in more complicated models or were
less efficient in preliminary experiments.

Modified Berman et al.’s Heuristic In order to solve the
sub-problem, we first run a modified version of the heuristic
Berman et al. use for problem P1. This modified heuristic

starts with the policy ˆ̂
K = {k0 = 0, k1 = 1, ..., kf−1 =

f − 1, kf = S − x, kf+1 = S − x + 1, ..., kx+f−1 =
S − 1, kx+f = S}, which yields the greatest possible val-
ues of Wq and B. If this policy does not satisfy the con-
straint B ≥ Bl (is B-infeasible), then the sub-problem is
infeasible. If the policy is B-feasible, then the switching
point ki with the smallest index i satisfying the condition
ki − ki−1 > 1 for 0 < i < x + f , or ki > 0 for
i = 0, is decreased by 1. This results in a policy with
both a smaller Wq and a smaller B. The heuristic contin-
ues decreasing switching points satisfying this property un-
til the resulting policy becomes B-infeasible (or is the policy
K̂ = {k0 = 0, k1 = 1, k2 = 2, ..., kf = f, ..., kx+f−1 =
x + f − 1, kx+f = S}, in which case the heuristic stops be-
cause this policy is optimal). Once infeasibility is reached, a
switching point ki having the smallest index and satisfying
the condition ki+1 − ki > 1, for i < x + f , is increased
by 1. Increasing a switching point with such properties al-
lows the policy to become more feasible in terms of the back
room constraint, but also increases Wq. Once a B-feasible
policy is found again, the heuristic tries to find switching
points to decrease. Thus, the heuristic alternates between
trying to reach a policy with smaller Wq and a policy with
higher B. Each time a B-infeasible policy is found, the set
of switching points that can be increased or decreased at sub-
sequent steps is reduced in order to prevent cycling. The
heuristic stops when it is unable to find any more switching
points to decrease or increase, in which case it returns the
B-feasible policy with the best value of Wq that it has been
able to find. If this Wq value is smaller than Wu (the policy
is Wq-feasible), then the current sub-problem and master so-
lutions are optimal. Otherwise, the CP method based on the
PSumsSubproblem model and shaving is applied.

The PSumsSubproblem Model The PSumsSubprob-
lem model has, as its decision variables, the set of ki,
i = 0, 1, . . . , x + f , each with an initial domain of [0..S].
Additionally, it has two types of probability variables:
PSums(ki) for i = 0, ..., x + f − 1, and P (j) for
j = k0, k1, k2, ..., kx+f (Terekhov & Beck 2007), which are
necessary for the calculation of Wq and B given a switching
policy. We relate these three types of variables via a set of
constraints which ensure that the probability values satisfy
the steady-state conditions of the front room queue. We also
include constraints for expressing Wq and B in terms of the
variables ki, PSums(ki) and P (ki).

In order to simplify the presentation of equations neces-
sary for the definition of the probability variables and quan-
tities of interest, let ri = λ

iμ , i = 1, . . . , x + f + 1, and
δi = ki+1 − ki, i = 0, . . . , x + f . PSums(ki) = φiP (ki)
represents the probability of there being between ki and
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ki+1 − 1 customers in the front room, where φi is defined in
Equation (3). Equation (4) is a recursive formula for com-
puting P (ki+1), the probability of having ki+1 customers
in the facility, where P (k0) = (

∑x+f
i=0 βSum(ki))−1 and

βSum(ki) is defined using Equations (5)–(6).

φi =

{
1−[ri+1]

δi

1−ri+1
if ri+1 �= 1

δi otherwise
(3)

P (ki+1) = [ri+1]
δiP (ki) (4)

βSum(ki) = φi−1Xi

[
λ

μ

]ki−1−k0+1 1
i

(5)

Xi =
i−1∏
g=1

(
1
g

)kg−kg−1

(6)

(X1 ≡ 1), i = 1, . . . , x + f

The expected total number of cross-trained workers in
the front room is Fcross =

∑x
i=1 i[PSums(ki+f−1) −

P (ki+f−1)+P (ki+f )]. The expected number of workers in
the back room, B, can therefore be defined as b+x−Fcross.

The expected number of customers in the front room, L,
is defined as

∑x+f−1
i=0 L(ki) + kx+fP (kx+f ) where

L(ki) = kiPSums(ki) + P (ki) (7)

× [(ri+1)
δi(−δi) + (ri+1)δi+1(δi − 1) + ri+1][

(i+1)μ−λ
(i+1)μ

]2 .

Wq = L
λ(1−P (kx+f )) − 1

μ is the expected customer waiting
time.

The equations defining PSums(ki), P (ki), L, B and
Wq, together with Wq ≤ Wu and B ≥ Bl are the major
constraints of the CP model. The set of constraints defining
a policy (presented above) is also included in the model.

Shaving Shaving is a consistency-enforcing procedure for
constraint programs based on temporarily adding constraints
to the problem, performing propagation, and making infer-
ences according to the resulting state of the problem (De-
massey, Artigues, & Michelon 2005; van Dongen 2006). We
use two shaving procedures: BlShaving, which makes in-
ferences based on the feasibility of policies with respect to
the Bl constraint, and WuShaving, which makes inferences
based on feasibility with respect to the Wu constraint.

Let min(ki) and max(ki) be, respectively, the smallest
and largest values in the current domain of variable ki,
and suppose that the constraint Wq ≤ Wu is temporar-
ily removed. At each step of the BlShaving procedure,
ki = min(ki) or ki = max(ki) is temporarily added to the
model for i ∈ {0, ..., x + f − 1}. If ki = min(ki) is added,
then all other switching points are assigned the maximum
possible values subject to the condition that kn < kn+1,
∀n ∈ {0, ..., x + f − 1}. If the resulting policy is B-
infeasible, the temporary constraint is removed, and the con-
straint ki > min(ki) is permanently added: if all variables

except ki are set to their maximum values, and the problem
is B-infeasible, then, by Theorem 1 of (Berman, Wang, &
Sapna 2005), in any feasible policy ki must be greater than
min(ki). Otherwise, we check if the policy is Wq-feasible,
in which case the procedure stops since feasibility of the
sub-problem has been proved.

If ki = max(ki) is added, all other switching points
are assigned the minimum possible values. If the result-
ing policy is B-feasible but Wq-infeasible, the constraint
ki < max(ki) is permanently added. Since all variables ex-
cept ki are at their minimum values already, and ki is at its
maximum, it must be true, again by Berman et al.’s Theorem
1, that in any solution with smaller Wq, the value of ki has
to be smaller than max(ki). If the policy is both B-feasible
and Wq-feasible, the procedure stops, and the current master
and sub-problem solutions are optimal.

The WuShaving procedure makes inferences based
strictly on the constraint Wq ≤ Wu. The constraint B ≥ Bl

is removed prior to running this procedure. A constraint of
the form ki = max(ki) is added, and the smallest possible
values are assigned to the rest of the variables. As the Bl

constraint has been removed, the only reason why the pol-
icy could be infeasible is because it has a Wq value greater
than Wu. Since all switching points except ki are assigned
their smallest possible values, this implies that in any solu-
tion with a better expected waiting time, the value of ki has
to be strictly smaller than max(ki).

BlShaving and WuShaving are iteratively run until a
policy satisfying both constraints is found, until a constraint
is inferred that violates the current upper or lower bound of
a ki, or until no further inferences can be made. In the final
case, standard CP search is performed to determine whether
a feasible policy exists.

Experimental Results and Analysis

Since our problem has not been previously solved, our ex-
periments focus on determining some of the reasons for the
CPU times required to solve various problem instances and
on evaluating the effect of different parameter values on the
efficiency of our method. Additionally, we evaluate the use-
fulness of the three main components of the method for solv-
ing the sub-problem. Our approach was implemented in
ILOG Solver 6.2, and all experiments were performed on a
Dual Core AMD 270 CPU with 1 MB cache, 4 GB of main
memory, running Red Hat Enterprise Linux 4.

Problem Size Recall that S is the maximum number of
customers allowed in the system at any one time and thus
is the prime determinant of problem size. We use a set of
300 instances, 30 for each value of S from {10, 20, . . . , 90,
100}, with costs cx = 32, cf = 31 and cb = 30. The values
of the rest of the parameters are taken from the experiments
of (Terekhov & Beck 2007), for which they were generated
in such a way as to ensure non-trivial solutions for Berman’s
problem P1. The best Wq values found in those experiments
were used as the Wu values for our instances. Since P1 is
similar to our sub-problem, we expected that using these pa-
rameters would give us instances of various difficulty.

Our method solved all but one instance (at S of 80) within
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Statistic/Value of S 10 20 30 40 50 60 70 80 90 100
CPU Time (seconds) 0.07 0.81 2.72 0.30 1.12 0.52 0.30 87.54 4.64 5.74
# of Iterations 5.07 7.83 16.20 6.23 8.23 7.23 8.23 34.73 27.60 23.83
Total # of Workers 4.37 6.43 9.20 4.87 5.47 5.60 5.27 15.33 8.83 8.93
% Diff. Compared to Specialized-only 6.47 2.87 0.20 3.04 4.15 1.28 2.91 0.09 0 0
% Diff. Compared to Cross-trained-only 7.26 9.38 7.42 13.22 12.27 11.84 11.47 7.74 8.18 7.54

Table 1: Mean CPU time (seconds), mean number of iterations, mean total number of workers in the optimal solution, and
mean percentage differences between the cost of the optimal solution and the two ‘naive’ solutions for each value of S. For the
one instance (at S of 80) that was not solved within the time limit, we assume a run-time of 600 seconds, as many iterations as
were completed in 600 seconds, and the specialized-only solution to be optimal.

10 CPU minutes. In Table 1, the mean CPU time, mean
number of times the sub-problem is solved (number of iter-
ations) and the mean total number of workers in the optimal
solution over 30 instances for each value of S are presented.
The mean run-times show a significant peak at S = 80 and
are approximately correlated with both the total number of
workers and the number of iterations. This is not surprising:
the more workers are needed in the facility, the more staff
combinations usually need to be examined. An increase in
the total number of employees in the optimal solution also
leads to higher run-times for each sub-problem. This is be-
cause the higher the total number of workers in the facility,
the larger the size of the policies, and the longer shaving
and search will take to prove feasibility or infeasibility. In
our problem set, when S = 80, there are several instances
which have both a large number of iterations (a maximum
of 141) and difficult sub-problems (maximum sub-problem
CPU time of approximately 77.6 seconds).

Table 1 shows that higher values of S do not necessarily
lead to higher run-times: the mean CPU times at S of 90 and
100 are substantially lower than that at S of 80. Therefore,
problem difficulty is not simply a result of the problem size.

Cost Combinations Using the above instances, five dif-
ferent cost combinations, (cx, cf , cb), are examined. When
the costs are (32, 1, 31), (32, 31, 1) and (32, 24, 24), all 300
instances are solved, with a mean run-time of under 1 sec-
ond. For cost combinations (32, 30, 31) and (32, 32, 32), 298
and 288 instances, respectively, are solved, and the mean
run-times are 8.07 and 35.10 seconds, respectively. These
results indicate that as the difference between the cost of a
cross-trained worker and the sum of the costs of specialized
workers increases, the time needed to solve the instance in-
creases. In these cases, the master problem is likely to con-
sider solutions with a larger number of cross-trained work-
ers, resulting in larger domains for the kis and longer shav-
ing and search times. The general pattern in the mean CPU
times for each S seen in Table 1 also occurs under these five
cost combinations.

Other Parameters In order to examine the effect of the
rest of the problem parameters, we use a set of instances
with S of 100 and the λ, μ, Bl and Wu values from the 54
instances used in (Berman, Wang, & Sapna 2005). Ten dif-
ferent cost combinations which satisfy our cost assumptions
are used, giving us 540 instances. Although the values of the

parameters vary, these instances can be grouped into 9 types
according to the value of λWu

Bl
, which is an indication of

how difficult it will be to satisfy the Wu and Bl constraints
simultaneously, adjusted by the arrival rate. Smaller values
of this ratio lead to tighter problem instances. In addition,
each triple out of these 9 types has an equal value of λ/μ,
which is a representation of the workload of the facility.

All 540 instances were solved within 10 minutes. From
Table 2, it can be seen that as λ/μ increases, mean CPU
times increase. This happens simultaneously with an in-
crease in the mean number of iterations and an increase in
the total number of workers in the optimal solution, confirm-
ing the observations made from our experiment with differ-
ent S values. As the value of λWu

Bl
decreases, while λ/μ is

held constant, mean CPU times, number of iterations and
total number of workers in the optimal solution increase.
Therefore, as the workload of the facility increases and/or
the expected waiting time bound becomes tighter, the prob-
lem becomes harder to solve.

Cost of the Optimal Solution Both Table 1 and 2 present
the mean percentage difference between the cost of the op-
timal solution, and the costs of the specialized-only solution
and the cross-trained-only solution (i.e. with f = b = 0).
We calculate the difference between each pair of solutions
as a percentage of the cost of the optimal solution. In most
cases, there is a non-zero difference between the costs of
the optimal solution and the two ‘naive’ solutions, indicating
that our approach may be valuable in practical applications.

Influence of Algorithm Components The sub-problem
solution technique has three main components: the heuristic,
the alternating shaving procedure and CP search. We tested
three modifications of our method: heuristicOnly, in which
shaving and search are removed, noShaving, in which shav-
ing is removed, and noSearch, in which search is removed.

Experiments with our set of 540 instances indicate that
the heuristicOnly method finds the optimal solution only
in the 215 instances for which the optimal solution is the
specialized-only solution. In 52 additional instances, this
method finds a better-quality, but sub-optimal, solution than
the specialized-only one. The noSearch method is able to
find the optimal-cost solution in 516 instances: 92.6% of
instances for which the specialized-only solution is not opti-
mal. The noShaving method finds the optimal-cost solution
in 389 instances, 53.5% of instances where the specialized-
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λ/μ 10 15 20
λWu

Bl
55.83 21.87 6.15 38.34 10.84 3.55 28.56 8.12 2.37

CPU Time (seconds) 0.31 12.47 11.98 0.59 8.72 37.10 40.37 58.21 88.41
# of Iterations 1.00 3.20 11.30 1.00 5.70 22.58 3.20 14.10 36.50
Total # of Workers 11.00 11.60 12.70 16.00 17.00 18.82 21.60 22.80 25.10
% Diff. Compared to Specialized-only 5.27 1.42 0.75 3.69 3.41 1.03 0.75 0.34 1.44
% Diff. Compared to Cross-trained-only 61.46 55.22 46.85 67.92 59.35 48.36 68.01 60.26 47.61

Table 2: Mean CPU time (seconds), number of iterations, total number of workers in the optimal solution, and percentage
differences between the cost of the optimal solution and the two ‘naive’ solutions for each value of λWu

Bl
.

only solution is not optimal. Recall that the full algo-
rithm found the optimal-cost staff mix in all 540 instances.
The mean run-times of the heuristicOnly, the noSearch and
the noShaving methods are approximately 0.07, 28.62 and
300.39 seconds, respectively, whereas the mean run-time of
our overall approach is approximately 28.69 seconds.

These results indicate, firstly, that the shaving procedure
is an essential part of our method: it finds the optimal solu-
tion in most of our test instances and significantly reduces
the run-time. Secondly, we see that the heuristic is usually
not helpful in finding the optimal solution. However, given
its negligible run-time, it is still worthwhile to use as part of
our overall method. CP search guarantees completeness and
is useful in those cases in which shaving is unable to find a
feasible policy for the optimal master solution.

Conclusions

In this paper, the applicability of CP for solving queueing
design and control problems is demonstrated by showing
that a Benders’ decomposition-based method is able to solve
an example of such a problem over a wide range of param-
eter settings. This work provides one of the first links be-
tween queueing theory and CP. In future work, we intend to
further investigate the integration of these areas.
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