Changes’04

International Workshop on
Constraint Solving under Change and Uncertainty

A CP2004 workshop, Toronto, Canada
September 27th, 2004

Problem solving under change and uncertainty is a significant issue for many practical
applications. Solutions must be obtained before the full problem is known, and often must be
executed as the environment changes. Many of the application areas have been tackled by
constraint based methods, but current constraint solving tools offer little support for uncertain
dynamic problems. Possible enhancements could include rapid reaction to problem changes,
robust solutions, prediction of future changes and contingent solutions, time guarantees or
exploitation of known time limits.

This workshop will continue the series of CP workshops on online solving, change and
uncertainty, and in particular following on from Online-2003 held at Kinsale during CP2003.
The workshop aims to bring together researchers interested in the general topic, to consider
how existing techniques can be enhanced, and to explore combinations of the different
techniques.

All submissions to the workshop were reviewed by at least two referees. Four papers were
selected for full presentation, and are contained in these working notes. In addition, the notes
contain a number of short position papers, which will be presented briefly in discussion
sessions. We welcome you to the workshop, and look forward to a fruitful discussion.

Workshop Organisers
Chris Beck University of Toronto, Canada
Ken Brown Cork Constraint Computation Centre, Ireland

Gérard Verfaillie RIA Research Group, LAAS-CNRS, France

Program Committee

Roman Barték Charles University, Czech Republic
Amedeo Cesta ISTC-CNR, Italy

Markus Fromherz Parc, USA

Simon de Givry INRA, France

Bill Havens Simon Fraser University, Canada
Narendra Jussien Ecole de Mines de Nantes, France
Ian Miguel University of York, UK

Jon Spragg Vidus Limited, UK

Thierry Vidal ENIT, France

Toby Walsh Cork Constraint Computation Centre, Ireland

Contents

FULL PAPERS

Arnaud Lallouet, Andre Legtchenko, Eric Monfroy, AbdelAli Ed-Dbali
Solver Learning for Predicting Changes in Dynamic Constraint Satisfaction Problems

Ying Lu, Lara S. Crawford, Wheeler Ruml, and Markus P.J. Fromherz
Feedback Control for Real-Time Solving

Cédric Pralet, Gérard Verfaillie, and Thomas Schiex
Belief and Desire Networks for Answering Complex Queries

Neil Yorke-Smith and Christophe Guettier
Anytime Behaviour of Mixed CSP Solving

SHORT PAPERS

William S. Havens and Bistra N. Dilkina
The 2-Expert Approach to Online Constraint Solving

Nicola Policella, Amedeo Cesta, Angelo Oddi, and Stephen F. Smith
Facing Executional Uncertainty through Partial Order Schedules

Alfio Vidotto, Kenneth N Brown and J. Christopher Beck
A Controller for Online Uncertain Constraint Handling

Christine Wei Wu, J. Christopher Beck and Kenneth N Brown
Dynamic Vehicle Routing with Uncertain Customer Demand

21

37

53

69

71

73

75

Solver Learning for Predicting Changes in
Dynamic Constraint Satisfaction Problems

Arnaud Lallouet™, Andrei Legtchenkof, Eric Monfroy*, AbdelAli Ed-Dbalif

T Université d’Orléans — LIFO

BP 6759 — F-45067 Orléans — France
Firstname.Name@lifo.univ-orleans.fr
* CONTACT AUTHOR

¥ Université de Nantes — LINA
BP 92208 — F-44322 Nantes — France

Eric.Monfroy@irin.univ-nantes.fr

Abstract. We present a way of integrating machine learning capabilities
in constraint reasoning systems by the use of partially defined constraints
called Open Constraints. This enables a form of constraint reasoning with
incomplete information: we use a machine learning algorithm to guess the
missing part of the constraint and we put immediately this knowledge
into the operational form of a solver. This approaches extends the field
of applicability of constraint reasoning to problems which are difficult
to model using classical constraints, and also potentially improves the
efficiency of dynamic constraint solving. We illustrate our framework on
online constraint solving applications which range from mobile comput-
ing to robotics.

1 Introduction

In the classical CSP framework, a constraint is a relation, a CSP is a conjunction
of constraints and a solution is an element of the relation defined by the con-
junction. The usefulness and the difficulty of this problem has deserved the huge
amount of work which has been and remains to be done. But many problems do
not perfectly fit in this framework and have been the origin of many extensions.
Among them is the necessity to admit that a problem is not always perfectly
defined. Some parts may be unknown for several good reasons: lack of informa-
tion, incompleteness of human knowledge, no sufficient experience, uncertainty,
belief, ... Also some part may change according to the environment, actions of
external agents or movement in a mobile system.

One possibility is to accept belief revision when faced with a new piece of
information. The most studied problem in this field is the one of constraint
retraction in dynamic CSPs [8, 20] where one constraint can be deleted from the
CSP. This gives more freedom to the problem but may invalidate the current
computation state. Depending on the problem, the system may recompute a
suitable consistent state or maintain solutions to be able to react to further
modifications.

In this paper, we tackle a different way of dealing with incomplete informa-
tion: we leave the possibility for a constraint to be partially defined. Clearly,
this contradicts the Closed World Assumption made in the usual definition of

a constraint where what is not stated as true is mandatorily false. An Open
Constraint is composed of two disjoint parts: one is positive and contains the
tuples for which we are certain that they are true, and the other is negative and
contains the tuples for which we are certain that they are false. Other tuples are
simply unknown.

Since an open constraint actually represents a hidden reality, there is many
ways to classify unknown tuples. But, if the well-defined part is sufficient, there
is a chance that an automatic algorithm can detect regularities which can help
to reconstitute the hidden constraint. We argue that this definition allows to
integrate Machine Learning [17] or data-mining capabilities inside constraint
reasoning. Among possible uses, we can cite the possibility of building reasoning
systems from incomplete knowledge, predicting changes in dynamic constraint
solving, self-improving constraint system, intelligent constraint reasoning mod-
ules in multi-agent systems or web-based distributed reasoning systems.

In section 2, we present the basics of open constraints. Section 3 proposes a
general framework for open constraint solver construction and two methods for
building solvers for open constraints. But let first start by a motivating example.

A smart agenda for PDAs

Let us introduce the usefulness of open constraints on a mobile computing ap-
plication. In organizations in which different peoples collaborate, meetings can
be planned in a non-hierarchical way by any member of the group according to
the needs. The process is easy when people are at voice distance or in a central-
ized setting (groupware) but becomes tricky when the information is distributed
on nomadic applications, for example hosted in PDAs. Then, many information
exchanges (synchronizations) are needed in order to get a consistent solution
since only couples of PDAs are able to synchronize. Moreover, synchronization
is costly since the PDAs are supposed to be close to each other and people in
the same room at the same time. For privacy reasons, we suppose that PDAs do
not exchange information about third parties when synchronizing.

Arno Andrei Eric Ali

8 8 8 8
9 9 9 9
10 10 10 10
11 11 11 11
12 12 12 12
13 13 13 13
\ Monday \ \ Monday \ \ Monday \ \ Monday

Fig. 1. Constraints in Arno’s PDA before synchronization.

Let us consider a group of four persons: Arno, Andrei, Eric and Ali, each one
holding a digital assistant. One day, Arno decides to organize a meeting with
the three others on monday. Every PDA holds a representation for the other’s
schedule. Since the PDAs are not synchronized, Arno holds no constraint for the
other’s schedules (see figure 1). If a schedule for monday morning is represented
by a constraint schedule (hour,affected), it is equivalent to have a constraint
with all tuples allowed, i.e. {(8,0), (8,1),(9,0),(9,1),...}. In other words, we do
not know if an hour is affected or not. At the beginning, all known tuples for
the constraints come from the past weeks. The current week tuples are not yet
in the constraint database since no synchronization has occured. A closed-world
Constraint Programming system would propose 9:00 for the starting time of the
meeting by finding the first available solution.

Arno Andrei Eric Ali

8 e 8 | | carrepar 8
9 9 theie 9
10 10 10
11 11 11 || o
12 12
13 13
\ Monday | | Monday | | Monday | | Monday \

Fig. 2. Constraints after synchronization with Andrei, Eric and Ali.

When synchronizing with Andrei, Eric and Ali, conflicts will possibly ap-
pear, like for example thoses of figure 2 where actual schedules are described. A
conflict yields a solver’s revision and the need for re-synchronizing with previ-
ously synchronized PDAs. A possible scenario for this tentative meeting is the
following:

Synchronization First solution found
no 9:00
Arno - Andrel 10:00
Arno - Eric 12:00
Arno - Ali 13:00
Arno - Andrel 13:00
Arno - Eric 13:00

Five synchronizations and three revisions are needed in order to get a globally
consistent schedule. For n peoples, if downloaded schedules remain stable until
the meeting hour is eventually discovered, it needs up to 2n synchronizations for
a single meeting. In a real-life situation, the n peoples may initiate their own
meeting and change their timetable unexpectedly, thus increasing the whole
number of synchronizations.

Andrei Extension

8 8

o | [= o[=
10 10

11 1
12 12

Fig. 3. Extension of Andrei’s constraint as guessed by Arno’s PDA.

But it is commonsense knowedge that other people’s schedules are not empty
but simply unknown. In order to improve this mechanism, let us consider the
unknown schedules as open constraints. Our purpose is to find a suitable exten-
sion (guess of the missing tuples) which can be more informative than using the
closed-world assumption. Over time, we do have informations about the habits
of people we work with, as it goes in real life. A very simple extension of the
unknown constraints may be found by reproducing the schedule of the last week,
or by a simple analysis of recent past. In figure 3 is represented Andrei’s schedule
for the last two monday mornings. Here, for simplicity, the extension is built by
carrying forward the events which occured in the two previous weeks. By doing
the same with Eric and Ali’s constraint, few or no revisions may appear. This
clearly improves the system with respect to its most critical part, synchroniza-
tion.

2 Open Constraints

Modeling a problem with constraints involves three different levels:

— The model which consists in constraints definitions. Usually the user is pro-
vided a constraint language in which each constraint is a building block
with its own precise definition. A model is built by putting together the
constraints in order to describe the problem. Sometimes, some constraints
(for example compatibility constraints in frequency allocation or in config-
uration problems) which are impossible to describe in the language or have
a clumsy formulation are given by a table. Theses constraints usually affect
the performances of the resolution.

— The solver which is the definition of how the constraints react to events
caused by search or other constraints and propagate information across the
network. Following [3], we describe a solver by a set of operators whose
chaotic iteration enforce a given consistency!. Many solvers implement only

! There are many other algorithms for solving CSP (see [9]) but the chaotic iterations
framework allows to easily define an individual solver for a constraint.

the set of built-in constraints but some of them propose a language to express
propagators for user-defined constraints. Among them, two languages have
received a great attention: Indexicals [19] and Constraint Handling Rules (or
CHRs) [12].

— The computation state which describes the current state of variable domains.
Some states for which propagation is exhausted are said consistent and are
starting points for the search mechanism.

Let V be a set of variables and D = (Dx)xev their (finite) domains. For W C V|
we denote by D" the set of tuples on W, namely IIxew Dx. For AC DV, A
denotes its complementary in D",

A constraint ¢ can be defined as a couple ¢ = (W, T) where W = var(c) CV
is its arity and T = sol(c) € D" is its solution. A constraint is supposed to
be fully known by completing its definition with the so-called Closed World
Assumption (or CWA) stating that what is not explicitely declared as true is
false. Hence the complementary T is the set of tuples which do not belong to
c. Alternatively, a constraint can be described by giving its forbidden tuples,
with the same meaning. In the following, we call ordinary constraints under
CWA closed or classical constraints. When dealing with incomplete information,
it may happen that some parts of the constraint are unknown. We call such a
partially defined constraint an open constraint:

Definition 1 (Open constraint).
An open constraint is a triple c = (W, ct,¢™) where ¢t C DV, c= C DV and
ctNe =0.

Fig. 4. An open constraint.

In an open constraint ¢ = (W, ¢, ¢7), ¢* represents the tuples which are cer-
tainly allowed and ¢~ the ones which are certainly forbidden. The rest of the
tuples, i.e. ¢t U ¢~ are simply unknown. An open constraint is depicted in fig-
ure 4 where the (green) dots labeled “+” represent tuples of ¢™, the (red) dots
labeled “-” represent tuples of ¢~ and the (blue) dots labeled “?” represent
unknown tuples. We denote by OC the set of open constraints.

Remark 2. Note that a classical constraint ¢ = (W, T) is a particular open con-
straint for which the negative part is the complementary of the positive part.
Thus, in the following, the notation (W,T) can be viewed as a shorthand for
(W, T,T).

Ezample 38 (Examples of open constraints).

— a bank customer database includes a relation:

good_customer (revenue,balance,#incident)
which defines what is a good customer. This constraint is not known in ex-
tension because it would need to define all the values for the fields. From one
hand, giving this definition could be cumbersome and error-prone. Moreover,
real customer databases include many more fields like professional activity,
number of cars owned ..., making thus the whole relation intractable in
extension.

— in picture processing, recognition of a figure in a picture coming from a
camera can be seen as a high arity constraint (for example 100 x 100). For
example, the constraint circle(Xy, ..., X10000) can be used by a robot to
detect if the current picture contains a circle.

— time-series data are by definition incomplete since they keep growing over
time. They can be represented by an open constraint which can be used by
a planning system in order to decide actions guided by experience.

— logs obtained by monitoring a system may be analyzed in order to find some
patterns of interest like a probable attack.

Ezample 4 (Sales assistant).

Consider a robot sales assistant whose task is to give back change to customers.
We model its knowledge by a constraint which states how many coins of different
types have to be given to make a given sum, for example:

€/100 [1¢ [5¢ | 10¢] 25¢
100 5 | 2 6 1

At the beginning, this constraint which models all different possibilities to give
change for a given sum is unknown (¢ = (W,0,0)) and the assistant has to
be supervised during a little training period before its first interactions with
customers.

An open constraint can be viewed as to represent a set of closed constraints
which are compatible with its positive and negative parts. Each of these con-
straint “extends” the partial definition given by the open constraint. We call
such a compatible closed constraint an extension of the open constraint:

Definition 5 (Extension).
Let ¢ = (W,c*,c™) be an open constraint. A (classical) constraint ¢’ = (W, T)
is an extension of c if ct C T and ¢~ CT.

In general, many extension can be considered, and let us introduce three of them.
Among all possible extensions lies the real closed constraint which is associated

10

C' og cC C

(a) an open constraint (b) its cautious extension

cl C At DA
(c) itsbrave extension (d) an algorithmic extension

Fig. 5. An open constraint and some of its extension.

to the real world problem. In most cases, the knowledge of this constraint is
impossible to get and all that can be done is computing an approximation of it.
Let ¢ = (W,c",c™) be an open constraint. We denote an extension of ¢ by [c].

— Cautious extension: [¢]. = (W, ™). All unknown tuples are assumed to be
true (figure 5b).

— Brave extension: [c], = (W, ¢"). All unknown tuples are assumed to be false
(figure 5c¢).

— Algorithmic extension [c]4: let A : DV — {0,1} be a tuple classification
algorithm such that ¢ € ¢t = A(t) = 1 and t € ¢ = A(t) = 0. Then
[cla = (W, {t € DV | A(t) = 1}) (figure 5d).

The algorithmic extension of an open constraint allows a great freedom be-
cause a machine learning algorithm can be used to classify the missing tuples.
We propose first to study the impact of the choice of the extension on the solver’s
behavior. Depending on the chosen extension, the solver will prune more or less
agressively the search space:

— Cautious extension: a solver generated according to this extension is cautious
in the sense that it will not prune the search space for any unknown tuple.

— Brave extension: a solver generated according to this extension will prune
the search space as soon as possible. Actually, it behaves exactly as for a
closed constraint for which all non-allowed tuples are disallowed.

— Algorithmic extension: this last kind of extension will be the ideal host for
a learning algorithm. Tuples from ¢t and ¢~ are respectively positive and
negative examples which are used to feed the learning algorithm. Note that
the two preceding extensions are particular cases of this one for constant
functions. The main challenge is to be able to generate the best possible
solver: the one which has a strong pruning power and is not subject to
many weakening revisions. As a learning task, there is no universal solution
for every problem and the user has to carefully choose and tune his/her
learning algorithm in order to obtain good results. For example, in figure
6 is depicted 2 possible extensions for the open constraint of figure 4. Note
that two unknown points are put in different classes in these two extensions

11

Fig. 6. Two possible algorithmic extensions.

(they are colored in yellow for those who can print in colors, but are easy to
find otherwise).

3 Solvers for Open Constraints

In this section, we propose two techniques for building generalizing solvers from
an open constraint.

3.1 Overview of open constraint solver construction

The notion of solver we use in this paper comes directly from the framework of
chaotic iterations [3] applied to domain reduction. In this approach, a solver is
modeled by a set of reduction operators for each constraint. In order to model a
given consistency, these operators must have the following properties:

— monotonicity.

— contractance: they should reduce the domains.

— correction, meaning that no solution tuple could be rejected at any time
anywhere in the search space.

— singleton completeness, meaning that the operator is a satisfiability test for
the positive examples and rejects the counter-examples.

In some implementations (like indexicals [19]), each variable has its own reduc-
tion operator. Singleton completeness holds for the set of operators associated to
a constraint. Note that singleton completeness for an open constraint is an ex-
tension of singleton completeness for closed constraints [14]. With this property
on singletonic states, the consistency check for a candidate tuple can be done by
the propagation mechanism itself.

Besides that, there is many ways to classify the unknown part while preserv-
ing examples and counter-examples in their respective category. The following
proposition allows to limit the efforts made to verify that an operator is a con-
sistency. It is sufficient to verify if the operator preserves the defined part of ¢
(¢t and ¢™):

12

Proposition 6.
If f is monotonic, contractant and singleton complete, then f is correct.

The proof of this proposition can be derived from a similar result for closed
constraints presented in [14]. When completed, an open constraint can be given
a solver, but even if correct with respect to the open constraint, this solver
may be incorrect or incomplete with respect to the real hidden constraint. This
depends on the precision of the extension.

Building a solver for an open constraint is not an easy task since it needs to
build propagators for a partially unknown constraint. This can be done by hand
and the propagators will reflect the extension intended by the programmer. But
given a large constraint arity and a large set of examples and counter-examples, it
is likely that most regularities which could be useful for propagation will remain
unnoticed, thus leading to poor performances. A better way is to find how to
use a learning algorithm in order to build propagators.

One could imagine two methods for building automatically a solver for an
open constraint: the first one consists in finding the desired extension of the
constraint, and then to build the solver using one of the previous techniques.
But this process may be cumbersome since examples and counter-examples are
likely to come from a large database. Extending it would result in a larger set
of data which may soon become intractable. Hence a better solution is to build
the solver and the extension on the fly:

Our proposition consists, by using learning techniques, in building a set of
reduction operators such that its associated constraint covers the positive
examples and rejects the counter-examples.

In other terms, we build the solver instead of building the constraint because
a constraint is fully defined by its consistency operator (or its set of domain
reduction operators). In the following, we propose two techniques aiming at
building solvers for open constraints. The first one is an extension of our solver
construction technique: the Solar system [14]. The second one proposes a novel
technique which uses a classifier like an artificial neural network in order to build
an operator enforcing a consistency.

3.2 Indexical solver construction

Indexicals have been introduced in [19] in order to define finite domains con-

straint solvers. The Solar system automatically finds an indexical expression

for a constraint given in extension. The possible expressions are restricted by a

language bias and we refer to [14] for a more complete description of the system.

Let ¢ = (W, ct, ¢™). Here we present the automatic construction of one linear

indexical for a variable X € W. The general form of the indexical is X in minlx
. maxlx, both bounds being linear and defined as follows:

a+ Y (by.min(Y)+cy. max(Y))
YeWw\{X}

13

With such a fixed form, the learning problem amounts to find the best coefficients
for the template expression. Since there is no need for completeness, we just use
the reduction indexicals provided by the system and not the reparation ones
which are built only to ensure completeness.

Ezample 7 (Example 4 running, the sales assistant). At first, the constraint
is empty and thus its solver does nothing and accepts all tuples. Let us provide
to the system a first training example in order to build an effective solver. For
conveniency, we give name to the variables, we restrict the arity of the constraint
to 3 and we compute the solver only for the variable A:

A=€/100 | B=10¢ | C=25¢
60 1 2

With this only tuple provided, our system outputs the following solver:

A in -100 -100*min(B) -100*max(B) +280*min(C) -100*max(C)
-100 -100*min(B) -100*max(B) +280*min(C) -100*max(C)

This is not the expected knowledge for a change assistant but the tuple belongs
to this hyperplane. Since the hypothesis space has 5 dimensions, it needs 6 tuples
to find the hyperplane. Let the next five customers ask for the following change:
(10,1,0), (75,0,3), (75,5,1), (25,0,1) and (185,1,7). This time the expected
solver is produced:

A in 10*min(B) +25%min(C) .. 10*max(B) +25*max(C)

Since the actual constraint of this example is linear, our system will eventually
find it, as it does for built-in constraints. The trained solver may now be put in
a CSP, for example with resource constraints which limit the amount of coins of
different types in the cashier’s office: for example B < 100, C' < 80.

3.3 Classifier-based solver

Given a relation, a classifier [17] is a machine learning algorithm which aims at
finding a class for an attribute knowing the value of the others. For example, in
a mushroom database with many observational attributes like hat, foot or color,
the purpose may be to guess if the mushroom is toxic or can be eaten. Classifiers
have nice properties: they are tolerant to noise, they generalize properties and
can be used to predict the class of new items and they are often fast to execute.
Several knowledge representations may be used to implement classifiers, like
for example artificial neural networks (ANN) or binary decision trees. As is, a
classifier is pretty much different from a solver. But a solver for open constraints
would take advantage of these properties if the idea underlying a classifier could
be used to build it. We present here an example of classifier-based solver which
uses an ANN.

Let r = (W,T), X € W and a € Dx, we denote by r[z(a)] = {t{w_(x} [t €
r X ({X},{a})} the subtable composed of those tuples of sol(r) for which their
value on X is a.

14

Ezample 8. Let r be the relation ({X,Y,Z},{(0,0,1),(0,1,1),(1,1,0)}). The
selection r[z(0)] = ({Y, Z},{(0,1),(1,1)}).

In order to build a reduction operator for X for the constraint ¢ = (W, c¢*, ™),
the idea is to associate a boolean classifier to each value a of X’s domain which
says if a can be pruned. The classifier takes as input the domain of the other
variables. It is trained with ¢T[x(v)] as positive examples and ¢~ [z (v)].

Ezample 9. Let ¢t = (0,0,1) and ¢~ = (0,1,0). For this example, we use a
single perceptron to classify the tuples supporting the value (0). The result of
training is depicted in figure 7a and its extension in figure 7b. By adding the
tuple (0,1,1) to ¢, it shifts the line as in figure 7c, yielding the extension given
in figure 7d.

+ +/ - + =
/
(a) Network trained (b) Extension of (a) (c) Network trained (d) Extension of (c)
with 2 tuples with 3 tuples

Fig. 7. An ANN propagator.

The full solver is obtained by taking the union of the operators defined by a
classifier for each value of each variable. The space complexity obtained by such
a solver is comparable to the one of AC4 [18], each of the classifier having a
constant size. Once trained, the ANN can be used as follows: for checking one
tuple, for example (0,0,0), 0 is presented on Y and Z’s neurons and the answer
is 0 meaning that 0 is not a supported value (see figure 7d and figure 8a).

Y z YO YO zZ0 zQ)
0 0 0o 1 1 1
x(O)\ 1 / X(O)\\ /
(a) test of atuple (b) test of adomain

Fig. 8. Using nn ANN propagator.

For checking intervals or subsets in order to implement bound- or arc-consistency,
it is needed to have a different network composed of one neuron per value of the

15

domain of the input variables. Then, in order to possibly remove the value 0
from X’s domain, all domain values for Y and Z are simultaneously presented
on input variables (figure 8b). The neuron is simply feeded with a representation
of the input variables domain. If the network is monotonic and if z(0) is sup-
ported by one tuple, the output value is 1. Conversely, if (0) is not supported,
the output is 0. Thus propagation is done in a safe and efficient way.

If the operator coded by the network is not monotonic, then all tuples in the
Cartesian product of the domains of the input variables have to be checked while
their output is 0 (which means that they do not support the value). Once a 1 is
produced, this means that the value is supported and the enumeration may be
shorten. Of course this technique could be applied only for very small domains.
Note that this technique applies even if the reduction operator is defined as usual
and not by learning — by a programmer for example. Hence we insist on using
monotonic operators.

We have implemented a larger prototype using ANN constraint-based plan-
ning of a robot in a virtual environment. To be more expressive, perceptrons
have to be replaced by multilayer ANN in order to express non-linearly sep-
arable functions. One problem with ANNs is that they are non-monotonic by
nature since some connexion weights may be negative. The way we chose to
overcome this problem is to constrain the weight to be positive. It has the effect
of sometimes preventing the retropropagation learning algorithm to converge to-
wards the optimum. This is why we set the weight by using a genetic algorithm.
Convergence is slower but the quality of solutions is satisfactory.

The robot dwells in a grid environment, can perform actions like make a step
forward, turn left or eat energy pill. It has state variables representing location
and energy. Each time the robot bumps a wall, it looses energy. The robot’s rep-
resentation of the world is modeled internally by a constraint step(01dState,
Movement, NewState) which relates its perception before and after its actions.
The known part of this constraint changes at every move and the robot learns
from its past actions a probable description of what it should do next. The robot
uses this constraint for a 3-steps simple planning (see figure 9). It searches in the
space of possible moves the best one according to the current extension of the
constraint and performs this move. Each time the move leads to a bad outcome
(lower the energy, for example), the robot revise its solver for the constraint by
re-running the learning algorithm. In other terms, it changes the computed ex-
tension of this constraint. We observed that after a first period of intense revision
(when only a few tuples are known), the robot improves itself and is eventually
able to show an emerging “intelligent” behavior by avoiding obstacles. This is
done without having an internal iconic representation.

4 Related work and open issues

Related work. Many approaches have been tackled to handle changes in CSPs,
especially in the so-called Dynamic CSP framework [8]. We are indebted to [20]
for their excellent survey on dynamic constraint solving in which the reader can

16

.
!

planning horizon time axis

[

Fig. 9. Robot planning.

find many more references than it is possible to include in this paper. Interest-
ingly, the AC|DC algorithm [5] can cope with the enlargement of the domain of
variables or adding of tuples to constraints. However, the algorithm works at the
computation state level and outputs a new consistent search state after revision
and no consideration on solvers revision is made.

The name “open constraint” has been coined by [11] but with a rather differ-
ent treatment as it is proposed in this paper. They consider CSPs for which the
solving algorithm may query variable values when the search space is exhausted
and no solution is found. With the artifact of hidden variable encoding, the solv-
ing algorithm fo-search gathers tuple by tuple the definition of the constraint
and the main consideration is to limit the number of gathered tuples. The same
intention can be found in the Interactive Constraint Satisfaction framework pro-
posed in [15]. In contrast, our concern is to build a solver and not to provide an
algorithm for distributed CSPs.

Other works introduce machine learning in Constraint Programming like the
Adaptative Constraint Engine [10]. The purpose is different of ours since learning
is used to infer strategies for a class of problems.

Several techniques have been considered for the automatic construction of a
constraint solver since the pioneering work of [4]. The main difference between
approaches is the choice of the representation language for operators. In [1] is
introduced the system PROPMINER which constructs as CHR all relevant propa-
gation rules for a constraint given a language for the left- and right-hand sides of
the rules. We believe that this framework could be extended for open constraint
in the context of association rules mining [2]. In [7,14] is presented a general
framework for consistency approximation, instantiated by the automatic con-
struction of indexicals-based solvers for bound-consistency. It has been extended
for arc-consistency by using clustering techniques [13] and delay of expensive
operators [16]. Our current approach mainly focuses on this framework in order
to extend it for open constraints.

In [6], the goal is to find a CSP made out of built-in constraints like <, =, #
which accepts examples and rejects counter-examples. The purpose and methods
are different since they want to help a CSP designer to build the model he/she
wants to solve but it can also be understood as finding a model for an open
constraint. Since they use (combination of) symbolic constraints, they can use
a powerful version space learning algorithm. As with many learning algorithms,

17

they have to put strong languages biases in order to get a tractable problem. In
a solver learning perspective, this representation of an open constraint as a CSP
has the advantage of reusing existing solvers for built-in constraints.

Open issues. Building a native solver for open constraints is related to the
treatment of uncertainty. For example, the constraint X < Y + 1 is composed
of a positive part X < Y + 1, a negative part X > Y — 1 and an unknown
part in between. Such a solver could provide information about the number
of uncertain constraints used in a solution. It could be also useful to express
preferences and/or to address over-constrained problems. The unknown area of
the constraint has to be small in order to find some certain solutions. Uncertainty
in Constraint Programming has been tackled in [21] among others.

Also open constraints pose the problem of the solver’s correctness, which is
one of the most interesting feature of the closed-world approach. In order to
generalize, a learning algorithm should be incomplete by accepting more tuples
than only the set of positive examples. But it can also be incorrect and this
behavior is useful to be tolerant to noisy or incomplete data. We believe that
applications which need open constraints also need the full power of learning
tools even if some solutions found are false positive or negative.

5 Conclusion

Future knowledge-based system will require reasoning capabilities, reactivity to
the external world and self-improvement. We propose partially defined or open
constraints as a model for constraint reasoning with incomplete information. We
have proposed a way of building a solver for an open constraint by combin-
ing a learning algorithm and a solver generation mechanism. Eventually, open
constraints will play for machine learning techniques the same role as global
constraints do for specialized graph or mathematical programming algorithms.

Acknowledgements. This project is supported by French CNRS grant 2JE095. The
authors would like to thank Lionel Martin for valuable suggestions.

References

1. Slim Abdennadher and Christophe Rigotti. Automatic generation of rule-based
constraint solvers over finite domains. Transaction on Computational Logic, 5(2),
2004.

2. Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules
between sets of items in large databases. SIGMOD Record (ACM Special Interest
Group on Management of Data), 22(2):207-216, June 1993.

3. K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179-210, 1999.

4. K.R. Apt and E. Monfroy. Automatic generation of constraint propagation algo-
rithms for small finite domains. In Joxan Jaffar, editor, International Conference
on Principles and Practice of Constraint Programming, volume 1713 of LNCS,
pages 58-72, Alexandria, Virginia, USA, 1999. Springer.

18

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

P. Berlandier and B. Neveu. Maintaining arc-consistency through constraint re-
traction. In International Conference on Tools with Artificial Intelligence, pages
426431, New Orleans, LA, USA, 1994. IEEE.

. R. Coletta, C. Bessiere, B. O’Sullivan, E. C. Freuder, S. O’Connell, and J. Quinque-

ton. Semi-automatic modeling by constraint acquisition. In Francesca Rossi, editor,
International Conference on Principles and Practice of Constraint Programming,
number 2833 in LNCS, pages 812-816, Kinsale, Ireland, 2003. Springer.
Thi-Bich-Hanh Dao, Arnaud Lallouet, Andrei Legtchenko, and Lionel Martin.
Indexical-based solver learning. In Pascal van Hentenryck, editor, International
Conference on Principles and Practice of Constraint Programming, volume 2470
of LNCS, pages 541-555, Ithaca, NY, USA, Sept. 7 - 13 2002. Springer.

R. Dechter and A. Dechter. Belief maintenance in dynamic constraint networks.
In 7th National Conference on Artificial Intelligence, pages 37-42, St Paul, MN,
USA, 1988. AAAI Press.

Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

. Susan L. Epstein, Eugene C. Freuder, Richard Wallace, Anton Morozov, and Bruce

Samuels. The adaptative constraint engine. In Pascal Van Hentenryck, editor,
International Conference on Principles and Practice of Constraint Programming,
number 2470 in LNCS, pages 525-540, Ithaca, NY, USA, 2002. Springer.

Boi Faltings and Santiago Macho-Gonzalez. Open constraint satisfaction. In Pascal
van Hentenryck, editor, International Conference on Principles and Practice of
Constraint Programming, volume 2470 of LNCS, pages 356-370, Ithaca, NY, USA,
Sept. 7 - 13 2002. Springer.

Thom Frithwirth. Theory and practice of Constraint Handling Rules. Journal of
Logic Programming, 37(1-3):95-138, 1998.

Arnaud Lallouet, Andrei Legtchenko, Thi-Bich-Hanh Dao, and AbdelAli Ed-Dbali.
Intermediate (learned) consistencies. In Francesca Rossi, editor, International Con-
ference on Principles and Practice of Constraint Programming, number 2833 in
LNCS, pages 889-893, Kinsale, County Cork, Ireland, 2003. Springer.

Arnaud Lallouet, Andrei Legtchenko, Thi-Bich-Hanh Dao, and AbdelAli Ed-
Dbali. Learning approximate consistencies. In Krzysztof R. Apt, Francois Fages,
Francesca Rossi, Péter Szeredi, and Jézsef Véancza, editors, CSCLP’03: Recent Ad-
vances in Constraints, LNAI 3010, pages 87-106. Springer, 2004.

E. Lamma, P. Mello, M. Milano, R. Cucchiara, M. Gavanelli, and M. Piccardi.
Constraint propagation and value acquisition: Why we should do it interactively.
In International Conference on Artificial Intelligence, Stockholm, Sweden, 1999.
Andrei Legtchenko, Arnaud Lallouet, and AbdelAli Ed-Dbali. Intermediate con-
sistencies by delaying expensive propagators. In Valerie Barr and Zdravko Markov,
editors, Flairs’04, International Florida Artificial Intelligence Conference, South
Beach Miami, FL, USAi, 2004. AAAT Press.

Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited. Ar-
tificial Intelligence, 28(2):225-233, 1986.

P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(fd).
Technical report, Computer Science Department, Brown University, 1992.

Gérard Verfaillie and Narendra Jussien. Dynamic constraint solving, 2003. CP’2003
Tutorial.

Neil Yorke-Smith and Carmen Gervet. Certainty closure: A framework for reliable
constraint reasoning with uncertainty. In Francesca Rossi, editor, 9th International
Conference on Principles and Practice of Constraint Programming, number 2833
in LNCS, pages 769-783, Cork, Ireland, 2003. Springer.

19

20

Feedback Control for Real-Time Solving

Ying Lul, Lara S. Crawford 2*, Wheeler Ruml2 and Markus P.J. Fromherz 2

! Department of Computer Science, University of Virginia
Charlottesville, VA 22903
ying@cs.virginia.edu

2 Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
{lcrawford, ruml, fromherz}@parc.com

Abstract. Numerous solvers have been proposed to solve constraint sat-
isfaction problems (CSPs) or constrained optimization problems (COPs).
Research has demonstrated that solvers’ performance is instance-dependent
and that no single solver is the best for all problem instances. In this pa-
per, we further demonstrate that solvers’ relative performance is time-
dependent and that, given a problem instance, the best solver varies for
different solving time bounds. We investigate an on-line feedback con-
trol paradigm for solver or problem reconfiguration so that the solver
can reach the best possible solution within a specified time bound. Our
framework is unique in specifically considering the time constraint in the
feedback control of solving. With this augmented time-adaptivity, our
paradigm improves solver performance for real-time applications. As a
case study, we apply the feedback control paradigm to real-time perfor-
mance control of a multidimensional knapsack problem solver.

1 Introduction

Given a problem instance, some solvers or solver configurations perform vastly
better than others. In the literature, much research has tried to provide guidance
for matching the right solver to a problem instance. Minton [24] pointed out that
the performance of solvers is instance-dependent, i.e., for a given problem class
a solver can perform well for some instances, but poorly for others, which makes
the matching very difficult. Many authors have used off-line analysis (based on
statistics or problem characteristics available before actually beginning to solve
an instance) or probing to optimize algorithms or heuristics for a particular class
of problems or even a particular instance. Others have used information acquired
during a solving run to iteratively tune the solving process in a type of feedback
loop.

For many real-world problems, a hard or soft time constraint is imposed
on the solving process. The solvers have to be terminated within certain time

* Corresponding author.

21

bounds in order to provide acceptable service. Although previous work has al-
ways attempted to improve solving efficiency, it has almost never explicitly taken
the time bound into account when selecting solvers, heuristics, or parameter val-
ues. We demonstrate in this paper that the best solver choice is dependent on
the time constraint and propose an on-line feedback control framework that will
adapt the solving process to the problem instance as well as to the real-time
application requirement.

2 Related Work

There is a large body of literature on off-line adaptive problem solving. A number
of systems (see Minton [24], Gratch and DeJong [15,14], and Caseau, Laburthe,
and Silverstein [8]) have used off-line analysis to optimize algorithms or heuristics
for a particular class of problems. This approach can be seen as analogous to
designing an open-loop controller, in the sense that the selection and tuning
of algorithms, heuristics, and problem transformations are done in advance of
the solving and are not responsive to the on-line performance of the system.
The same is true for approaches such as that in Flener, Hnich, and Kizltan
[12], in which a model is built off-line defining the relationship between the
problem instance and the best set of heuristics to use. There are several similar
approaches to on-line algorithm or heuristic selection (see Allen and Minton [3]
and Lobjois and Lemaitre[23]). Although these approaches probe the problem
instance on-line to determine the best algorithm or heuristics to use, and thus
take performance feedback into account during this stage of solving, once the
selection is made, no further feedback is used. A similar approach can be applied
to algorithm parameter selection: in their Auto- WalkSAT algorithm, Patterson
and Kautz [27] use probing to identify the best noise parameter for a particular
algorithm /solver pair. Finally, instance-based solver or parameter selection need
not depend on probing. Nudelman and his co-authors [22,26] use a statistical
regression approach to learn which problem features can be used to predict the
run time of different solvers. They then use this prediction to select the fastest
solver in a portfolio for each instance.

There are a number of approaches that make more use of feedback-type in-
formation for algorithm or parameter selection or for search control. Borrett,
Tsang, and Walsh [5] use on-line performance feedback to switch between al-
gorithms. Ruan, Horvitz, Kautz, and their coauthors [20,29,30] use it as part
of a dynamic restart policy. Hoos [19] uses stagnation monitoring to dynami-
cally adjust the noise parameter in WalkSAT algorithms. In the evolutionary
algorithms community, a variety of techniques have been used to adapt genetic
operators and parameters based on various performance measures (Eiben, Hin-
terding, and Michalewicz [11]). Similar methods have been used with simulated
annealing (Wah and Wang [35]). There are also a variety of approaches that
dynamically build up estimates of value or cost functions to guide the search
(see, for example, Baluja, et al. [4], Boyan and Moore [6], Narayek [25], Ruml
[31], and Lagoudakis and Littman [21]. These functions are measurements of the

22

“goodness” of particular states or action choices, and are developed on-line using
accumulated performance data.

Adaptive techniques have also been used to modify problem representations.
An “open-loop” off-line design approach for problem reformulation has been pro-
posed by Hnich and Flener [17]. Feedback approaches have been used as well.
For example, Pemberton and Zhang [28] have used (open-loop) phase transition
information and on-line branching estimation to identify complex search prob-
lems and transform them into easier searches producing suboptimal solutions.
Modification of penalty weights or chromosome representations in response to
performance has also been explored in the evolutionary algorithms community
(Eiben, Hinterding, and Michalewicz [11]).

In real time systems, though, time deadlines are a fact of life. None of the
approaches described above explicitly takes this time bound into account when
selecting solvers, heuristics, or parameter values. Some of these techniques rep-
resent anytime algorithms that can be stopped when a time bound is reached,
but the time bound is not considered earlier. The solver thus does not take
advantage of the known stopping time in order to make appropriate perfor-
mance/speed trade-offs. Techniques also exist to monitor anytime algorithms
and stop them when the solution improvement no longer justifies the additional
time expenditure (Hansen and Zilberstein [16]), but again, this approach does
not take a time bound explicitly into account in selecting or tuning the solver.
Very recently, Carchrae and Beck [7] demonstrated a feedback-based system that
switches among algorithms to get the best solution at a deadline. Their approach
has a number of similarities to ours. Our goal in the example described here,
however, is to use feedback to fine-tune algorithm or problem parameters rather
than to select the algorithms themselves, though both applications fit within our
general framework.

3 System Design

3.1 Solver Control

The generic framework for the feedback control of solving is shown in Figure 1
(see Crawford, et al. [10]). The control module is built upon a model or set of rules
reflecting the relationship between problem solving dynamics (y), the real-time
application requirement (i.e. the deadline T") and the choices for solvers, solver
configurations, and problem transformations. These choices define the control
parameters (u) of the solver. The model or rule base enables the prediction of
the solver behavior defined by these control parameters. Based on the predicted
behavior, the control module updates the control parameters (u), in order to
achieve the best suboptimal solution at the specified time bound.

3.2 Control Parameters

Control parameters u that could be used to change the solving performance in-
clude the choice of solvers, solver configurations or problem representations. For

23

problem

Ti Inslancei T solution

Control Module » Solver Module >

Fig. 1. Feedback control of solving framework.

example, some solvers may work better on under-constrained problems, while
others are better choices for over-constrained problems (Shang and Fromherz
[32]). In this case, the control parameter could be the choice of solvers. Another
example is a solver with a restart policy, for which it is useful to adopt differ-
ent restart cutoffs for problem instances with varied hardness levels. Previous
research by Horvitz, Ruan, Kautz, and their co-authors [20, 29, 30] has proposed
dynamic restart policies where the choice of cutoff is instance-based. In those
mechanisms, the control parameter would be the restart cutoff configuration.
Another possible control parameter is one defining a problem representation.
For example, Pemberton and Zhang’s e-transformation [28] makes use of a pa-
rameter € to define an off-line transformation of a tree search problem to one of
lower complexity (with a loss of optimality, of course). The value of € defines the
severity of the reformulation.

In this paper, we investigate problem representation as a key control param-
eter for solving constrained optimization problems under a time bound. A linear
constrained optimization problem is typically of the form:

maximize c¢i1Z1 + CT2 + -+ CpTn
respecting the constraints:

1171 + 612%2 + - -+ a1pTy + 01 <0

A21T1 + A22%o + -+ -+ G2pZy + by <0

Am1T1 + AmaTo + - + ATy + by <0 (1)

where z;, i € 1,2,---,n are variables whose value lies in some permissible set
{X}.

To simplify problem solving, sometimes it is desirable to reduce the problem
scale by problem transformation. The new problem representation should satisfy
the following two requirements. First, it is deduced from the original problem
but has smaller number of variables or constraints. Second, a solution to the new
problem can be transformed into a solution to the original problem.

Many approaches exist for such a problem transformation. Three simple pos-
sibilities are variable grouping, constraint grouping and variable removal. In
variable grouping, two or more variables are grouped together and considered
as one new variable. This type of problem transformation leads to the same as-
signments for the variables in one group. For example, assume that we group

24

variables z; and zs in Equation 1 together and consider the group as a new
variable g;. Then the original problem becomes

maximize (c1 +¢2)g1 + 323+ + Cpn
such that

(a11 + a12)g1 4+ a1323 + -+ a1pxn + b1 <0
(@21 + a22)g1 + a23x3 + - - + a2,2n + b2 <0

(aml + am2)gl + am3Ts + -+ GpnTn + by <0

Constraint grouping combines two or more constraints together. That is, a
new constraint will be used to replace the old constraints in such a way that
the satisfaction of the new constraint leads to the satisfaction of all the old
constraints. For instance, the grouping of the first two constraints in Equation
1 may result in the following new constraint (assume the permissible values of
the variables are positive),

maz(ai1, a1)x1 + - - - + maz(ain, a2n)Tn + max(by,by) <0

Variable removal fixes the assignments of some variables so that the number
of unknown variables is smaller after the problem transformation.

Other, more complex approaches to problem transformation along these lines
can also be envisioned; for example, hierarchical approaches to variable grouping
in which the problem is decomposed into a number of smaller subproblems. In
all the grouping approaches, whether of variables or constraints, care must be
taken when choosing how to define the groups, as this choice can affect solver
performance significantly.

3.3 Control Module

In the feedback control framework, the control module leverages a model or set
of rules to predict the solving behavior with different control parameter choices.
Therefore, a good model that accurately reflects the solving dynamics is the
key to good control parameter selection. In this paper, we propose a general
modeling framework. Given a solver with a defined set of parameter choices
U =uy,us,...,uy, we will first apply it to a group of representative benchmark
problem instances Py, Ps, ..., Py. The solving performance on those instances
will then be used to generate the model (see Figure 2). This approach is similar
to that taken by Nudelman et al. [26], but with the differences that we are aiming
to predict solution quality at a time bound rather than solver run time (to the
optimal solution), and that we use data acquired during the solving process in
the predictions.

25

Benchmark problem
instances

Solver Module | JOC———_>> | Modeing
,

VoD, %52)s oo, ¥R, vyt), o
1,2, M

yi(k+n) =f(y(1), (), ..., y(K))

Fig. 2. Modeling framework.

As shown in Figure 2, a model (represented by f;) is generated for each solver
configuration (defined by control parameter u;)*. The control module will then
use the models (f1, f2,---, fn, assuming there are N different solver configu-
ration choices) to predict the solving behavior on any given problem instance
and try to choose the best parameters for solving the problem instance. As the
control module will use the dynamic solving information y(k), such as subopti-
mal solutions obtained, to make the best parameter choice, parameter changes
may be required on-line. For example, the control module could choose some
u(1) € U at the first sampling interval and later switch to other configurations
u(2),u(3),---,u(k) € U if switching is predicted to produce better solving per-
formance.

When changing parameters from one configuration to another, one of two
types of switch strategies can be applied. These are constructive and restart
strategies. A constructive strategy uses the dynamic information obtained with
one configuration to adapt or modify the starting point of the solving with the
new configuration, while with a restart strategy, when the configuration switches
from uq to ua, say, the solving process for vy will pause and the process for ug will
start from scratch or restart from where it was paused. An intelligent constructive
strategy has the potential to improve the performance of the new configuration,
but may be difficult to build, depending on the type of parameters u being used,
and may require a solver-specific approach. With the simple restart strategy, on
the other hand, the solving process of each configuration is independent, which
leads to a simpler control system whose dynamics will be much easier to model.
Hence, in our general feedback control framework, we have chosen the restart
switching strategy.

For prediction and control in this framework to be feasible, two assumptions
must be made. First, we assume that the solver performance on the modeling
problem instances can be used to predict the performance on new instances.

! This paper only considers the case where there is a limited discrete number of control
parameter choices. The modeling framework for control with a continuous choice
of parameters requires a somewhat different modeling approach or a method for
interpolating among models and is a topic for future work.

26

Second, if the solver behavior on two problem instances are the same from the
beginning of the solving, then the solver is assumed to be very likely to continue
performing similarly on the two for the rest of the solving process.

Based on these assumptions, a brute force prediction and control algorithm
can be designed from a simple model. Let S be the set of M modeling problem
instances. The modeling process solves them until the specified time bound (T')
with each solver (defined by the parameter configuration u; € U). The subopti-
mal solutions reached by each solver at every sample interval are recorded. We
use y;;(k) to represent the suboptimal solution reached by the i** solver at the
k*h sampling interval for modeling problem P;. Note that the same parameter
configuration is used throughout a solving run (there is no switching).

When solving a new problem instance p, we will use a distance metric to
evaluate how similar the performance on p is to that on each modeling instance
P;. The distance to P; at time interval k, D;(p, k), is calculated based on the
performance on p by the solvers (defined by wui,us---,un) and their known
performance on P;. Assume that at time interval k, the algorithm has spent &;
sampling intervals on the solving process with configuration u;, where Zil k; =
k, and generated outputs y;(1),yi(2), - . -, ¥:(k;). Then we calculate D;;(p, k;), the
distance between p and P; with solver u; at time interval k as follows:

ki
Dij(p ki) = 3 Iyis(m) — yi(n)| (2)
n=1

All experience is weighted equally. From 2 the distance metric D;(p, k) is derived:

N
Dj(p, k) = 3 Dis(p: ki) 3)

At each sampling interval, the algorithm calculates D;(p, k) for every P; €
S and finds the modeling problem that is the smallest distance from p. That
is, it finds the problem P, that yields the minimum distance Dy (p, k) =
min({D;(p, k)|P; € S}). Then, the algorithm uses the solvers’ performance on
instance P,p; to predict how they would perform on p if allowed to run for the
rest of the sampling intervals. Then, for the next sampling interval, the algorithm
chooses the solver configuration u(k + 1) whose predicted final result at deadline
T is best. The above process is repeated at each interval. At the beginning of
a solving run, a minimum number of sampling intervals of each configuration
will be run to ensure accurate prediction. For the sake of reducing switching in
difficult cases, the feedback process continues until a specified time, at which
point one solver configuration will be chosen for the rest of the solving.

4 Case Study

As a case study, we apply the proposed feedback control paradigm (Section 3)
to the real-time performance control of a multidimensional knapsack problem

27

solver. The real-time solving performance of this type of problem is important
because many practical real-time problems such as resource allocation in dis-
tributed systems, capital budgeting, and cargo loading can be formulated as
multidimensional knapsack problems.

4.1 Multidimensional Knapsack Problem Solver

The 0-1 multidimensional knapsack problem (MKPOQ1) can be stated as:
_ | maximize c - x subject to

MEPOL= {Am <bandz € {0,1}"
where c € N, A € N™*™ and b € N™.

There are a number of approaches to solving the MKPO01 problem in the
literature. A standard was set by Chu and Beasley [9], who obtained good results
using a genetic-algorithm-based heuristic method. Their problem set was made
publicly available in the OR-Library [2], and has been a benchmark problem set
for testing other algorithms. Their paper also provides a useful survey of MKP01
solvers at that time. Many other heuristic solvers have been proposed since then
(for example, Holte [18], Fortin and Tsevendorj [13], and Vasquez and Hao [33]),
some placing emphasis on solution quality and some focusing on solving speed.

We will here apply the feedback control paradigm to a MKPO1 solver devel-
oped by Vasquez, Hao, and Vimont [33, 34]. This solver takes a hybrid approach
that combines linear programming with an efficient tabu search algorithm. It
gave results on the OR-Library benchmarks [2] that the authors claim were
the best known at the time. Other solvers could of course be used as targets
for real-time performance control; we chose this one based on its final solution
quality.

The main idea of the hybrid solver is to perform a search around a solution
of the fractional relaxed MKPO1 problem with additional constraints. Starting
from the obvious statement that each solution of MKPO1 satisfies the property:
1-z =3 Tz; =k, where k is a positive integer, they add this constraint to the
fractional relaxed MKPO1 to obtain a series of problems like:

maximize c¢- x s.t.

MEKP[k] =< Az <band z € [0,1]" and

l-z=keN

These M K P[k] are solved and their fractional solutions, T[y), are used as
starting points for tabu searches. They are solved in order of most promising to
least promising k. In Vasquez and Vimont [34], kg, the first value used, is the
rounded sum of the elements of the optimal solution T of the relaxed MKPOL.
That is, ko = [1 - Z], where

T = argmaxc-r s.t.

Az < b,z €[0,1]"

The region around Z[,) is the first to be tabu searched. Next, regions around
Z(pp, k= ko—1,ko+1, ko —2, ko +2, - - - are sequentially tabu searched. According
to Vasquez and Vimont [34], this search order ensures the exploration of the
hyperplanes 1.z = k in the decreasing order of z|;) = c.Z[y), the optimal values
of MK P[k].

28

To reduce the search space, the algorithms impose a geometric constraint on
the tabu search neighborhood, so that the local search is limited to a sphere of
fixed radius around the fractional optimum Z[;). Therefore, each binary configu-
ration z reached by the local tabu search satisfies the following two constraints:

N1-z=k

2) |z, 2| = i 175 — 2wy < Omae

4.2 Control Approach

To control the performance of the aforementioned hybrid solver in the context of
a fixed time bound, several control parameters could be effective. First, the choice
of the geometric constraint §,,,, on the tabu search neighborhood will have an
important impact on its performance. We believe that the best choice of &4z is
problem instance dependent and application requirement dependent. Therefore,
on-line feedback tuning may be required to reach the optimal configuration.
Allocating the time that the algorithm will run on each hyperplane is another
place where the feedback control could be beneficial. Instead of strictly following
the search order kg, ko — 1, ko + 1, ko — 2, ..., it would be desirable to have some
dynamic mechanism to identify unpromising hyperplanes and switch to possible
better hyperplanes, so that a better suboptimal solution can be reached within
the time bound.

In this paper, we consider the case where the time bounds imposed on solving
are quite tight, and we have therefore chosen problem representation as the
control parameter. To reduce the scale of the problem, we changed the problem
representation by grouping several variables together. The solver performance
on the new problem representation will be quite different with different grouping
strategies. Although any grouping strategy might speed the solving process, some
will cause big performance degradations in terms of the suboptimal solutions
for the transformed problem. Instead of grouping variables together randomly,
our algorithm groups pairs of variables with small values of the relative price

heuristic:
Cj

A
Grouping with this heuristic allows for trading off between solution quality and
solving speed.

To demonstrate that the optimal solver configuration is time-dependent, we
describe experiments with the mk_gkl11.dat benchmark (proposed by Glover and
Kochenberger [1]). This benchmark problem instance includes 2500 variables
and 100 constraints. Through variable grouping, we generated four new problem
representations, in which the number of variables are 2000, 1500, 1000 and 500
respectively. For each representation, we used a reimplementation of the hybrid
solver to solve the problem. Solution qualities (as fractions of the relaxed MKP01
solution) over time for one particular problem instance are shown in Figure
3. One can see that different time bounds lead to different optimal problem
representation choices. For instance, if the solver is only allowed 50 seconds to
solve the problem, the optimal problem representation should be the one with

29

1000 variables. For a 100-second time bound, the optimal choice becomes the
representation with 2000 variables.

Solver Performance With Different Problem Representations

0.999 "
'

-

0098 ovvorrbisst b []

0.997f :

0.996]__

0.995

B
0904 ©
o — 2500
0.993f - - 2000

: - 1500

Quality Relative to Upper Bound

: ~++ 1000
0992F © e

0.991

0 100 400 500

2 0
Time (Seconds)

Fig. 3. The hybrid solver performance with different problem representations.

Previous work (Vasquez and Hao [33]) has demonstrated that the required
solving time for a problem instance depends on its size, the number of variables
and constraints in the instance. We further investigated whether other static fea-
tures have an impact on the solver performance and can thereby provide a hint
on selecting the control parameter (the problem representation, in this case).
If offline analysis can be helpful in optimizing the solving process, the dynamic
reconfiguration and switching overhead will be reduced. Several features of the
knapsack problem were analyzed for their ability to predict how well the solver
will perform (at the deadline) with each of the two problem representations. Ex-

b

ample features included the tightness ratio sw~*—— where i = 1,2, ..., m, and the

j=1 @ij
relative price ﬁ Linear regression results indicate that only the tightness
i=1 "b;
ratio of the problenf instance has an obvious effect on the solver performance,
while other static features do not seem to yield any consistent indication of how
the solver will perform.

This static feature analysis further demonstrates that static information
alone is not enough for guiding the parameter choice. Experiments also show
that for problem instances with the same tightness ratio the solver performance
can still be quite different. Therefore, in this example our focus is on problem
instances with the same tightness ratio and size (the number of variables and
constraints in the instance). For such a group of problem instances, we build a
dynamic model that can be used as a basis for making problem representation
choices solely using solver runtime information.

We propose to use the solver runtime information (y) and the real-time appli-
cation requirement (deadline T') to determine the right problem representation
choice, using the feedback control paradigm. The best suboptimal solutions z* (k)
reached at each sampling interval (i.e. the system performance outputs y(k)) are
used for predicting the system performance and choosing the problem repre-

30

sentation 2. We consider two different problem representations as our control
parameter choices, U = {u1, uz}. One representation requires no problem trans-
formation and presents the hybrid solver with the original problem, while the
other representation transforms the problem through variable grouping.

4.3 Experimental Results

We implemented a benchmark generator according to the algorithm described
in Chu and Beasley [9]. We then used it to generate problem instances that have
n = 500 objects, m = 30 constraints and 0.25 tightness ratio. For these problem
instances, we investigate two different problem representations. One representa-
tion will change the number of objects to n = 420 (chosen for demonstration
purposes) by grouping 80 pairs of small relative price objects together. The other
representation will retain the original problem formulation with n = 500 objects.
The objective is to achieve the best suboptimal solution at a specified time bound
with the Vasquez and Hao hybrid solver by solving the given problem instance
with the feedback-chosen problem representation.

1100 problem instances were generated, with 1000 of them used as modeling
instances to guide the feedback solving of the final 100 validation problem in-
stances. The modeling and feedback control were done as described in Section 3.
The sampling interval (feedback update period) was set to 10 iterations. The
minimum number of intervals for each problem formulation was set to 40 (400
iterations) and the number of intervals after which the feedback was turned off
and a single formulation was selected was 400 (4000 iterations). Two experiments
were carried out, where different modeling and validation problem instances were
chosen from the 1100 problem instance set. For reasons of simplicity, we chose
10000 solving iterations as the time bound, where a solving iteration is defined
as the time interval between two successive moves of the local tabu search for the
hybrid solver. Sample control traces, showing the controller’s choice of problem
representation at each iteration, are given in Figure 4.

To assess the the performance of the solver with and without feedback, we
performed a paired comparison between the feedback-controlled solver and the
no-feedback solver using each of the two problem formulations (420 and 500
variables). For this comparison, the two experiments (with different modeling
and validation sets) were combined. Figure 5 shows the distribution of the dif-
ferences in quality at the deadline between the feedback and no-feedback cases.
Quality is measured as a fraction of the upper bound provided by the solution to
the relaxed problem. The boxes indicate the central 50% of the data, while the
whiskers denote the extent of the data. The gray bars show the 95% confidence
interval around the mean.

The figure shows that with feedback control of the choice of problem rep-
resentation, the solver performed better on average at the deadline than with

2 Other possible dynamic information that could be used for feedback control includes
the constraint violation vy, = }2;,. ,~, (ai.x — bi) and the time since the last im-
provement in the solution (stagnation).

31

Sample Control Trace Sample Control Trace Sample Control Trace
10000 10000 10000

9000 9000 9000
8000 8000 8000
7000 7000 7000
6000 6000 6000
5000

5000 5000

Iteration
Iteration
Iteration

4000f - f----- 4000f - - - - - - 2000f - f--- -~

3000 3000 3000

2000 I 2000 2000 I

1000 1000 1000 5]

400 500 400 500 400 500
Problem Formulation Problem Formulation Problem Formulation

Fig. 4. Typical sample traces showing the feedback control switching between the two
problem representations. The horizontal dashed line indicates the point beyond which
no further switching was permitted.

either of the fixed problem representations. The improvement was small, but
statistically highly significant (p < 0.01 in a binomial test for equal or better
performance).

5 Conclusions and Future Work

In conclusion, we have here demonstrated an approach for using feedback control
to improve the quality of the solution obtained when solving a problem under a
strict time bound. The algorithm makes use of a model based on solution profiles
to dynamically predict solver performance and choose solver control parameters
accordingly. We have presented a case study application of this approach to solv-
ing the 0-1 multidimensional knapsack problem with the hybrid solver described
by Vasquez, Hao, and Vimont [33, 34]. In this application, small solution quality
improvements at the time bound were seen.

There are several issues still to be addressed with the feedback method de-
scribed here. The modeling and prediction technique used can incur a large
overhead if the size M of the modeling set is big. Thus, in the future it will be
essential to carry out research on how to reduce the size of the modeling problem
set by, for example, removing redundant similar-performance problems. Another
future research topic is how to generate the modeling problem set so that it in-
cludes “representative” problems. The modeling set should be able to self-evolve
during the solving process when new performance unique problem instances are
identified. Further, analyzing the underlying reasons why two problems have
similar performance profiles is a very interesting research topic. It would also be
useful to explore how the models used here could transfer to broader problem
classes. Other modeling and prediction methods are of course possible, as well,
and bear further investigation.

The choice of problem granularity as control variable should also be explored
further. Though a performance improvement was observed with the knapsack

32

Paired comparison

0.001

>
z
£
]
=
&
=1
5 olm Il
9
=1
(9]
-
[
et
b=
=)
-0.001
Fb - 420Fb - 500
Pair

Fig. 5. Performance of the solver under feedback control, as compared to using each of
the problem representations without control. The data plotted is the difference between
the solution quality for the feedback case and the no-feedback case. The boxes indicate
the region where 50% of the data points lie, and the whiskers show the extent of the
data. The gray bars show the 95% confidence interval around the mean.

problem, it was not a very large one. It is possible that other classes of problems
might lend themselves better to the approach of controlling the granularity by
aggregating variables. Additionally, though we explored different ways to do the
variable grouping, there may be better heuristics to use than relative price, and
some of the other approaches to reducing granularity might be more fruitful than
variable grouping.

Here we explored the use of on-line feedback control to choose solver and
problem parameters. It would be interesting to integrate this technique with
an off-line modeling and prediction approach based on, for example, problem
instance features, such as that used by Nudelman and his co-authors [26,22].
Such a combined approach might further improve performance at the deadline.

Feedback control of solving in response to a time deadline is a complex prob-
lem with many interacting variables, including choice of solver, choice of control
parameters, choice of modeling and prediction techniques, and choice of control
logic. If these obstacles can be overcome, however, the benefits of being able to
provide high-quality solutions in real-time settings would be many.

6 Acknowledgments

The authors would like to thank Yi Shang, Hai Fang, Tarek Abdelzaher, John
Stankovic, and Gang Tao for suggestions and helpful discussions. This work was
partially supported by DARPA under contract F33615-01-C-1904.

33

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

Large benchmark, http://hces.bus.olemiss.edu/tools.html.

OR-library, http://mscmga.ms.ic.ac.uk/jeb/orlib/mknapinfo.html.

J. A. Allen and S. Minton. Selecting the right heuristic algoithm: runtime perfor-
mance predictors. In Advances in Artificial Intelligence. 11th Biennial Conference
of the Canadian Society for Computational Studies of Intelligence, pages 41-53,
Toronto, Ontario, May 1996.

. S. Baluja, A.G. Barto, K.D. Boese, J. Boyan, W. Buntine, T. Carson, R. Caruana,

D.J. Cook, S. Davies, T. Dean, T.G. Dietterich, P.J. Gmytrasiewicz, S. Hazlehurst,
R. Impagliazzo, A.K. Jagota, K.E. Kim, A. McGovern, R. Moll, A.W. Moore,
E. Moss, M. Mullin, A.R. Newton, B.S. Peters, T.J. Perkins, L. Sanchis, L. Su,
C. Tseng, K. Tumer, X. Wang, and D.H. Wolpert. Statistical machine learning for
large-scale optimization. Neural Computing Surveys, 3:1-58, 2000.

J. E. Borrett, E. P.K. Tsang, and N. R. Walsh. Adaptive constraint satisfaction:
the quickest first principle. Technical Report CSM-256, University of Essex De-
partment of Computer Science, 1995.

J. A. Boyan and A. W. Moore. Learning evaluation functions to improve optimiza-
tion by local search. Journal of Machine Learning Research, 1:77-112, 2000.

Tom Carchrae and J. Christopher Beck. Low-knowledge algorithm control. In
Proceedings of AAAI-04, pages 49-54. AAAT Press / The MIT Press, 2004.

Y. Caseau, F. Laburthe, and G. Silverstein. A meta-heuristic factory for vehicle
routing problems. Constraint Programming, 1999.

P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knapsack
problem. Journal of Heuristics, 4:63-86, 1998.

Lara S. Crawford, Markus P.J. Fromherz, Christophe Guettier, and Yi Shang. A
framework for on-line adaptive control of problem solving. In CP’01 Workshop on
On-line Combinatorial Problem Solving and Constraint Programming, December
2001.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE transactions on evolutionary computation, 3:124-141, 1999.

P. Flener, B. Hnich, and Z. Kiziltan. A meta-heuristic for subset problems. In
Practical Aspects of Declarative Languages. Third International Symposium, PADL
2001, pages 274-287, Las Vegas, NV, March 2001.

Dominique Fortin and Ider Tsevendorj. Global optimization and multi knapsack:
a percolation algorithm. Technical Report 3912, Institut National de Recherche en
Informatique et en Automatique (INRIA), 2000.

J. Gratch and G. DeJong. COMPOSER: a probabilistic solution to the utility
problem in speed-up learning. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 235—240, San Jose, CA, July 1992.

J. Gratch and G. DeJong. A decision-theoretic approach to adaptive problem
solving. Artificial Intelligence, 88(1-2):101-142, 1996.

E. A. Hansen and S. Zilberstein. Monitoring the progress of anytime problem-
solving. In 13th National Conference on Artificial Intelligence, Portland, OR, Au-
gust 1996.

B. Hnich and P. Flener. High-level reformulation of constraint programs. In Pro-
ceedings of the Tenth International French Speaking Conference on Logic and Con-
straint Programming, pages 75-89, 2001.

Robert C. Holte. Combinatorial auctions, knapsack problems, and hill-climbing
search. In Proceedings of AI’2001, the Fourteenth Canadian Conference on Artifi-
ctal Intelligence. Springer, 2001.

34

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Holger H. Hoos. An adaptive noise mechanism for WalkSAT. In Proceedings of
AAAI-02, pages 655—660. AAAT Press / The MIT Press, 2002.

E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering. A
Bayesian approach to tackling hard computational problems. In Proceedings of the
Seventeenth Conference on Uncertainty and Artificial Intelligence, Seattle, WA,
August 2001.

M. G. Lagoudakis and M. L. Littman. Learning to select branching rules in the
DPLL procedure for satisfiability. In LICS 2001 workshop on theory and appliations
of satisfiability testing (SAT 2001), 2001.

Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learning the em-
pirical hardness of optimization problems: the case of combinatorial auctions. In
Constraint Programming 2002, 2002.

L. Lobjois and M. Lemaitre. Branch and bound algorithm selection by perfor-
mance prediction. In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 353-358, Madison, WI, July 1998.

S. Minton. Automatically configuring constraint satisfaction programs: a case
study. Constraints, 1(1-2):7-43, 1996.

A. Narayek. An empirical analysis of weight-adaptation strategies for neighbor-
hoods of heuristics. In Proceedings of the fourth metaheuristics international con-
ference, pages 211-216, 2001.

Eugene Nudelman, Alex Devkar, Yoav Shoham, and Kevin Leyton-Bown. Under-
standing random SAT: Beyond the clauses-to-variables ratio. In Proceedings of
Constraint Programming 2004, 2004. to appear.

D. J. Patterson and H. Kautz. Auto-walksat: a self-tuning implementation of walk-
sat. Electronic Notes in Discrete Mathematics, 9, 2001.

J. C. Pemberton and W. Zhang. e-transformation: exploiting phase transitions to
solve combinatorial optimization problems. Artificial Intelligence, 81(1-2):297-325,
1996.

Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependence among
runs: a dynamic programming approach. In Proceedings of the Eighth Interna-
tional Conference on Principles and Practice of Constraint Programming (CP-
2002). Springer-Verlag, 2002.

Y. Ruan, E. Horvitz, and H. Kautz. Hardness-aware restart policies. In IJCAI-08
Workshop on Stochastic Search Algorithms, Alcapulco, Mexico, 2003.

W. Ruml. Incomplete tree search using adaptive probing. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence, pages 235—
241, Seattle, WA, August 2001.

Yi Shang and Markus P.J. Fromherz. Experimental complexity analysis of contin-
uous constraint satisfaction problems. Information Sciences, 153:1-36, 2003.
Michel Vasquez and Jin-Kao Hao. A hybrid approach for the 0-1 multidimen-
sional knapsack problem. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, pages 328-333, Seattle, WA, August 2001.
Michel Vasquez and Yannick Vimont. Improved results on the 0-1 multi dimen-
sional knapsack problem. In Sizteenth Triennial Conference of the International
Federation of Operational Research Societies (IFORS 2002), 2002.

B. W. Wah and T. Wang. Tuning strategies in constrained simulated annealing
for nonlinear global optimization. International Journal of Artificial Intelligence
Tools, 9(1), 2000.

35

36

Belief and Desire Networks
for Answering Complex Queries

Cédric Pralet!, Gérard Verfaillie', and Thomas Schiex?

! LAAS-CNRS, Toulouse, France, {cpralet,gverfail}@laas.fr
2 INRA, Castanet Tolosan, France, tschiex@toulouse.inra.fr

Abstract. Constraint networks have been designed to reason about con-
straints between variables, whereas probabilistic networks have been sep-
arately designed to reason about conditional probabilities or local joint
probabilities between random variables. In this working paper, we pro-
pose a framework which allows constraints and probabilities, and more
generally desires and beliefs, to be represented and processed together.
This framework encompasses numerous existing frameworks such as clas-
sical and valued constraint satisfaction networks, bayesian networks, in-
fluence diagrams, stochastic boolean satisfiability and stochastic con-
straint satisfaction problems. It allows numerous reasoning and decision
problems in which desires and beliefs are imbricated to be represented.
It also allows various queries, involving diversely quantified variables,
to be formulated. Because this framework is based on simple algebraic
properties of combination and elimination operators, we think that it
will be then possible to develop on top of it powerful generic inference
and search algorithms able to handle these queries.

1 Existing constraint and probabilistic frameworks

In the last decades, several representation frameworks have been designed in
the AI community. Constraint satisfaction problems (CSP [1,2]), also referred
to as Constraint networks (CN), have been introduced to represent problems in
which local constraints between discrete variables express local requirements or
facts. These constraints implicitly define a global constraint over all the vari-
ables, that is a partition of the set of the complete variable assignments between
solutions and non solutions. The CSP framework has been extended to repre-
sent, in addition to the usual hard constraints, soft constraints which express
soft requirements or uncertain facts. These constraints implicitly define a global
soft constraint over all the variables, that is a satisfaction or violation degree
distribution over the set of the complete variable assignments. See for example
the Valued and Semiring-based CSP frameworks (VCSP and SCSP [3]), which
encompass classical, fuzzy, additive, lexicographic and probabilistic CSP.
Concurrently, Bayesian networks (BN [4-6]), have been introduced to repre-
sent problems in which local conditional probability distributions between dis-
crete random variables implicitly define a joint probability distribution over all

37

the variables. Influence diagrams [7] extend bayesian networks by adding ran-
dom utility variables and non random decision variables to the usual random
variables. In another direction, Dynamic bayesian networks [8] allow dynamic
stochastic processes to be modelled.

Markov decision processes (MDP [9-11]) have been devised to represent se-
quential decision problems under uncertainty. Unlike dynamic bayesian networks
or influence diagrams, they do not reason on variables, but directly on states and
decisions, that is on aggregate large domain variables. Factored MDP [12] ex-
tend MDP concepts and methods to a variable-based representation of states and
decisions. In another direction, Partially observable Markov decision processes
(POMDP [13]) take into account the fact that the state of the dynamic process
is generally only indirectly observable via potentially erroneous observations.

Mized CSP [14] introduce a distinction between controllable and uncontrol-
lable variables in the CSP framework, where all the variables are usually as-
sumed to be controllable i.e., one can decide on the value they take. Stochastic
constraint satisfaction (SCSP [15,16]) and Stochastic satisfiability (SSAT [17])
extend the CSP and SAT frameworks by introducing randomly and universally
quantified variables in addition to the usually existentially quantified variables.

Hybrid or mized networks [18,19] allow the deterministic part of bayesian
networks to be represented and manipulated more efficiently as constraints.

2 Modelling requirements

Taking into account all these frameworks, their scopes, and the requirements
of various application domains, it is possible to list what should be expected
from a framework which would combine constraints and probabilities, and more
generally desires and beliefs.

First, we need wariables to represent states as well as decisions. Each vari-
able is equipped with a domain of possible values, which may be discrete or
continuous, finite or infinite. Although some problems require continuous or in-
finite domains, we restrict ourselves to discrete and finite domains, mainly for
the needs of the future algorithms. Values in these domains may be symbolic or
numeric.

Then, we need to represent local relations between variables. The word local
means that each relation links a subset of the existing variables (typically a small
number of them). We assume the existence of two kinds of relation. Relations
of the first type are denoted as belief relations. They are intended to represent
beliefs or knowledge about combinations of values. More precisely, each belief
relation associates with each combination of values of the variables it links a
belief degree, which represents to which extent this combination is possible or
probable. Relations of the second type are denoted as desire relations. They are
intended to represent desires on combinations of values. More precisely, each de-
sire relation associates with each combination of values of the variables it links
a desire degree, which represents to which extent this combination is desirable,
useful, or required. Special values are associated, on the one hand, with com-

38

pletely unbelieved (impossible) or undesired (inadmissible) combinations and, on
the other hand, with completely believed (necessary or certain) combinations.
These notions of belief and desire could be compared with the ones used in the
Belief-Desire-Intention (BDI [20]) framework.

Finally, we need combination (or aggregation) operators to combine degrees
of belief from different local belief relations, degrees of desire from different
local desire relations, and degrees of belief and degrees of desire together, so
as to associate a degree with any complete variable assignment. We need also
elimination (or marginalisation) operators to extract synthetic information from
any subset of variables, so as finally to answer any query about the network?.

Typical queries — motivated by various tasks, such as situation assessment,
situation explanation, situation prediction, property verification, decision assess-
ment, or decision making, in settings that may be sequential or not, multi-agent
or not — will involve arbitrary sequences of variable eliminations.

Finally, some sensible properties should be assumed about combination and
elimination operators. These properties should ideally enable global computation
to be performed by combining results of more local computations, as for example
in dynamic programming-style algorithms [21].

3 An example

The following example will be used throughout this paper to illustrate the main
features of the proposed framework.

Peter wants to create a start-up and requires help. He needs the participation
and the investment of some of his friends, Paul, John, Luke, and Matthew. In
order to get their agreement, he decides to organise a dinner. Things will be
discussed at the end of the dinner. It is therefore very important to get most of
his friends present at that time.

Peter knows that if Paul is present at the end of the dinner, he will agree
to participate and invest 10 k€ in the company. The same kind of guess stands
for John, Luke, and Matthew with respectively 100, 20, and 50 k€. In order to
launch his start-up, Peter needs the participation of Paul, John, or Luke (at least
one of them). Participation of Matthew is not required.

Peter knows that John will come. He knows that Paul will come with a prob-
ability of 0.7, but that, if Paul comes, John, who cannot stand him, will leave the

3 Given a function f of the variables in V, the elimination from f of a variable v € V
using an operator o results in a new function f, of the variables in V' — {v}. The
value of f, for a specific tuple ¢ of values of the variables in V — {v} is the result
of the application of o on the values of f for all the possible extensions of ¢ on v.
Computation of the minimum, the maximum, or the mean value of desires, beliefs, or
combinations of both over the cartesian product of domains of variables are typical
examples of such operations and min, max, and + are the associated elimination
operators. Variable quantifiers used in logical frameworks can be viewed as particular
cases of elimination. In fact, if we assume that f < ¢, then max (resp. min) is the
elimination operator associated with the 3 (resp. V) quantifier in boolean domains.

39

dinner immediately. Peter knows that Luke and Matthew come with the same
car, so that they will either come together, or none will come. He knows that
they will come with a probability of 0.6. Peter also knows that the presence of
Paul and John and the presence of Luke and Matthew are independent.

Considering the menu, Peter must choose between fish and meat for the main
course, and between white and red for the wine, but he does not want fish with
red wine. Peter knows that John does not like fish. If fish is chosen, he will leave
the dinner. He also knows that Luke does not like meat with white wine and that
Matthew does not like red wine. If the menu does not suit them, they will also
leave the dinner.

4 A belief and desire-based formalism

4.1 Problem definition

We define a problem instance Pb as a tuple (V, B, D, Sy, Sg) where:

— V is sequence of n variables; V; is the i** variable; with each variable V}, is
associated a finite set Dom;, which defines its domain of possible values;

— B is a sequence of b belief relations; B; is the 4P belief relation; with each
belief relation B;, are associated:

e a subsequence Scb; of V, which defines its scope, that is the variables it
links;

o afunction ¢;, which associates with any element of the cartesian product
of the domains of the variables in Scb; a belief degree in Ej, (see below);

— similarly, D is a sequence of d desire relations; Dy, is the k" desire relation;
with each desire relation Dy, are associated:

e a subsequence Scdy, of V', which defines its scope;
e a function vy, which associates with any element of the cartesian product
of the domains of the variables in Scdy, a desire degree in E; (see below)*;

— Sy is a quintuple (E,, <y, Ly, Ty, ®p), which defines the belief structure; Ej
is the set of possible belief degrees; <, is a total order on Ej; smaller belief
degrees are associated with less believed facts; L; is the minimum element
of Ey; it is associated with completely unbelieved (impossible) facts; Ty is
its maximum element; it is associated with completely believed (necessary
or certain) facts; ®j is a binary closed operator on Ej; it allows the belief
degree of any conjunction of facts to be computed from the belief degrees of
its components (combination operation);

— S4 is a quintuple {Ey, <4, L4, uq, ®4), which defines the desire structure; Ey
is the set of possible desire degrees; < is a total order on Ey; smaller desire
degrees are associated with less desirable facts; L4 is the minimum element
of Ey; it is associated with completely undesired (inadmissible) facts; ug is
a special element, associated with indifferent facts, at the frontier between
undesirable and desirable facts; ®,4 is a binary closed operator on FEg; it

* Belief and desire functions can be either analytically, or enumerativally defined.

40

allows the desire degree of any conjunction of facts to be computed from
the desire degrees of its components (combination operation); note that the
structure of Sy is different from the one of S, since we assume the existence
of completely undesired facts, but not the one of completely desired ones;
this can be obviously assumed if needed.

4.2 Problem semantics

A problem (V, B, D, Sy, Sy) allows a belief degree b(A4) and a desire degree d(A)
to be computed from any complete assignment A of the variables. Denoting
A[V'] the projection of A on a sub-sequence V' C V, these degrees are defined
by:

b(A) = (@122, (A[Sch;]) & T (1)
d(4) = (@ a=Hvn (AlSedr))) © uq (2)

Informally, the belief (resp. desire) degree of A is the result of the combi-
nation, via the belief (resp. desire) combination operator, of the belief (resp.
desire) relations applied to the projection of A on their respective scope. Said
otherwise, we assume that the global belief (resp. desire) relation is factorised.
If there is no belief (resp. desire) relation, every fact is considered to be certain
(resp. indifferent).

4.3 Required algebraic properties

Several algebraic properties on the belief and desire structures S, and Sy can be
considered as sensible.

First, the combination operators ®; and ®4 should be commutative and
associative, because we do not want the result of these combination operations
to be dependent on the way they are performed.

They should be monotonic, since if a fact F} is less believable (resp. desirable)
than a second fact F3, then the conjunction of F; with any third fact Fj3 is less
believable (resp. desirable) than the conjunction of Fy with the same fact F3:

Vb1,b2,b3 € Ep, (b1 =p b2) — (b1 @b b3 =p by ®p) (3)

Vdy,dy,d3 € Eq, (di 2q d2) — (d1 ®q d3 Zq d2 ®qd3) (4)

Then, the minimum elements 1; and 1,4 in E, and E; should be annihilator,

because the conjunction of any fact with an impossible (resp. inadmissible) fact
is impossible (resp. inadmissible) too.

Vb € Eb, b®b J_b = J—b (5)

Vde Ey, d®q Lg=14 (6)

Finally, the maximum element T in Ej should be a neutral element for ®:
the combination of any fact with a certain fact yields an unchanged belief degree.

41

Similarly, the element ug in E4 should be a neutral element for ®,4 because the
conjunction of any fact with an indifferent fact yields an unchanged desire degree.

VbEEb, bR, Ty=0b (7)
VdEEd, d Qqug=d (8)

4.4 Modelling our example

Variables The problem described in Section 3 can be modelled using ten vari-
ables. Four of them, denoted as bpp, bpy, bpr and bpys, represent the presence
of Peter’s friends at the beginning of the dinner. Four more variables, denoted
as epp, epy, epr, and epys, represent their presence at the end of the dinner.
Each of these variables has two possible values (¢ or f). The other two variables
represent Peter’s choices about the menu: mc with two possible values (fish
or meat) and w with two possible values (white or red). From Peter’s point
of view, mc and w are non random controllable variables (Peter can set their
value), whereas the other eight variables are random uncontrollable variables
(Peter cannot decide on their value).

Belief relations Considering beliefs, a first unary belief relation B; on bpp ex-
presses that Paul will come with a probability of 0.7: P(bpp = t) = 0.7, and
thus P(bpp = f) = 0.3. A second one By on bp; expresses that John will
certainly come: P(bp; = t) = 1 5. This can be equivalently expressed by the
unary constraint bp; = t. In fact this random variable, the value of which is
certain, could be removed from the problem definition. A third one B3 on bpy,
expresses that Luke will come with a probability of 0.6: P(bpy, = t) = 0.6. More-
over, a binary belief relation B, on bp;, and bpj, expresses that either Luke and
Matthew will both come, or none of them will: P(bpy; = tlbp, = t) = 1 and
P(bpyr = tlbpr = f) = 0. This can be equivalently expressed by the binary
constraint bpy, = bpa,.

The same way, four other belief relations (Bs, Bg, By, Bs) can be expressed
to model the other specifications of the problem in terms of beliefs:
B; : bpp = epp
Bg : (eps =1t) & ((bpg =t) A (bpp = f) A (mc = meat))
By : (epr. =1t) & ((bpr = t) A =((mc = meat) A (w = white)))
Bg : (epy =1t) + ((bppm = t) A (w = white))

Bs, Bg, By and Bg are expressed here as constraints, but could be expressed
as previously as conditional probabilities®.

5 Because all the variables in this example have only two possible values, we will
express the (conditional) probabilities only for one of the values.

5 For example, the conditional probability distribution associated with the belief rela-
tion Bsg is the following one: P(epam = t|lbpy = t, w = white) = 1, P(epm = t|bpm =
t,w=red) =0, P(epnm = t|bpm = f,w = white) =0, and P(epm = t|bpn = f,w =
red) = 0.

42

Desire relations Considering desires, a binary desire relation D; on mc and
w expresses that Peter does not want fish with red wine: U(me = fish,w =
white) = 0,U(mc = fish,w = red) = —oo,... This can be expressed by the
binary constraint =((mc = fish) A (w = red)).

A ternary desire relation D5 on epp, epy, and epy, expresses that the presence
of Paul, John, or Luke at the end of the dinner is required. This can be expressed
by the ternary constraint —((epp = f) A (eps = f) A (epr = f))-

Finally, four unary desire relations D3, D4, D5, and Dg on epp, eps, epr,
and epys express the gains that Peter can expect from the presence of each of
his friends at the end of the dinner: U(epp = t) = 10, U(ep; = t) = 100,
Ulepr = t) =20, U(epm =t) =50, U(epp = f) =Uleps = f) =UlepL = f) =
Uepy = f) =0.

Problem structure All these relations are graphically drawn in Figure 1. As with
influence diagrams, a square is associated with each non random variable and a
circle with each random variable. A hyper-arc, drawn with plain lines, is associ-
ated with each belief relation, its arrow being directed to the variable on which
conditional probabilities are defined. A hyper-edge, drawn with dotted lines, is
associated with each desire relation. Note that belief and desire relations link
indifferently controllable and uncontrollable variables, random and non random
ones, with the only restriction that a hyper-arc cannot be directed to a non
random variable.

Fig. 1: Hybrid belief and desire network.

Belief and desire structures The belief structure S; used is the usual structure
associated with probabilities: ([0,1],<,0,1, x). The desire structure Sy is (Z +
{—o0}, <, —00,0,+). Assumptions of Section 4.3 are satisfied by these structures
provided that + is extended as follows: Vz € Z + {—o0},2 + —00 = —00.

43

Belief and desire functions Belief functions ¢; are given by local conditional
probability distributions P and belief constraints. In particular, ¢;(t) = 0 for
all the tuples ¢ that violate a belief constraint. Desire functions ¢, are similarly
given by local utilities U and desire constraints. In particular, ¥ (t) = —oo for
all the tuples ¢ that violate a desire constraint. Note that, if constraints can
be used to partially or completely specify belief and desire relations, these two
kinds of relations will be handled separately and differently. This differs from the
classical CSP case, where certain facts and hard requirements are represented
and handled exactly the same way as constraints.

Semantics Let us consider the complete assignment A where mc = fish, w =
white, epy = f, and all the other variables are set to t. Its belief degree is the
following: b(A) = ¢1(bpp = t) X Pa(bps = t) X ... X ¢g(w = white,bpys =
teppy =1) =0.7x1x06x1x1x1x1x1=0.42. On the other hand, its
desire degree is: d(A) = 1 (mec = fish,w = white)+Ya(epp = t,ep; = f,epr, =
t)+ ... +Yslepy =t) =04+ 0+ 10+ 0+ 20 + 50 = 80.

4.5 Query definition

We define a query @ as a tuple (Pb, A, Sov, ®pq, S.) where:

— Pbis a problem (V,B,D, Sy, Sy) as defined in Section 4.1;

— A represents the assignment of some of the variables in V: the variables the
value of which is known or fixed;

— Sov is a sequence of operator-variable pairs. Operators may be min, max,
or a specific operator @, (see below); the intersection between the variables
in A (denoted as assigned variables) and the variables in Sov (denoted as
quantified variables) is empty; some variables may be neither assigned, nor
quantified; they are denoted as free variables;

— Qpq 18 a combination operator between belief and desire degrees; it associates
an element of E. (see below) with any pair made of an element of E, and an
element of Eg; it computes the combined belief-desire degree from the belief
and desire degrees;

— S.is a quintuple (E., <., L, u¢, D), which defines the combined belief-desire
structure; E. is the set of possible combined belief-desire degrees; we assume
that, if Ep ®@pq Eq = {b®pad /b € Ep,d € Eq}, E, is the transitive closure of
Ey ®pg Eq according to the &, operator; moreover, we assume that a special
element, denoted A, is added to E. to represent facts that are ignored from
the combined belief-desire point of view; <. is a total reflexive binary relation
on E., such that its restriction on E. — {A} is a total order: facts that are
not ignored are ordered and higher degrees are preferred; 1 . is the minimum
element of E. — { A}, if such an element exists; it is associated with the least
admissible facts from the combined belief-desire point of view; if such an
element does not exist, we set that 1L .= A by default; u. is an element of
E. — {A} which is neutral for @, if such an element exists; it is associated
with indifferent facts from the combined belief-desire point of view; if such

44

an element does not exist, we set that u, = A by default; &, is a binary
operator on E.; as min and max, it will be used to eliminate variables in
order to synthesise information about combined belief-desire degrees.

4.6 Query semantics

The answer Ans(Q) to a query @ = (Pb, A, Sov, ®pq, S¢) is defined as a function
of the free variables in @ (those that appear neither in A, nor in Sov). If A’ is
an assignment of these variables, the value of (Ans(Q))(A’) is given by:

(Ans(Q))(A") = Qs (Pb,AU A’, Sov, @4, Se) 9)
@s being recursively defined as follows:

Qs (Pb, A”, 0, b, Sc) = b(A”) Rbd d(A”) (10)
Qs (Pb, A", < 0,i> . Sov', @pq,S.) = (11)
Oac Dom; [@s (Pb, A" U{< i,a >}, Sov', @pg, Se)]

Equation 10 expresses that, if all the problem variables are assigned, the
answer to the query is the combination of the belief and desire degrees. Equation
11 expresses that, if the problem variables are not all assigned and ¢ is the first
quantified variable with o as operator, the answer to the query results from the
elimination of 4 using o as elimination operator.

4.7 Required algebraic properties

Some algebraic properties on the combination operator ®p4 and the combined
belief-desire structure S, are assumed.

Ignored facts
Ve € E., max(c, A) = min(c,A) =c®d. A=c (12)

Equation 12 expresses that facts the combined belief-desire degree of which
equals A are ignored in the computation of the answer to a query, whatever

elimination operators are’.

Belief-desire combination
Vd e Ed, 1y Qpad = A (13)

Equation 13 expresses that the combined belief-desire degree of impossible
facts equals A, whatever their desire degrees are. These facts are consequently
ignored from the combined belief-desire point of view and do not have any impact
on the answer to a query. Naturally, the belief-degree combination operator ®pq
should be in some sense monotonic:

" Note that assuming maz(c, A) = min(c, A) = ¢ is not incorrect because = is not a
total order on F.. Only its restriction on F. — {A} is.

45

Vb e Ey,Vdy,ds € Ey, (14)
(di Rq d2) = (b @padi 2 b®pg dz)

Equation 14 expresses that, if a fact F5 is more desired than another fact £
and both are similarly believed, F5 is preferred to F; from the combined belief-
desire point of view. We then assume the existence of an element 8; € E; which
corresponds to a frontier between positively desired and negatively desired facts
and satisfies the following equations:

Wby, bs € Ey,¥d € By, (15)
(b1 2p b2) A (0g 2g d)) = (ue 2c b1 @pad 2 b2 @pq d)
Vbl,bg (S Eb7Vd S Ed, (16)

(b1 =p b2) A (d <4 04)) = (b2 @pad =<c b1 Rpg d < ue)

Equation 15 expresses that, if a fact F5 is more believed than another fact
F; and both are equally positively desired (desire degree greater than or equal
to 6,), then Fy is preferred to Fy from the combined belief-desire point of view.
Conversely, Equation 16 expresses that, if a fact F3 is more believed than another
fact F1 and both are equally negatively desired (desire degree smaller than),
I is preferred to F» from the combined belief-desire point of view®. We then
assume that:

(uc # A) = (Vb € By, ((b @3 0s=A)V (b @pa by =1uc))) (17)

Equation 17 expresses that, provided there exists in E, — {A} a neutral el-
ement for @, (u. # A), facts that lie at the frontier between positively and
negatively desired facts (desire degree equal to ;) are either ignored or indif-
ferent from the combined belief-desire point of view.

Previous axioms entail that, if there exists a minimum element in E, — {A}
(Le# A) and if (Lg# 0g) A (Ty Qpg Lag # A), then Ty Qpg Lg=L.: if a fact
is certain and inadmissible, it is the least admissible from the combined belief-
desire point of view. Figure 2 offers a possible representation of a belief-desire
space that respects this set of properties.

Belief-desire structure The elimination operator @, should be commutative and
associative, because we do not want the result of the elimination to be dependent
on the way it is performed.

@, should be monotonic, because, if a fact F; is preferred to another fact F,
then the result of the synthesis of F» with any third fact F3 is preferred to the
synthesis of F} with the same fact F3:

Ver,eo,c3 € E; — {A}, (a1 2 ¢2) = (c1 B c3 =S¢ €2 B C3) (18)

8 Note that we impose neither that , is the only element with such a property, nor
that ug has this property: an indifferent fact from the desire point of view may be
non indifferent from the combined belief-desire point of view.

46

Desires

Beneficial
Ignored
(4)
Indifferent
(ue)

Lg .
Ly Least admissible T, Beliefs
(Le)

Fig. 2: Abstract representation of the belief-desire space.

Then, the element u. in E. should be a neutral element for @., because the
synthesis of any not ignored fact F' with an indifferent fact does not change F’s
combined belief-desire degree.

Ve€ E. — {A}, ¢ ®.u.=c¢ (19)

Note that we do not impose that 1. is annihilator for @.. This can be
assumed if needed. In that case, the least admissible facts (combined belief-
desire degree equal to L.) become inadmissible.

4.8 Some query examples

Using the example of Section 4.4, the most obvious request consists in asking
which decision(s) Peter should take about the menu in order to maximise the
expected investment in his company. The associated query can be formulated as
follows®:

< Pb, 0,{< mazx,{mec,w} > . (20)
< De, {pra pr7 pr7 bpM7 €pp,€PJ,EPL, epM} >}7 Qbd, SC >

9 The actual answer to this query is the maximum expected investment itself, but it
can be assumed that the argument(s) of the answer is(are) also available. For all the
queries, we assume that the answer contains both the value of the query and the
associated value(s) of the variable(s) of interest.

a7

with ®pq = X, 64 =0, Sc = (R+ {—o00} + {A},<,—00,0,+), and x and +
extended and modified as follows: Vd € Z + {—o0}, 0 x d = A, Vz €]0,1], z x
—00 = —o0 and Yz € R+ {—o0}, + —00 = —o0. Note that, in this query and
in the following ones, successive variables quantified using the same operator
are gathered under their common operator!®. By enumerating all possible cases,
one can verify that the answer is 67 k€ (maximum expected investment) with
{< mc,meat >, < w,white >} as associated decision.

Let us imagine that Peter knows beforehand that Matthew (and then Luke)
will not come. The query associated with the same request, taking into account
this additional knowledge, can be formulated as follows:

< Pb, {< bpm, f >}, {< maz, {mc,w} > . (21)
< @67 {pr7 pr7 bp[n epp,€pJ, EPL, epM} >}7 ®bd7 SC >

The answer is 37 k€ (30 k€ less than with query 20) with {< mc, meat >, <
w,white >} or {< mec, meat >, < w,red >} as associated decisions (wine does
not matter in this case).

Let us imagine now that the restaurant can handle last minute changes for an
additional cost of 250 €. In this case, Peter can choose the menu when he knows
who is present. The query associated with such a situation can be formulated as
follows:

< Pb, 0, {< ®.,{bpp,bps,bpr,bprp} > . < maz, {mec,w} > . (22)
< Gacv{eppaepJaepLaepM} >}7 Qbd, Sc >

The answer is 75.4 k€ (8.4 k€ more than with query 20; gain resulting from
the use of the information about the presence of each one at the beginning of
the dinner). Thus, it is worthwhile for Peter to pay the additional cost of 250 €.

In a more complex situation, Peter may be forced to choose the menu in
advance, but with the knowledge that Paul is in fact a false friend and that he
will wait until he knows who is present to decide to come or not with the aim of
minimising the expected investment in Peter’s company. The query associated
with such a situation is:

< Pb, §,{< maz,{mc,w} > . < D, {bps,bpr,bpm} > . (23)
< mina {bpp} > . < De, {epp,epj,epL,epM} >}7®bd750 >

The answer is 40 k€ (27 k€ less than with query 20; loss resulting from Paul’s
betrayal) with {< mc, meat >, < w, white >} as associated decision (the same
as with query 20).

Ignoring precise belief degrees and distinguishing only possible and impossi-
ble facts, it is possible to reason about worst (or best) cases. A possible request
consists in asking which decision(s) about the menu maximise(s) the minimum
investment. The associated query can be formulated as follows:

!0 For example, < mazx, {mec,w} > is an abbreviation for < maz, mc > . < maz,w >.
Such a gathering under a common operator is possible thanks to associativity and
commutativity of min, max, and @. operators.

48

< Pb, 0,{< maz, {mc,w} > . (24)
< mina {pr, pra pr7 bpM7 €Epp,€pPJ,€EPL, epM} >}7 Qbd, SC >

with Vb €]0,1],Vd € Z+ {—o0}, bQpad =d,Vd € Z+ {—0}, 0@psd = A,
fa = 0 and S = (Z + {—oo} + {A}, <, —00 ,0,+). The answer is 10 k€ with
{< me,meat >, < w,white >} or {< mec,meat >,< w,red >} as associated
decisions (wine does not matter).

Conversely, ignoring desire degrees, it is possible to reason only about belief
degrees. A possible request consists in asking which is(are) the most probable
situation(s) if Peter chooses fish and white wine. The associated query can be
formulated as follows:

< Pb, {< me, fish >, < w,white >}, (25)
{< maz, {bpp,bps,bpL,bprr,epp,eps,epr,epr} >}, Dbd, Se >

with Vb €]0,1],Vd € Z + {—o0}, (b@pad =b),Vd € Z+ {—0}, 0@pgd = A,
0y = —ooand S, = (RT—{0}+{A}, <, A, A, +). The answer is 0.42 (probability
of the most probable situation) with the following associated situation: all Peter’s
friends are present at the beginning of the dinner and all of them but John are
present at the end.

Taking into account the whole information again, Peter may be interested in
a decision that avoids, as far as possible, undesirable situations. For example,
Peter’s request may consist in asking which decision(s) he should take about
the menu in order to maximise the probability that the investment is greater
than or equal to a given threshold § > —oco. The associated query (query 26)
is similar to query 20, with some changes related to ®pq, 64, and S.: Vb €
0,1],¥d € Z + {—c0}, ((d < 6) = (b xpad = 0)) A ((d > 0) — (b@pad = b)),
Vd € Z + {—OO}, 0®@pad= A4, 03 = —00, S, = ([0, 1] + {A}, <,0,0,+4). With
6 = 50 k€, the answer is 0.72 (probability that the investment is greater than
or equal to 50 k€) with {< mec, meat >, < w, white >} as associated decision.

A related request, which ignores precise beliefs, consists in asking which de-
cision about the menu guarantees that the investment will be greater than or
equal to a given threshold 8 > —oco. The associated query (query 27) is simi-
lar to query 24, with some changes related to ®uq, 84, and S.: Vb €]0,1],Vd €
Z + {00}, (d < 6) = (b@pad = f))A((d >) = (b@ad = 1), ¥d €
Z+{—o00}, 0@pad = A, 0, =6, ={t, f,A}, =, f,t,A), with f < ¢t. With
6 = 50 k€, the answer is f (no such decision), but with # = 5 k€, the an-
swer is t, with two associated decisions: {< mc,meat >,< w,white >} or
{< me,meat >, < w,red >} (wine does not matter).

One can verify that all the assumptions of Section 4.7 are satisfied by the
belief-desire combination operators and the combined belief-desire structures
used in this section. The shape of the combined belief-desire spaces E. associated
with all the queries presented in this section is shown in Figure 3.

49

Queries 20 to 23 Query 24 Query 25

AN N] Aff--emmmon AN T
N T ese N T e Y
0, =0 /<,j:::::?{ 6;,=0 2 Lo
L T e=—00 N L= R
A ‘ L
—00 —00 04 = —0c0
0 1 0 1 0 1
Query 26 Query 27
af o A ue =1t
N
g
Ue =1Lc=0
RN
04 = —
4= 7% 1

Fig. 3: Belief-desire spaces associated with the various queries.

5 Future work

It can be easily shown that the framework proposed in this paper encompasses
classical constraint and probabilistic ones (see Section 1), except for those that
admit infinite temporal horizons, such as Markov decision processes over infinite
horizons. Moreover, classical requests, such as belief updating, most probable ez-
planation (MPE), and mazimum exrpected utility (MEU) in bayesian networks
or influence diagrams, solution finding and solution counting in constraint sat-
isfaction problems can be easily expressed in the proposed query language.

An important feature of the proposed framework is a clear separation between
the problem definition, which contains only variables, domains, and belief and
desire relations, and the query definition, which can be adapted to the actual
situation to handle: observability and controllability of the problem variables by
the agent itself or by other agents, objectives of the various agents. Section 4.8
showed the wide sprectrum of queries which can be formulated on top of the
same problem definition.

But this framework is still in a working stage. Immediate work will consist
in studying its main properties, as well as those of the numerous sub-frameworks
that may result from the addition of extra structural properties.

The final definition of such a framework shall take into account, not only
problem and query representation issues, but also complezrity and algorithmic
issues. It is however almost sure that the proposed framework will inherit the
PSPACE-hardness of the most general frameworks it subsumes, such as quanti-
fied boolean formulae.

50

Considering algorithmic issues, non serial dynamic programming [22], also
known as variable or cluster tree elimination, used in valuation-based systems [21]
is a natural way to explore. The question of the link between the structure of
the problem and of the request, on the one hand, and the spatial and temporal
complexity of these algorithms, on the other hand, is one of the first ones to an-
swer. But other directions such as branch and bound, local search, and stochastic
sampling deserve to be explored too.

References

1. Mackworth, A.: Consistency in Networks of Relations. Artificial Intelligence 8
(1977)

2. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)

3. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-Based CSPs and Valued CSPs: Frameworks, Properties and Compari-
son. Constraints 4 (1999)

4. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

5. Lauritzen, S.: Graphical Models. Oxford University Press (1996)

6. Jensen, F.: Bayesian Networks and Decision Graphs. Springer-Verlag (2001)

7. Howard, R., Matheson, J.: Influence Diagrams. In: Readings on the Principles and
Applications of Decision Analysis (1984)

8. Dean, T., Kanazawa, K.: A Model for Reasoning about Persistence and Causation.
Computational Intelligence 5 (1989)

9. Bellman, R.: Dynamic Programming. Princeton University Press (1957)

10. Bertsekas, D.: Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall (1987)

11. Puterman, M.: Markov Decision Processes, Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons (1994)

12. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic Dynamic Programming
with Factored Representations. Artificial Intelligence 121 (2000)

13. Lovejoy, W.: A Survey of Algorithmic Methods for Partially Observed Markov
Decision Processes. Annals of Operations Research 28 (1991)

14. Fargier, H., Lang, J., Schiex, T.: Mixed Constraint Satisfaction: a Framework for
Decision Problems under Incomplete Knowledge. In: Proc. of AAAI-96 (1996)

15. Fargier, H., Lang, J., Martin-Clouaire, R., Schiex, T.: A Constraint Satisfaction
Framework for Decision under Uncertainty. In: Proc. of UAI-95 (1995)

16. Walsh, T.: Stochastic Constraint Programming. In: Proc. of ECAI-02 (2002)

17. Littman, M., Majercik, S., Pitassi, T.: Stochastic Boolean Satisfiability. Journal
of Automated Reasoning 27 (2001)

18. Dechter, R., Larkin, D.: Hybrid Processing of Beliefs and Constraints. In: Proc.
of UAI-01 (2001)

19. Dechter, R., Mateescu, R.: Mixtures of Deterministic-Probabilistic Networks and
their AND/OR Search Space. In: Proc. of UAI-04 (2004)

20. Bratman, M.: Intention, Plans, and Practical Reason. Harward University Press
(1987)

21. Shenoy, P.: Valuation-based Systems for Discrete Optimization. Uncertainty in
Artificial Intelligence 6 (1991)

22. Bertelé, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press (1972)

51

52

Anytime Behaviour of Mixed CSP Solving

Neil Yorke-Smitht and Christophe Guettier

IC—Parc, Imperial College London, SW7 2AZ, U.K.
{nys, cgue}@cparc.ic.ac. uk

Abstract An algorithm with the anytime property has an approximatetsm
always available; and the longer the algorithm runs, théebéhe solution be-
comes. Anytime solving is important in domains such as qaws, where time
for reasoning is limited and a viable (if suboptimal) cous$@ction must be al-
ways available. In this paper we study the anytime behawbaplving a mixed
CSP, an extension of classical CSP that accounts for uraiiatitie parameters,
using a benchmark problem from aerospace sub-system tae@ropose two
enhancements to the existing decomposition algorithmristées for selecting
the next uncertain environment to decompose, and solvimggmentally larger
subproblems. We evaluate these enhancements empirgtadlyjng that a heuris-
tic on uncertainty analogous to ‘first fail' gives the bestfpamance. We also
show that incremental subproblem solving provides effecinytime behaviour,
and can be combined with the decomposition heuristics.

1 Introduction

The increasing desire for autonomy in aerospace systerok, agi Uninhabited Air-
craft Vehicles (UAVs), will lead to increasing complexity planning, scheduling, and
control problems [14]. Constraint programming technighage proved effective for
addressing such problems in the aerospace domain (e.d.93The real-world re-
quirements of such problems mean that preferences, uindgri@nd dynamic change
must be handled. For this, the classical constraint satisfaproblem (CSP) is inade-
quate. One extension to handle uncertainty is the mixed @8Refvork, introduced by
Fargier et. al. [5, 6] for decision making with incompleteokriedge.

Our motivation comes from a problem in planning the contfcerospace equip-
ment. In order to enhance autonomous behaviour, the platupeal must take account
of environmental uncertainty the aerospace system mayuateo During execution,
the plan need only specify the immediate next control actibns continuous, incre-
mental planning is possible for the problem. A constraiagddl formulation as a mixed
CSP is given in [20], where uncontrollaljarametersare used to model the uncertain
evolution of physical quantities, such as temperature.

An algorithm with theanytimeproperty has an approximate solution always avail-
able; and the longer the algorithm runs, the better the isoiltecomes [1]. If the al-
gorithm is allowed to run to completion, a final solution igaibed. For the aerospace
domain, with its deadlines on response time, anytime belais highly desirable [14].

* Present address: SRI International, Menlo Park, CA, UBAnM t h@i . sri.com

53

This paper presents an experimental study of anytime spbfimixed CSPs. Specif-
ically, we investigate the performance of the existing aegosition algorithm of [6]
on our aerospace control planning problem as a case studge®éibe two enhance-
ments to the use of the algorithm designed to improve itsianeyperformance, and
empirically assess their value. The two enhancements amngeosition heuristics for
exploring the parameter space of uncertain environmentsjrecremental solving of
the planning problem for successive horizons. The reshtie/ghat a heuristic on un-
certainty analogous to ‘first fail’ gives the best performarnThey also show that incre-
mental subproblem solving provides effective anytime b&ha, and can be combined
with the decomposition heuristics.

We begin by summarising the mixed CSP framework and the dposition algo-
rithm (Section 2), and then briefly summarise our motivafmmanytime solving and
outline our case study problem (Section 3). We present tbeatgorithmic extensions
(Section 4) and empirically assess them (Section 5). A d&oun of the results con-
cludes the paper (Section 6).

2 Mixed CSP and the Decomposition Algorithm

2.1 Mixed CSP

Fargier et. al. [5, 6] introduced thmixed CSHramework, an extension to the classi-
cal CSP for decision making with incomplete knowledde.a mixed CSP, variables
are of two types: decision and non-decision variables. Thetfipe are controllable by
the agent: their values may be chosen. The second type, kasparametersare un-
controllable: their values are assigned by extrogeneasr& These factors are often
referred to as ‘Nature’, meaning the environment, anotgeng and so on.

Formally, a mixed CSP extends a classical finite domain CBPD, C), where?
is a finite set of variable®) is the corresponding domains, agids a set of constraints:

Definition 1 (Mixed CSP [6]). A mixed CSHs a 6-tuple? = (A,L,V,D, X, C) where:

— N={A1,...,Ap} is a set of parameters

— L=Lyx---xLp, where L is the domain ol

-V ={Xq,...,%} is a set of decision variables

— D=Dj x---x Dy, where D is the domain of x

— X is a set ofdata constraintgvolving only parameters

— (Cis a set of constraints, each involving at least one decisatable

We say a complete assignment of the parameterséalésation (or world), and
a complete assignment of the decision variables dgeision(or potential solution).
We say a realisation igossibleif the classical CSRA,L, X) is consistent, i.e. has at
least one solution (otherwise the realisatioimigossiblg. For every realisation, the
classical CSI{'V, D, C> formed as the projection @ under realisation\ < r is the
realised(or candidate) problem induced byrom P. We say a realisation goodif the

1 The earlier work [5] associates a probability distributisith each parameter; we follow the
later work in which a (discrete) uniform distribution is asged.

54

corresponding realised CSP is consistent (otherhégi. We say a decisiod coversa
realisatiorr if d is a solution to the realised CSP inducedrby

The outcome sought from a mixed CSP model istaust solutionintuitively, one
solution that satisfies all constraints under as many egaiss as simultaneously pos-
sible. However, the nature of this outcome depends on whewledige about the state
of the world will be acquired. If the realisation is obsenmsfore the decision must
be made, we are in the casefafl observability(FO). If the realisation is observed
only after the decision must be made, we are in the cage abservability NO). The
intermediate cases are not considered in [3, 6].

In the case of full observability, the outcome sought isoaditional decisior(or
policy). This is a map between realisations and decisioas gpecifies, for a set of
realisationsR, a decisiord for eachr € R such thatd coversr. We then say that the
conditional decisiortovers R Such a conditional decision eptimalif it covers every
good realisation of?; it is completeif further it covers all possible realisations. It is
shown in [6] that deciding consistency of a binary mixed CSEo>, complete.

2.2 Decomposition Algorithm
We say an algorithm has amytime property1] if:

1. An answer is available at any point in the execution of figerithm (after some
initial time, perhaps zero, required to provide a first validution)
2. The quality of the answer improves with an increase in etiec time

Theperformance profil®f an algorithm is a curve that denotes the expected output
quality Q(t) with execution timet [2]. The concept of an anytime algorithm, one that
has an anytime property, was developed for time-criticahping and schedulintjThe
original formulation imposed additional requirementgtsas preemption.

An algorithm to find an optimal conditional decision for a mikCSP under full ob-
servability is presented in [5, 6]. We call this tHecomposition algorithrand denote it
deconp. Because of the complexity of finding such a decision — bothpatational
effort, and size of the outcome (in the worst case, one detisir every possible real-
isation) —deconp is designed as an anytime algorithm. Intuitively, it incesrtally
builds a list of decisions that eventually cover all goodisadions. We omit discussion
of some for us unnecessary subtleties about the algorithmalgtails, see [6].

Central to the method are sets of disjoint realisationgdalhvironmentsand their
judicious decomposition, which is achieved with a methdtédasub-domain subprob-
lem extractior{7]. Formally, anenvironments a Cartesian produét x --- x |p, where

2 In temporal CSP, (FO) corresponds to weak controllabilitg ®PUs and (NO) to strong con-
trollability; dynamic controllability [12] is not consided for mixed CSPs.

3 In the literature, two types of anytime algorithms have bafined. Arinterruptiblealgorithm
is defined as above. dontractalgorithm must be given in advance an upper limit on runtime;
it will terminate within this limit with a partial solutionWe consider interruptible algorithms
because in the aerospace domain we do not necessarily hagtimate of available runtime
before execution begins. Moreover, an interruptible atbor can be converted to a contract
algorithm with a constant factor overhead.

55

Algorithm 1 Decomposition for an optimal conditional decision

1: B« 0 {bad realisation$
22D«0 {decision—environment paifs
3:E+Lix---xLp {environments still to be covergd
4: repeat

5 Choose an environmeatfrom E

6: let Ce beconstraints that enforoe

7: letPbethe CSP(AUY,LUD, KU CU Ge)
8: if Pis consistenthen

9: let sbe a solution ofP
10: let v be s projected onto the domain variablés
11: R« covergv) {realisations covered by}v
12: Add the pai(v,R) to D
13: E + Ugce decomposg,R)
14: else {all realisations in e impossible
15: AddetoB
16: until E=0 {all possible realisations covergd

17: return (B,D)

li C Lj. For example, ifL.; = L = {a,b,c,d}, then an environment iéb,d} x {c,d}.
The result is an anytime algorithm that incrementally cotapisuccessively closer ap-
proximations to an optimal decision. The number of redlisat covered by the deci-
sion grows monotonically, and if allowed to finish withoutérruption, the algorithm
returns an optimal conditional decision. However, the atgm is approximate in that
the conditional decision obtained is not guaranteed to haaanmal cardinality.

Pseudocode fateconp is given as Algorithm 1. In line 5 we pick an environment
not yet covered. It is possible if at least one of its reailis®t is possible. If so, we
find a decision that covers one of its realisations (line 8ppute the other realisations
covered by the decision (line 11), and remove them from theé@mment (line 13). On
the other hand, if the environment is bad (i.e. all its reaigms are bad), we mark all
its realisations so in line 15.

The consistency test in line 8 should be performed by inssttimg the parameters
A first# In fact, the consistency test and subsequent search forotutios to the CSP
in line 9 can be combined, sinceRfhas a solution then it is by definition consistent.

The functioncovergd) in line 11 calculates the realisations covered by a decision
Operationallycovergd) can be specialised for the constraints of the problem. ltigpar
ular, it is simplified when each constraint contains at most parameter. In this case,
the set of realisationR covered byd is a Cartesian product of subsets of the param-
eter domaind.. Hence we can buil@R by considering each parameter independently;
moreoverRis an environment with no further computation.

The functiondecompos@, R) in line 13 implements sub-domain subproblem ex-
traction to decomposg by R, returning a set of distinct environments [7]; the details

4 This is because we must know whether the GBFL, K) is consistent. If so, environment
e contains at least one possible realisation; otherwise waad@roceed withe. This is a
necessary condition for the correctness proof of the atyor[6].

56

are unnecessary for this paper. Decomposing an environegnain environmeni
means producing a set of distinct environmedtsat together cover all realisations in
enot covered byR.

Using results about environments from [7], in [6] AlgoritHnis proved sound and
complete: it eventually terminates, and if allowed to terate, it returns a conditional
decision that covers all good realisations. Moreovergpped at any poinD contains
decisions for (zero or more) good realisations Brabntains only bad realisations.

3 Problem Domain

From the introduction, recall that our motivation for stirdymixed CSPs comes from
the aerospace planning problem described in [20]. The proid called th&ub-system
Control Planning ProblenfSCPP); a detailed description is found in [19, 20].

As noted earlier, planned future autonomy in the aerospan®th brings strong
anytime requirements. Autonomous systems are charaaddrislimited computational
power and limited online response time. Moreover, due tdiogant events that may
unexpectedly occur, a safe course of action is required tmbeediately available.

In this paper we focus on the anytime solving of the constraimdel of the SCPP.
This model, derived from a high-level specification of a peobinstance as a finite state
automaton, is a mixed CSP. Importantly, although the camgs may be complicated,
each constraint involves at most one parameter. The pagasnatise from uncertain
environment conditions, such as temperature variatioeagh state of the automaton.

The model includes linear summation constraints (arisioghfpath conservation
constraints), implication constraints, channelling ¢maiats; and constraints describing
evolution of physical quantities according to the envir@mtal uncertainty, such as:

Oi+1 = Ej x (0 + Ti4j)

where©; andT; are discrete variable&; are Boolean, and\; are parameters. The
details of the model are not central to this paper; they mapibied in [19].

The outcome sought for the SCPP is a conditional plan thagrsahe anticipated
environmental uncertainf/This corresponds to the conditional decision of a full ob-
servability mixed CSP. For a given aerospace sub-systernmstemce of the SCPP is
parametrised by the planning horizdi,e N. During execution, the plan need only
specify the immediate next control action at the currenidoor. However, there is an
additional minimum performance requirement on feasiblatems. This requirement
corresponds to a percentage of the maximum possible peafaren(which can be com-
puted a priori); it is imposed as an additional hard constiaithe model.

Three representative but simplified spacecraft sub-systgenconsider as SCPP
instances are a nhavigation systeADCS), a thruster Thruster), and a directional
sensor Tracker). We build a mixed CSP model of each automaton. The perfocman
of solving these mixed CSPs will be the benchmark for our eicadistudy.

5 Environmental uncertainty should be distinguished froetéithnical definition of aanviron-
mentabove as a set of realisations.

57

quality

time

Figure 1. Performance profile curves of idealised anytime behaviour

4 Enhancing the Anytime Behaviour ofdeconp

Summarising, we have recalled the algorithm we dalt onp for a full observability
mixed CSP (Algorithm 1), and described a model of our moitipproblem as such
a mixed CSP. We now introduce two orthogonal extensiondeafonp designed to
improve its anytime performance for the requirementsragign aerospace domain.

To see what we mean by improve anytime behaviour, considgrdéHformance pro-
files shown in Figure 1. The horizontal axis depicts tinaad the vertical axis solution
quality Q(t). The straight line 4 represents the anytime behaviour olgorighm that
monotonically increases solution quality at a constaet reihe curves 1-3 depict better
anytime behaviour than 4, with 1 the best, because solutiatity rises more sharply
earlier in the solving. In contrast, curve 5 depicts a pogtiare behaviour. Thus mov-
ing from 4 to 2, for instance, is an improvement in anytimeawdur. Note this is true
even though both algorithms return the same solution quatithe end of the solv-
ing period shown. As a secondary aim, we would like, if pdssito have an earlier
termination time in addition to improved anytime behaviour

4.1 Environment Selection Heuristic

Recall thatdeconp is an anytime algorithm in terms of the number of realisation
covered by the conditional decision it computes. If allovtedun to termination, it
produces an optimal conditional decision; if stopped egrthe conditional decision
covers a subset of the good realisations. In terms of placutixa, howeverdeconp
fails to ensure that a valid plan is always available (thé fiest of an anytime property).
If the realisation actually observed is not covered by thed#tional decision at the time
of interruption, the algorithm does not provide a valid ¢oh&ction.

In [6] it is noted that heuristics may be used in line 5 of Aliggam 1, although
none are proposed. The algorithm terminates when thE geempty. Every iteration
through the main loop removes one environmefrom E. Judicious choice of may
speed the termination or improve the anytime behaviouroti.b

58

Algorithm 2 Anytime computation by incremental plan horizon
1: S« 0
2: forh=1toH do
3: let S, beoutput ofdeconp on horizonh automaton
4: if deconp ran to completiorthen
5 S+ &
6: else
7: {keep existing decisions for uncovered realisatjons
8
9
10:

for eachrealisation covered b§, do
updateShy S,
return S

We propose five heuristics for environment selection:

— random: pick the next environment at random. This is our defaultristia, used
as a baseline to evaluate the others.

— most uncertainty: pick the environment with the most uncertainty. That iya$e
e to maximise[celLil-

— least uncertainty: pick the environment with the least uncertainty. That lpase
eto minimise[, e|Lil-

— most restricting: pick the environmentthat most constraints the variatdesiains.
That is, for eacle, impose the constraintg in line 6 of Algorithm 1, and compute
[1i|Di|. Choosee to minimise this quantity.

— least redtricting: pick the environment that least constraints the variadieains.
That is, impose the constraints, computd];|Di|, and choose the maximisirg

These heuristics are analogous to variable selectiongdimgrin finite domain CSP
solving. Pursuing this link, we also considered a heuristigick the most or least con-
straining environment. That is, the environment whoseisedICSPs are the most or
least constrained (precisely, maximise or minimise the stiaconstrainedness metric,
summed over all the realised CSPs corresponding to reatisain the environment).
However, preliminary experiments indicated that such aikgchas poor performance.
This seems to be caused by a weak correlation between theaiorgness of the re-
alised CSPs arising from an environment, and the difficuigotving the whole mixed
CSP. Thus we did not consider such a heuristic further.

4.2 Incremental Horizon

The SCP problem is naturally parametrised by the plannimgdio, H. Runningde-
conp to completion provides the sought optimal conditional platerrupting the al-
gorithm at any point provides a partial plan. As we have olebrsince this plan is
partial, in terms of execution it may not cover the realmathat actually occurs.

To better provide for plan execution, a second means of argganytime behaviour
is to iteratively plan for longer horizong,= 1,...,H. We permit the algorithm to be
interrupted at the completion of any horizbnThe resulting complete condition plan
for horizonh provides the initial steps of a complete plan for horitbriWe also permit

59

Table 1.Characteristics of the benchmark problem instances

uncertainty per horizon

automaton states per horizoA B C timeout
AOCS 5 2 4 5 200s
Thruster 8 7 14 23 2000s
Tracker 7 6 9 16 18000s

deconp to be interrupted before completing a horizon. The plan fmizon h then
consists of the decisions for the covered realisationgthay with, for the uncovered
realisations, the decisions from horizor- 1.

More specifically, the time interv@...h], h < H, defines a subproblem which is a
subpart of the original SCP problem instance. The subproideobtained by ignoring
decision variables and parameters in the intefkia} 1,H], and relaxing associated
constraints. Théncremental horizomethod starts frorh = 1, and incrementl each
time the subproblem is successfully solved. If interrupthd method thus provides a
plan up to time evertt— 1.

Algorithm 2 summarises the method. As stated, conceptitatlgerates by solv-
ing incrementally larger subproblems. Indeed, supposeamfpr horizonH is desired
and computation time is limited t® (which we do not assume is known to the algo-
rithm). Running Algorithm 1 for tim& might give a conditional plan that covers 70%
of realisations, say. The conditional plan it yields is ngtimal. Instead, running Algo-
rithm 2 for the same time might give a plan that covers only 4fi%ealisations with
a horizonH decision, but all realisations are covered with some dacisay that for
the horizon{H — 1) decision. Thus we have an optimal conditional plan and, aseve
gin its execution, we can undertake further computatiorxtered the horizor(H — 1)
decisions to horizomd decisions.

In terms of execution, Algorithm 2 thus has the advantage Algorithm 1 that an
initial, valid action is for certain available (once the ptem is solved for horizon 1,
which is expected to be rapid). Upon interruption, exeacutian proceed by checking
whether the realisation* observed is covered by the horizbrdecision. If not, the
horizonh — 1 decision for it is used. This checking requires little cartgtion.

The incremental horizon method is orthogonal to the enwirent selection heuris-
tics. Any heuristic may be used in the invocatiordefconp in line 3 of Algorithm 2.

In the experimental results that follow, we hence evaluagebehaviour of incremental
horizon both with the defautandomheuristic and with the others proposed above.

5 Experimental Results

In this section we report an empirical assessment ofldeonp algorithm on the SCP
problem. The aim of the experiments was to evaluate: (1)tipact of the environment
selection heuristics on anytime behaviour; and (2) thectffeness of incremental hori-
zon for producing anytime behaviour.

The results reported were obtained on a 2GHz linux PC with d@&Bemory, using
ECL'PS version 5.7 [3]; timings are in seconds. Table 1 summarksesharacteristics

60

1000

L
20000

800

s
15000

600

time (msec)
*-
10000
time (msec)

AOCS - C-80-8
Thruster - B-60-6

400

200

10
8
6l
4
2

o © © < ~
s

(suonesipeal pasanod ajqissod pue pooB) Aurenb (suongesieal paianod ajqissod pue poob) Aurenb

(@) AOCS C 80% horizon 8 (b) Thruster B 60% horizon 6

Figure 2. Anytime behaviour of environment selection heuristics (1)

of the three SCPP instances. For each automaton, we coeditheee degrees of un-
certainty: moderate, average and large, denéted respectively. We also considered
performance requirements between 20—-80% (recall Secliorh gives two parame-
ters for each problem instance. We imposed a timeout on aglesiun of Algorithm 1,
depending on the complexity of the automaton; the valuegiges in Table 1.

5.1 Environment Selection Heuristic

We first consider the five environment selection heuristiescdbed in Section 4.1.
We measure quality by the number of good and possible réalisacovered by the
conditional decision, plus the number of bad realisatioasked as bad, after a given
computation time. That is, the quality@(t) = |D| + |B|, whereD andB are as in the
notation of Algorithm 1.

Figures 2(a)—4(b) show the quality (realisations covevedjus solving time (ms).
The vertical axis is shown on a log scale, i.e. @dt). Figure 2(a) shows the typical
result for theAOCS instance: the best heuristiclsast uncertaintyfollowed bymost
restricting these are both better thaandom The worst heuristic i¢east restricting
most uncertaintys slightly better.

Figures 2(b)-3(b) demonstrate the performance of the $t&sifor Thruster is
more varied. For most instances of uncertainty, perforraaaied horizonleast uncer-
taintyis the best heuristic amdndomis second or third. However, for some instances,

61

Thruster - B-40-5

Tracker - B-0-5

NV
&

random —+—

least uncertainty

most uncertainty ---%---
least restricting
most restricting --m--

15000

10000

time (msec)

(suonesipeai paanod ajqissod pue pooB) Aurenb

(a) Thruster C 40% horizon 5

20000

Thruster - B-40-7

random —+—

least uncertainty --->---

(suongesieal paianod ajqissod pue poob) Aurenb

(b) Thruster B 40% horizon 7

15000 20000

10000

time (msec)

Figure 3. Anytime behaviour of environment selection heuristicy (Il

X:
*
=

"

most restricting -~

random —+—

least uncertainty ---X---
most uncertainty ---*---

least restricting

10000 15000

time (msec)

5000

(suonesireas pasanod ajqissod pue pool) Arenb

(a) Tracker B 0% horizon 5

Figure 4. Anytime behaviour of environment selection heuristic (11

20000

Tracker - B-20-6

62

b
5
e
| g28: ¢]
o]

(suonesijeal paianod ajgqissod pue poob) Aurenb

(b) Tracker B 20% horizon 6

20000

10000 15000

time (msec)

5000

2000

2000

random —+—

1500

AOCS - C-20
1000
time (msec)
AOCS - C-80
time (msec)

500

™ ~ - o @ ® ~

w o« P
(uozuoy) Ayrenb {uozuoy) Ayrenb

(2) AOCS C 20% (b) AOCS C 80%

Figure 5. Anytime behaviour of incremental horizon (1)

least uncertaintgloes not have maxim&(t) for all t. First look at Figures 3(a)-3(b).
These graphs are for instances just before and just afagdiifility (which here occurs
beyond horizon 6). In the formdegast uncertaintys best at all times. In the latter, how-
ever, it is inferior to some other heuristics (in particutarandonj until about 2500ms,
after which it strongly dominatemost restrictingexhibits poor behaviour.

Next look at the rare result shown in Figure 2(b). In thisicaily constrained prob-
lem, randomis best at first, until overtaken by firstost uncertaintyhenleast restrict-
ing. Further,least uncertaintyexhibits poor anytime performance. While exceptional,
this instance indicates that no one heuristic always dot@nas in classical CSPs, the
choice of heuristic is itself heuristic.

The results foffracker confirm those foAOCS. Figures 4(a)—4(b) sholeast un-
certaintyas the best heuristic. Note how it not only has a better pexdoce profile, but
also achieves a much earlier termination time than the ¢tberistics.

5.2 Incremental Horizon

We now consider the method described in Section 4.2. Hereneasure quality by
the horizon attained after a given computation time. Thatis problem is solved in-
crementally for horizons 1, 2, ..., and the timesecorded. The cumulative time for
horizonhis computed at, = ¥;_1 _pti, and the quality i (t) = max{hft, <t}.
Figures 5(a)—7(b) show the quality (horizon attained) wesolving time (ms). The
shape of the curves indicate that Algorithm 2 provides aizd#e anytime behaviour.

63

(0asw) awn

000002 0000ST 00000T 00005
T . 0
L .
L »
- m-— Buomsal isea|
Bunoinsal 1sow
- L x
-~ Aurepsoun ises|
wopues

02-0 - JasmuyL

(oasw) awn
000002 0000ST 000007 00005

--m-— Bunousal 1se9]
5 Bunoisal isow
%

—+— wopues
s s s

-«
(uozuoy) Ayenb

0z-9 - aIsnIyL

~

™

0

©

~

©

(uozyioy) Aypenb

(b) Thruster C 20%

(a) Thruster B 20%

Figure 6. Anytime behaviour of incremental horizon (Il)

(08sw) swn
0000E 000SZ 00002

000S7 0000F Q00SE OOCOE 000SC

0v-g - 1yprIL IS

(08sw) awn

00002

L3 Auasun eget--—rm-errr

0Z-Y - 1yjorlL Je1g

(uozuoy) Aufenb

(uozuoy) Auenb

(b) Tracker B 40%

(a) Tracker A 20%

Figure 7. Anytime behaviour of incremental horizon (I11)

64

However, performance strongly depends on the environnedettion heuristic. Since
incremental horizon is built odeconp, this might be expected.

Across the three automata, the performance ofdanelomheuristic is broadly sec-
ond or third of the five heuristics considered. P@CS (Figures 5(a)-5(b)), the best
heuristic isleast uncertaintyfollowed by most restricting these are both better than
random The worst heuristic ieast restricting most uncertaintys slightly better. The
performance ofnost restrictingdeclines beyond horizon 6; beyond this pomatijdom
has better performance.

For Thruster and Tracker (Figures 6(a)—7(b)), the results are similar. The best
heuristic isleast uncertaintyand overallrandomis next best. For th@racker in-
stanceA 20% (Figure 7(a)), beyond horizon 4, the remaining threeikcs struggle;
most uncertaintys the best of them. Fd8 40% (Figure 7(b))randomandleast re-
stricting dominate about equally. The results fbinruster (Figures 6(a)-6(b)), while
similar, show strongly that poor heuristics for environmselection give very poor
performance. This appears to be due to the large number @banvents that must
be maintained by Algorithm 1; the algorithm suffers from eklaf memory, and the
timeout is reached for Algorithm 2 while it is still considieg a low horizorh.

5.3 Discussion

Of the environment selection heuristidsast uncertaintyhas the best overall perfor-
mance, in terms of both metrics of quality. For the direct osdeconp (i.e. Qi(t)),
there are instances where other heuristics are bettenria Btstances, there is a ‘cross-
over’ point(e.g. Figure 3(b)) prior to which another heticisominates, and after which
least uncertaintydominates. For the incremental horizon useletonp (i.e. Qx(t)),
least uncertaintglominates in almost all instances; we observe no crossba&viour.

We can make the analogy betwdenst uncertaintyand thefirst fail (smallest do-
main first) variable selection heuristic for classical #rdbmain CSP. First fail is known
as an often effective choice of variable selection hewr[&ti11]. However, just as it is
not the best heuristic for every CSP,lsast uncertaintys not the best for every mixed
CSP: Figure 2(b) shows a critically-constrained problenerghthe best heuristic is
initially randomthenmost uncertainty

Secondly, overaltandomis consistently neither the best nor worst heuristic, as ex-
pected. On balance, its performance across the instandeserss Algorithms 1 and 2
is second behinkkast uncertaintyln particular, heuristics based on the size of variable
domains (hostandleast restricting vary in effectiveness between problem instances.
For examplemost restrictings acceptable in Figure 2(a) but very poor in Figure 3(a).

Thirdly, the results suggest that incremental horizon fisatifze in providing any-
time behaviour, particularly for lesser horizons. Whenghbproblems becomes hard
(e.g. fromh = 4 for Thruster), the rate of increase of solution quality declines. This
is more marked when the performance requirement is higleehaps a result of the
problem then being over-constrained.

Since the SCPP is easy to solve for modest horizons, a pesgibroach might be:
begin with Algorithm 2 and theandomheuristic (which has no overhead to compute),
and later switch to Algorithm 1 with thieast uncertaintyheuristic (the most effective
overall). Further experimental work is needed to investighis hybrid possibility.

65

6 Conclusion and Future Work

Anytime behaviour is an important requirement for the agace domain. Motivated
by a planning problem for aerospace equipment control, ghfger studied the any-
time solving of full observability mixed CSPs. We propose tnhancements to the
existing decomposition algorithm: heuristics for selegtthe next environment to de-
compose, and solving of incrementally larger subproblems.

The heuristics we considered are applicable to solving agdnCSP by the de-
composition algorithm. Overall, the heuristeast uncertaintywhich is analogous to
first fail for finite domain CSPs, gives the best performance.

The incremental horizon method we considered is speaiblmahe SCP problem.
However, the broader idea of problem decomposition intceimental subproblems, as
a means of anytime solving, applies to any mixed CSP for waishitable sequence of
subproblems can be identified. For the SCPP, by replacindgb@mposition algorithm
with an incremental version, we ensure anytime behavioterims of plan execution.

Anytime algorithms for classical CSPs have been built bysaering the CSP as a
partial CSP, and using branch-and-bound or local seardhfa7 finding robust ‘super’
solutions, anytime algorithms have also been built witmbhaand-bound [9]. Anytime
solving is related to incremental solving of CSPs (e.g. 1) the latter, however, the
focus is to efficiently propagate the changes implied wheargble’s domain changes.

One approach to deal with uncertainty in planning is to cargusly adapt a plan
according to the changing operating context. Plan adaptasi performed upon an
unexpected event, system failure or goal (mission) updatan be done with rea-
sonable response time, using for example iterative repehmiques (e.g. [4]). Rather
than reacting, our approach here is based on proactivapattan of the environment
or other changes. This has the operational advantage ofiegabe system to react
more quickly. However, not all environmental uncertaingy de anticipated, and pre-
computing plans has a computational cost. Thus in practaoermpanagement and exe-
cution adopts a hybrid proactive and reactive form [14].

In future work, we want to complete the investigation of gmental horizon by
evaluating how often it produces plans for horizémased on partial plans for a lower
horizon, as described in Section 4.2. We would also like tduate the methods con-
sidered here on other SCPP instances (in particular, tlelhstrument instance de-
scribed in [19]) and, importantly, on mixed CSPs arisingrrother problems.

The ‘cross-over’ between different heuristics over timggest that meta-reasoning
on the solving algorithm may yield the best anytime behavitopractice. For instance,
the hybrid approach suggested in the last section. Morerglyehis reasoning can
take into consideration [8]: the current state of the solu{isuch as what percentage
of realisations it presently covers); the expected contjmrtdime remaining, if an esti-
mate is available; the cost of computing the different retia$; and the opportunity of
switching between algorithms during solving, as notediesar!

Driven by our motivational problem, in this paper we have sidared only the
full observability case; an interesting direction wouldtbeconsider anytime solving
in the no observability case. Here, the outcome sought inglesrobust solution that
covers as many realisations as possible. As such, therén&seniot only to anytime
methods for robust solutions to CSPs [9], but also to solwiixed CSPs with proba-
bility distributions over the parameters [5], which are astance of the stochastic CSP

66

framework [18]. For instance, scenario sampling methodstfuchastic CSPs give the
opportunity for an anytime algorithm [10].

Acknowledgement. We thank T. Winterer and the anonymous referees for helpiuoents.

References

(1]
(2]
(3]
[4]

(5]
(6]
[7]
(8]
[9]
(10]
(11]
(12]
(13]
(14]

(15]

(16]
(17]

(18]
(19]

(20]

M. Boddy and T. L. Dean. Deliberation scheduling for plexh solving in time-constrained
environmentsAtrtificial Intelligence 67(2):245-285, 1994.

M. S. Boddy and T. L. Dean. Solving time-dependent plagnproblems. InProc. of
IJCAI'89, pages 979984, Detroit, MI, Aug. 1989.

A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Sheamd M. G. Wallace. ECLiPSe:
An Introduction. Technical Report IC-Parc-03-1, IC-Pamyperial College London, 2003.
S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Behdi. Using iterative repair
to increase the responsiveness of planning and schedulireufonomous spacecraft. In
Proc. of IJCAI'99 Workshop on Scheduling and Planning mesglfime Monitoring in a
Dynamic and Uncertain Wor|dStockholm, Sweden, Aug. 1999.

H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiexc@xstraint satisfaction framework
for decision under uncertainty. Proc. of UAI'95 pages 167-174, Aug. 1995.

H. Fargier, J. Lang, and T. Schiex. Mixed constraintsfatition: A framework for decision
problems under incomplete knowledge.Rroc. of AAAI-96 pages 175-180, Aug. 1996.
E. C. Freuder and P. D. Hubbe. Extracting constrainsfattion subproblems. IRroc. of
IJCAI'95, pages 548-557, Montréal, Canada, Aug. 1995.

E. A. Hansen and S. Zilberstein. Monitoring the progretanytime problem-solving. In
Proc. of AAAI-96volume 2, pages 1229-1234, Portland, OR, Aug. 1996.

E. Hebrard, B. Hnich, and T. Walsh. Super solutions instaint programming. liProc.
of CP-AI-OR’04 pages 157-172, Nice, France, Apr. 2004.

S. Manandhar, A. Tarim, and T. Walsh. Scenario-basechsistic constraint programming.
In Proc. of IJCAI'03 pages 257-262, Acapulco, Mexico, Aug. 2003.

K. Marriott and P. J. StuckeyProgramming with Constraints: An IntroductioMIT Press,
Cambridge, MA, 1998.

P. Morris, N. Muscettola, and T. Vidal. Dynamic contaflplans with temporal uncertainty.
In Proc. of IJCAI'0], pages 494-502, Seattle, WA, Aug. 2001.

N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Reeagent: To boldly go where no
Al system has gone befordurtificial Intelligence 103(1-2):5-48, 1998.

G. Verfaillie. What kind of planning and scheduling teor the future autonomous space-
craft? InProc. of the ESA Workshop on On-Board Autonphigordwijk, Oct. 2001.

G. Verfaillie and M. Lemaitre. Selecting and schedglobservations for agile satellites:
Some lessons from the constraint reasoning community pbiview. In Proc. of CP’02
pages 670-684, Ithaca, NY, Sept. 2002.

G. Verfaillie and T. Schiex. Solution reuse in dynamamstraint satisfaction problems. In
Proc. of AAAI-94 pages 307-312, Seattle, WA, 1994.

R. J. Wallace and E. C. Freuder. Anytime algorithms fonstraint satisfaction and sat
problems.SIGART Bulletin7(2), 1996.

T. Walsh. Stochastic constraint programmingPhoc. of ECAI-02 Lyon, July 2002.

N. Yorke-Smith.Reliable Constraint Reasoning with Uncertain DaRhD thesis, IC-Parc,
Imperial College London, June 2004.

N. Yorke-Smith and C. Guettier. Towards automatic itplanning for the discrete com-
manding of aerospace equipment. Rroc. of 18th IEEE Intl. Symposium on Intelligent
Control (ISIC'03) pages 328-333, Houston, TX, Oct. 2003.

67

68

The 2-Expert Approach to Online Constraint
Solving

William S. Havens and Bistra N. Dilkina

Intelligent Systems Lab
Simon Fraser University

Burnaby, British Columbia Canada V5A 156
{havens, bnd}@cs.sfu.ca

Modern constraint programming (CP) applications are inherently both online
systems and mixed-initiative systems. Or at least they should be so. Applications
such as satellite tasking, day of operations planning, maintenance scheduling
and vehicle dispatching exhibit these requirements. The constraint satisfaction
problems (CSPs) they solve are not static but change unpredictably during the
schedule generation process. Likewise, these applications usually involve mixed-
initiative reasoning where the user and the system work together to solve the
CSP. The user is also an expert in the problem domain who embodies unstated
constraints and may know good heuristics for finding solutions. Acknowledging
this, the so-called 2-expert approach attempts to support collaboration between
the user and system instead of completely automating the solution process.

Traditional CP algorithms do not serve online and mixed-initiative applica-
tions well. New architectures are required which support: 1) dynamic constraint
propagation methods; and 2) semi-systematic search algorithms. We believe that
these two areas should be complementary foci of CP research. Our rationale is
as follows.

Online systems confront CSPs that change dynamically. Changes in the prob-
lem (environment) are seen as non-monotonic constraint addition, deletion and
revision in the CSP model. Likewise, mixed-initiative reasoning views the user
as an induced k-ary constraint on the CSP. Some k variables in the model are
controllable (in part) by the user as unary constraints on these variables. This
induced user constraint is also non-monotonic, changing spontaneously via user
interaction and guidance of the solution process. Thus constraint propagation
algorithms need to be incremental, reversible and efficient. Incremental propaga-
tion methods perform variable domain revision by considering only the changed
constraints and not recomputing consistency from scratch [2,4]. Propagation
must be reversible such that non-monotonic constraint retraction can also be
computed incrementally. And dynamic constraint propagation needs to be effi-
cient to be used with non-systematic local search techniques. Existing algorithms
for dynamic arc consistency are probably too slow.

As well, dynamic CSPs put strong demands on search algorithms. We require
that the CP system accommodate to the dynamics of online problem changes
and user choices. The system must continue searching from its current (partial)
solution and not restart after every change. Traditional constructive (backtrack)
methods are inappropriate because they search a tree of partial assignments

69

which assumes that the CSP is static. Branches pruned by dynamic constraints
need to be reconsidered when these constraints are retracted or revised. Purely
local search algorithms avoid this problem because they relinquish systematicity
in order to follow solely the heuristic gradient (hillclimbing) in the CSP. But
local search does not exploit the benefits of systematically by exhausting search
subspaces before moving onto other regions. No long term memory (of nogoods)
is maintained of previously visited regions. The memory requirements in general
are too large.

We believe, however, that new semi-systematic search algorithms are appro-
priate for online and mixed-initiative CSPs. These algorithms combine desir-
able aspects of both constructive and local search (e.g. [3]). They operate on a
(nearly) complete assignment of variables thus maximizing the effectiveness of
heuristics. They provide the freedom to move arbitrarily in the search space yet
retain enough systematicity to efficiently but incompletely tour that space. We
have developed a method [2] that hillclimbs in the infeasible space looking for an
assignment of variables which minimizes the number of unsatisfied constraints
(minConflicts). Any violated constraints at a local minima are used to derive
new nogoods which preclude any subsequent global assignment from contain-
ing these values. Essentially the method backtracks over local minima instead
of possible global assignments. As in constructive search, deep backtracking is
performed when every assignment to some variable is nogood in the current
global environment. However, deep backtracking is strongly dependent both on
the variable ordering relation which chooses which variable to move next and on
the nogood caching scheme used to remember disallowed previous states. The
efficacy of this hybrid search algorithm has been recently demonstrated on a
large sports scheduling application [1].

In conclusion, we believe that a seachange is underway in how people solve
real CSPs. Static batch programming is dead. For CP, this revolution necessitates
the development of more flexible and dynamic constraint solving algorithms. We
have built a framework for exploring semi-systematic constraint solving, called
ReSolver, and are currently investigating a number of interesting instances of
the framework including the instance described above.

References

1. B.N. Dilkina & W.S. Havens (2004) The National Football League Scheduling
Problem, proc. 16th Innovative Applications of Artificial Intelligence Conference
(IAAI-04), San Jose, California, July 2004, pp.814-819.

2. W.S. Havens & B.N. Dilkina (2004) Systematic Local Search for Constraint Sat-
isfaction Problems, proc. 17th Canadian Conf. on Artificial Intelligence, Lecture
Notes in Computer Science vol 3060 (Springer Verlag), London, Ont., May 2004,
pp-248-260.

3. N. Jussein and O. Lhomme (2002) Local search with constraint propagation and
conflict-based heuristics, Artificial Intelligence 139:21-45.

4. S. Prestwich (2001) Local Search and Backtracking vs Non-Systematic Backtrack-
ing, proc. AAAI 2001 Fall Symposium on Using Uncertainty within Computation.

70

Facing Executional Uncertainty through
Partial Order Schedules

Nicola Policelld*, Amedeo Cesta Angelo Oddt, and Stephen F. Smith

! Institute for Cognitive Science and Technology
Italian National Research Council
Rome, Italy
{policellaja.cestala.oddi }@istc.cnr.it
2 The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA, USA
sfs@cs.cmu.edu

The usefulness of schedules in most practical scheduling domains is limited by their
brittleness. Though a schedule offers the potential for a more optimized execution than
would otherwise be obtained, it must in fact be executed as planned to achieve this po-
tential. In practice, this is generally made difficult by a dynamic execution environment,
where unexpected events quickly invalidate the schedule’s predictive assumptions and
bring into question the continuing validity of the schedule’s prescribed actions. The
lifetime of a schedule tends to be very short, and hence its optimizing advantages are
generally not realized.

In our work we go beyond the classical, fixed-times formulation of the scheduling
problem, which designates the start and end times of activities as decision variables and
requires specific assignments to verify resource feasibility. In fact, adopting a graph
formulation of the scheduling problem, wherein activities competing for the same re-
sources are simply ordered to establish resource feasibility, it is possible to produce
schedules that retain temporal flexibility where problem constraints allow. In essence,
such a “flexible schedule” encapsulates a set of possible fixed-times schedules, and
hence is equipped to accommodate some amount of executional uncertainty. More pre-
cisely, our approach adopts a graph formulation of the scheduling problem and focuses
on generation ofPartial Order Schedule$POSs) [1]. Within a PO.S, each activity
retains a set of feasible start times, and these options provide a basis for responding
to unexpected disruptions. An attractive property adP@S is that reactive response
to many external changes can be accomplished via simple propagation in the associ-
ated temporal network (a polynomial time calculation); only when an external change
exhausts all options for an activity it is necessary to recompute a new schedule from
scratch. This assures a bound to the cost of reacting to unforeseen events. Given this
property and given a predefined horizéh thesizeof a POS — the number of fixed-
times schedules (or possible execution futures) that it “contains” — is suggestive of its
overall robustnessin general, the greater the size aP& S the more robust it is. Thus,
our challenge is to generat&0S's of maximum possible size.

* Ph.D. student at the Department of Computer and Systems Science, University of Rome “La

Sapienza”, Italy.
3 The use of a finite horizon is justified by the need to comga@S's of finite size.

71

One important open question, though, is how to generate flexible schedules with
good robustness properties. In [2] a two-stage approach to generate a flexible sched-
ule is introduced as one possibility. Under this schema, a feasible fixed-times schedule
is first generated in stage one (in this case, an early start times solution), and then, in
the second stage, a procedure referred tthaiingis applied to transform this fixed-
times schedule into a temporally flexible schedule where activities competing for the
same resources are linked into precedence ché&haifing Forn). In a recent paper
[1], this approach — find a solution then make it flexible — was shown to produce sched-
ules — for resource constraint project scheduling with generalized precedence relation,
RCPSP/max — with better robustness properties than a more direct, least-commitment
generation procedure. The least commitment approach uses computed bounds on cu-
mulative resource usage (i.e., a resource envelope [3]) to identify potential resource
conflicts, and progressively winnows the total set of temporally feasible solutions into a
smaller set of resource feasible solutions by resolving detected conflicts. The two step
approach, instead uses conflict analysis of a specific (i.e., earliest start time) solution
to generate an initial fixed-time schedule, and then expands this solution to a set of
resource feasible solutions in a post-processing step.

The previous results have established the basic viability of a chaining approach. In
[4] we focused specifically on the problem of generatit@Ss in Chaining Form The
paper pointed out two basic properties: (1) that a gi#énS can always be represented
in Chaining Form; and (2) that chaining - the process of constructing a Chaining Form
POS - is makespan preserving with respect to an input schedule. As a consequence of
the last point, in the case of a makespan objective, the robustness of a schedule can be
increased without degradation to its solution quality. On the basis of the first property,
we have considered the possibility of producing POSs with better robustness and sta-
bility properties through more extended search in the space of Chaining Form POSs.
In particular, an analysis of structural properties of more robust Chaining Form POSs
to heuristically bias chaining decisions has been exploited. In general, consideration of
Chaining FormPO.Ss has emphasized the presence of synchronization points among
chains as obstacles to flexibility, and this fact has been exploited to ge/¥pdis with
good robustness properties.

One of the current goal is the definition of broader search strategies that use a chain-
ing operator as a core component. In fact, the result obtained by any chaining operator
is biased by the initial solution that seeds the chaining procedure. From this perspective,
one point to investigate is the relation between the initial solution and the partial order
schedule which can be obtained through chaining.

References

1. Policella, N., Smith, S.F., Cesta, A., Oddi, A.: Generating Robust Schedules through Temporal
Flexibility. In: Proceedings of ICAPS’04. (2004)

2. Cesta, A., Oddi, A., Smith, S.F.: Profile Based Algorithms to Solve Multiple Capacitated
Metric Scheduling Problems. In: Proceedings of AIPS-98. (1998)

3. Muscettola, N.: Computing the Envelope for Stepwise-Constant Resource Allocations. In:
Proceedings of CP 2002. (2002)

4. Policella, N., Oddi, A., Smith, S.F., Cesta, A.: Generating Robust Partial Order Schedules. In:
Proceedings of CP 2004. (2004)

72

A Controller for Online Uncertain Constraint Handling

Alfio Vidotto, Kenneth N. Brown, J. Christopher Beck

Cork Constraint Computation Centre,
Dept. of Computer Science, UCC, Cork, Ireland
avl@student.cs.ucc.ie, k.brown@cs.ucc.ie, c.beck@4c.ucc.ie

An online problem is a problem which grows over time and such that partial solutions
are to be generated before the complete problem is known. Moreover, if the problem
is an optimization problem, partial solutions must be aimed at optimizing the overall
final solution. There may be some uncertain knowledge on how the problems de-
velop. How should we make intermediate decisions? Can we extend existing con-
straint handling techniques?

In Online Uncertain Constraint Handling (OUCH!), we assume that the problem
starts with a conditional constraint optimization problem (CCOP). At each time step,
an extension to the CCOP may arrive; that is, a set of variables, constraints and utility
functions. Each variable will have a decision deadline, and a decision on that variable
must be committed to by that deadline. We assume that decisions cannot be revised
once they have been committed to, and also that there is no benefit in making an early
commitment. The CCOP will allow usto ‘reject’ variables, will state what that means
for each constraint, and will determine the appropriate reward. The objective will be
to maximize the total reward over some (possibly infinite) time interval. Specifically,
at each time step, we must decide what to do with the variables whose decision dead-
line has arrived, balancing the immediate reward with the potential for future rewards.
If we have a probability distribution for the CCOPs that arrive at each timestep, we
can express the future reward in terms of maximum expected utility. The best deci-
sion for aset of variables at time stepii is:

argmaX gecison [Feward for decision + max expected future reward]

How should we now reason about those probabilities? [1] attempts to search and
propagate constraints over the implied tree of possible futures; [2] samples possible
futures, and then selects an action which minimises regret for that sample. In this pro-
ject, we will investigate instead the use of heuristic estimates of the maximum ex-
pected utility, and, similar to [3], we will control the parameters of the heuristic by
comparison with the performance relative to the optimum decisions for the observed
history. We will use a flexibility measure to estimate the reward obtained from each
decision, by examining the domains of the remaining variables, and combine the
flexibility with the known reward by a weight parameter (a/(1-a)). The decision for a
set of variables at time step i will be:

argmaX gecison [Feward for decision + a/(1- «) * flexibility]

The controller’s main task is to tune a to get the best estimate. Our controller
(fig 1) reacts periodically, i.e. we adjust o depending on the history over the last T
time steps. For our initial studies, we will consider optimising the number of variables
we accept (and assign consistent values). The extreme cases will be where a = 0,

73

where we assign every variable we can without regard to the future, and o —» 1, where
we reject every variable, to maintain maximum flexibility. We expect the optimal
value of a to be somewhere in between. Our current ideaisto maintain an initial o un-
til the loss of reward compared to the maximum we could have achieved exceeds a
certain tolerance. Reward may be lost for two reasons: we could have assigned vari-
ables but chose to reject them, in which case the flexibility was dominant; or we are
forced to reject variables because no consistent value is possible, and thus the imme-
diate reward was dominant. In the first case, we need to decrease a, otherwise, we
need to increase it.

The work of the controller can be further extended. If we don't know anything
about the distribution of the future problem extensions, then looking back at the his-
tory is the only definite knowledge we have. We can use the controller to try to learn
the distribution. For example, we might start with a uniform distribution, and gradu-
ally adjust the probabilities by observing the actual sequences.

We are currently applying this general idea to a specific online packing problem
[4]. Future work concerns the implementation of the controller, developing general
flexibility heuristics, and comparing to existing online constraint solving approaches.

PEOELEM
t) ——— P NMODEL ——— = SOLUTION
EXTEMIION 42 + v

— ™ SOLVER

EEWARD

o [t t+ T] CHECE

[t-T.t]

FLEFEIBILITY
SET ()

Fig. 1. Fexibility Controller

References

1. D. W. Fowler and K. N. Brown, "Branching constraint satisfaction problems and Markov
Decision Problems compared”, Annals of Operations Research, Volume 118, Issue 1-4,
pp85-100, 2003.

2 R. Bent and P. Van Hentenryck. Regrets Only! Online Stochastic Optimization under Time
Constraints, Proc. AAAI-04, 2004.

3 L. S Crawford, M. P. J. Fromherz, C. Guettier, and Y Shang. A Framework for On-line
Adaptive Control of Problem Solving. In: CP'01 Workshop on On-line Combinatorial
Problem Solving and Constraint Programming, Dec. 2001.

4 A. Vidotto, “Online Constraint Solving and Rectangle Packing”, to appear in Proc CP2004
(Doctoral programme), 2004.

Acknowledgements: This work has received support from Enterprise Ireland

(SC/2003/81), Science Foundation Ireland (00/PI.1/CQ75), and ILOG, SA. We thank
Christine Wei Wu for many useful discussions on this work.

74

Dynamic Vehicle Routing With Uncertain
Customer Demand

Christine Wei Wu, J. Christopher Beck, and Kenneth N Brown

Cork Constraint Computation Center,
Department of Computer Science, University College Cork, Cork, Ireland
cwwl@cs.ucc.ie

Many difficult combinatorial problems have been modelled as standard CSPs
and solved by classic constraint programming techniques. However, in practice,
many problems are dynamic, uncertain and changing, while the decisions have
to be made before the full problem is known. For example, in the Dynamic
Vehicle Routing Problem (DVRP) [1], new customer orders appear over time,
and new routes must be calculated as we are executing the existing solution.
In the literature, there are many methods and strategies have been proposed to
tackle DVRPs. [2] considered a DVRP as the extension to the standard VRP
by decomposing a DVRP as a sequence of static VRPs and then solving them
with ant colony system algorithm. [3] used a reactive method (agent-based con-
straint programming) to solve DVRPs. [4] introduced a consensus approach to
the problem.

We are considering an alternative dynamic version of the VRP, in which the
customers have uncertain demand. Specifically, our vehicles carry multiple types
of product; each customer has an initial reported demand for certain quanti-
ties of each product; when the vehicle reaches the customer, the customer may
change their request based on the current contents of the vehicle. As an exam-
ple, consider a baker’s delivery van carrying different types of bread. Customer
A originally requested 20 white loaves. When the van arrives, A sees sun-dried
tomato bread and decides instead to take 10 white loaves and 10 sub-dried
tomato loaves. The van is now short of the loaves requested by Customer B.
Should the van continue to B, change its route to reload at the bakery, or re-
quest another van to visit B instead? There has been some previous research
on VRPs with uncertain demand. Erera and Daganzo in [5] proposed strate-
gies allowing vehicles to cooperate by minimizing and approximating ”logistic
cost function”. A Cross-Entropy heuristic and integer linear programming have
been applied in [6]. However, all of that research restricts the problem to single
commodity vehicles, and most of it examines reactive approaches.

We assume that we have probability distributions of the customer demand,
and we want to use this information to make better decisions. Our intention is
to use constraint programming and scheduling techniques to search for solutions
at each time step, aiming to get close to the retrospectively optimal solution.
In general, we aim to combine off-line robust plans with on-line rescheduling,
using probabilistic models of the future. Bent & van Hentenryck have proposed
a regret algorithm for online stochastic optimization under time constraints. It
solves as many samples as possible and avoids distributing them among requests

75

[7]. Our initial plan is to adapt this approach to our problem, and then extend
it to problems with more combinatorial constraints. Finally, we will attempt
to extend our solutions to other problems, including dynamic bin packing and
online scheduling, based on the features they have in common with VRPs [8].

Acknowledgements

This work has received support from Enterprise Ireland (SC/2003/81), Science
Foundation Ireland (00/PI.1/C075), and ILOG, SA.

References

1. R. Bent & P. Van Hentenryck: Scenario based planning for partially dynamic vehi-
cle routing problems with stochastic customers. Operations Research. (to appear)
(2001)

2. R. Montemanni, L.M. Gambardella, A.E. Rizzoli & A.V. Donati: A new algo-
rithm for a dynamic vehicle routing problem based on ant colony system. url: cite-
seer.ist.psu.edu/563027.html.

3. K. Zhu & K. L. Ong: A reactive method for real time dynamic vehicle routing
problem. In 12th ICTAI 2000, Vancouver, Canada, (2000).

4. R. Bent & P. Van Hentenryck: The value of consensus in online stochastic schedul-
ing. In the Fourteenth International Conference on Automated Planning and
Scheduling (2004).

5. A. L. Erera & C. F. Daganzo: Coordinated vehicle routing with undcertain de-
mand. Route 2000, International workshop on Vehicle rounting, Skodsborg, Den-
mark (2000).

6. K. Chepuri & T. Homem-de-Mello: Solving the wvehicle routing problem with
stochastic demands using the cross entropy method. Department of Industrial, Sys-
tems Engineering, The Ohio State University, Columbus, OH, USA (2004)

7. R. Bent & P. Van Hentenryck: Regrets only. Online stochastic optimization un-
der time constraints. Proceedings of the 19th National Conference on Artificial
Intelligence (AAAT04) San Jose, CA (2004).

8. J.C. Beck, P. Prosser, E. Selensky: Vehicle routing and job shop scheduling: What’s
the difference. Proceedings of the Thirteenth International Conference on Auto-
mated Planning and Scheduling (2003).

76

	page11: 2
	page21: 3
	page31: 4
	page41: 5
	page51: 6
	page61: 7
	page71: 8
	page81: 9
	page91: 10
	page101: 11
	page111: 12
	page121: 13
	page131: 14
	page141: 15
	page151: 16
	page161: 17
	page171: 18
	page181: 19
	page191: 20
	page201: 21
	page211: 22
	page221: 23
	page231: 24
	page241: 25
	page251: 26
	page261: 27
	page271: 28
	page281: 29
	page291: 30
	page301: 31
	page311: 32
	page321: 33
	page331: 34
	page341: 35
	page351: 36
	page361: 37
	page371: 38
	page381: 39
	page391: 40
	page401: 41
	page411: 42
	page421: 43
	page431: 44
	page441: 45
	page451: 46
	page461: 47
	page471: 48
	page481: 49
	page491: 50
	page501: 51
	page511: 52
	page521: 53
	page531: 54
	page541: 55
	page551: 56
	page561: 57
	page571: 58
	page581: 59
	page591: 60
	page601: 61
	page611: 62
	page621: 63
	page631: 64
	page641: 65
	page651: 66
	page661: 67
	page671: 68
	page681: 69
	page691: 70
	page701: 71
	page711: 72
	page721: 73
	page731: 74
	page741: 75
	page751: 76

