Online-2003
Online Constraint Solving:
Handling Change and Uncertainty

A CP2003 workshop, Kinsale, Co. Cork, Ireland
September 29th, 2003

On-line problem solving is a significant issue for many practical applications, where solutions
must be executed as the operating environment changes. Many of the application areas have
been tackled by constraint based methods, but current constraint solving tools offer little
support for on-line problems. Possible enhancements could include rapid reaction to problem
changes, prediction of future changes and contingent solutions, time guarantees or
exploitation of known time limits.

This workshop aims to bring together researchers interested in these topics, to consider how
existing techniques can be enhanced, and to explore combinations of different techniques. The
workshop will be of interest to those modelling and solving real world problems, to those
interested in theoretical issues in constraint solving, and also to members of the Uncertainty in
Al and Planning and Scheduling communities. The most recent antecedents of this workshop
were the CP2001 workshops OLCP’01 (Online combinatorial problem solving and Constraint
Programming) and CUW’01 (Constraints and Uncertainty).

All submissions to the workshop were reviewed by at least two referees. Five papers were
selected for full presentation, and are contained in these working notes. The workshop will
finish with an open discussion session on particular topics in Online Constraint Solving. We
welcome you to the workshop, and look forward to a fruitful discussion.

Workshop Organisers
Chris Beck Cork Constraint Computation Centre, Ireland
Ken Brown Cork Constraint Computation Centre, Ireland

Gérard Verfaillie RIA Research Group, LAAS-CNRS, France

Program Committee

Roman Barték Charles University, Czech Republic
Amedeo Cesta ISTC-CNR, Italy

Markus Fromherz Parc, USA

Carmen Gervet IC-PARC, UK

Simon de Givry INRA, France

Bill Havens Simon Fraser University, Canada
Narendra Jussien Ecole de Mines de Nantes, France
Ralf Keuthen a.p.solve Limited, UK

Ian Miguel University of York, UK

David Lesaint BT Exact, France

Jon Spragg a.p.solve Limited, UK

Thierry Vidal ENIT, France

Toby Walsh Cork Constraint Computation Centre, Ireland

kb11
1

Contents

John Bresina, Ari Jonsson, Paul Morris and Kanna Rajan
Constraint Maintenance with Preferences and Underlying Flexible Solution

Amedeo Cesta and Riccardo Rasconi
Execution Monitoring and Schedule Revision for O-OSCAR: a Preliminary Report

Emmanuel Hebrard, Brahim Hnich and Toby Walsh
Super CSPs

Nicola Policella, Stephen F. Smith, Amedeo Cesta and Angelo Oddi
Steps toward Computing Flexible Schedules

Francesca Rossi, Brent Venable and Neil Yorke-Smith
Preferences and Uncertainty in Simple Temporal Problems

24

39

54

kb11
2

Constraint Maintenance with Preferences and
Underlying Flexible Solution

John Bresina? Ari Jonsson! Paul Morris?> Kanna Rajan?
1. Research Institute For Advanced Computer Science
2. Computational Sciences Division

NASA Ames Research Center, MS 269-1
Moffett Field, CA 94035, U.S.A.

Abstract. This paper describes an aspect of the constraint reasoning mechanism
that is part of a ground planning system slated to be used for the Mars Exploration
Rovers mission, where two rovers are scheduled to land on Mars in 2004.

The planning system combines manual planning software from JPL with an au-
tomatic planning/scheduling system from NASA Ames Research Center, and is
designed to be used in a mixed-initiative mode. Among other things, this means
that after a plan has been produced, the human operator can perform extensive
modifications under the supervision of the automated system. For each modifica-
tion to an activity, the automated system must adjust other activities as needed to
ensure that constraints continue to be satisfied. Thus, the system must accommo-
date change in an interactive setting.

Performance is of critical importance for interactive use. This is achieved by
maintaining an underlying flexible solution to the temporal constraints, while the
system presents a fixed schedule to the user. Adjustments are then a matter of
constraint propagation rather than completely re-solving the problem. However,
this begs the important question of which fixed schedule (among the ones sanc-
tioned by the underlying flexible solution) should be presented to the user. Our
approach uses mutable preferences as a prism through which the user views the
flexible solution.

1 Introduction

The Mars Exploration Rovers (MER) mission is one of NASA’s most ambitious science
missions to date. Two rovers were launched in the summer of 2003 with each rover
carrying instruments to conduct remote and in-situ observations to elucidate the planet’s
past climate, water activity, and habitability.

Science is the primary driver of MER and, as a consequence, making best use of the
scientific instruments, within the available resources, is a crucial aspect of the mission.
In general, every sol (Martian day, about 24 hours and 40 minutes), telemetry from each
rover is received on Earth. Based on the downloaded data, a detailed sequence of com-
mands for the next sol must be constructed, verified, and uplinked to the rover. Thus,
a viable sequence that satisfies the mission goals needs to be formulated within tight
deadlines. To help address this critical need, the MER project has selected MAPGEN
(Mixed-initiative Activity Plan GENerator) as an activity planning tool.

kb11
3

MAPGEN combines two existing systems, each with a strong heritage: APGEN [6],
the Activity Planning tool from the Jet Propulsion Laboratory and the Europa Plan-
ning/Scheduling system [4, 7] from NASA Ames Research Center. The Mixed-Initiative
aspect means that after an initial plan has been produced, it undergoes a period of
“tweaking” by the human operator. Thus, the system must accommodate change, and
must do so rapidly enough for interactive use. As we will see, this is achieved by ex-
ploiting an underlying flexible solution in Europa so that fast temporal propagation
methods can be used.

Flexible time means that instead of finding a single solution, the Planner preserves
maximum temporal flexibility by maintaining a set of solutions that satisfy the con-
straints. This is represented internally as a Simple Temporal Network [3] (STN). As a
result of propagation in the STN, each activity acquires a refined time window for its
start time.

One advantage of preserving a flexible set of solutions is that the Planner may adapt
to additional constraints by exploiting the flexibility, rather than completely re-solving
the problem. However, this has to be reconciled with APGEN, which expects to see a
fixed time schedule. Also, many tools associated with APGEN, such as those that do
calculations of resource usage, require a fixed schedule of activities. Apart from these
pragmatic considerations, direct presentation of temporal flexibility to a plan GUI in a
way that is not confusing poses significant problems: it is difficult to provide a visual
representation of flexibility and temporal relations between activities in a way that does
not obscure the display.

The approach we take is to present a single solution to the user in the APGEN GUI,
while the Planner maintains the flexible set of solutions as a backup. This raises the
issue of determining which fixed schedule to present to the user. In the remainder of
the paper, we address this as follows. In section 2, we discuss a natural condidate for a
fixed-time schedule, but show that this may violate user preferences. Next, in section 3,
we consider constraints and preferences in more detail, and argue that the complexity
and transitory nature of the preferences makes it impractical to model them explicitly.
The alternative chosen here is to allow the human operator to modify the plan in a
way that incorporates his or her implicit preferences. Then, in section 4 we consider
an update algorithm that respects this approach. To avoid unnecessarily clobbering the
user modifications, the automated system adopts a policy of minimal change (which
may be viewed as a surrogate set of preferences). In section 5, we conclude.

2 Earliest Time Solution

The theory of Simple Temporal Networks guarantees that a solution is obtained by
assigning to each event the earliest time in its time window. This seems like an obvious
candidate for the solution to be presented to APGEN. However, this creates certain
undesirable artifacts.

Consider for example an activity that has a flexible start time and flexible dura-
tion, but the end time is fixed by a constraint. The earliest time solution will cause the
duration to be stretched to its maximum extent, which may not be what the user wants.

kb11
4

In our application, the durations are generally not flexible. Nevertheless, more sub-
tle forms of this problem can occur, as indicated by the following example. The most
critical time for the solar-powered Mars Rover in terms of energy is often in the early
morning period before the batteries have fully recharged. The CPU is a primary user
of energy, and it is required to be on to enable most of the activities. Thus, one way
of economizing on energy use is to have greater overlap between CPU-using activities.
However, if two overlapping activities are such that the later one is “anchored” in time,
while the earlier one is flexible, then they will tend to be pulled apart by the earliest
time solution, thus increasing the energy demand.

In the above example, the requirement that fixes the time of an activity is an explicit
temporal constraint, and the overlap restriction is a derived preference that may arise
from resource limitations. While the earliest time solution may be acceptable as a gen-
eral default, interactions between constraints and preferences may require departures
from this to satisfy specific user needs.

3 Constraints and Preferences

In this application, there is a variety of constraints and preferences that arise from en-
gineering restrictions and scientific need, many of which may not be recognised until
specific circumstances arise in operation.

The explicit temporal constraints fall into three categories: model constraints, daily
constraints, and expedient constraints. The model constraints encompass definitional
constraints and some flight rules. For example, the decomposition of activities into
sub-activities specifies temporal relations between the parent and its children. Some
activities might be restricted to the day or the night. The daily constraints comprise “on
the fly” temporal relations between elements of scientific observations, depending on
what scientific hypotheses are being investigated. For example, an image may be taken
before using a specific instrument in some circumstances, but not in others. The expedi-
ent constraints are those imposed by the Europa planner to guarantee compliance with
some higher level constraint that cannot be directly expressed in an STN. For example,
a flight rule might specify that two activities are mutually exclusive (such as taking a
picture while the rover is moving). This is really a disjunctive constraint, but the plan-
ner will satisfy it by placing the activities in some arbitrary order. This has important
implications for the tweaking process: the operator may wish to reverse the arbitrary
order selected by the planner.

In general, the temporal constraints cover the gamut of those expressible in an STN,
including absolute upper and lower time bounds, precedences with quantitative modi-
fiers, relative and absolute deadlines, etc.

There are also preferences that arise from varied sources. Some are based on engi-
neering or scientific considerations such as desiring calibrations to be close to measure-
ments, or wanting separate observations to occur in similar lighting conditions. Perhaps
most are derived from the need to solve problems related to resources. In general, the
tweaking process is driven by a desire to fit as much “science” as possible into the plan,
while steering it on a course that avoids running aground on competing resource limita-
tions. The planner has a limited ability to automatically tweak a plan to try to resolve a

kb11
5

battery energy shortfall, for example by increasing activity overlap (thus reducing cpu
time), but most tweaks are performed by the human operator.

Many of the resource calculations are complex. For example, they may involve ther-
mal modelling performed by legacy software. There are often complex options available
for reducing usage. For example, in imaging, there are several ways of reducing data
volume, such as reducing resolution, or using fewer filters. Choosing between these may
require human-level scientific judgement. This means that many of the preferences have
an ephemeral nature driven by short-term solutions to transient problems.

These considerations rule out formal modelling of most preferences and dictate
the need for a process of informal tweaking by a human operator. The preferences
are implicit in the modifications made during this period. However, the modifications
interact with the hard constraints discussed above. The automated system must prevent
these from being violated. Within this framework, a policy of minimal change provides
a reasonable approach for respecting the implicit preferences.

A dramatic illustration of the need for the minimal change occurs when switching
from a native APGEN mode, where users are free to modify activities at will, unim-
peded by constraints, to the mode where constraints are enforced. To satisfy constraints,
some activities must be moved, but arbitrary reorganization of the plan is undesirable.

4 Accommodating Change

Assume that a plan has been produced, and no preferences have yet been expressed
to modify the solution. Then the initial solution presented is the earliest time one dis-
cussed earlier. During the subsequent tweaking phase, MAPGEN provides a GUI fea-
ture, called constrained move, that allows dragging an activity to a new location. When
the mouse button is released, other activities are also moved to maintain the integrity of
the constraints. For example, the moving activity may “push” other activities ahead of
it because of precedences established by the user or the planner.

This raises an issue with respect to the expedient constraints. Since these arise from
disjunctive constraints that could be satisfied by different arbitrary choices, a mode is
provided in which the expedient constraints are relaxed. This allows moved activities
to pass over intervening activities that would otherwise be pushed ahead because of
expedient constraints. When this relaxed mode is exited, there is a need to re-establish
constraints in a way that minimizes the disturbance to the existing plan. A similar need
arises when passing from the native APGEN mode to the constraint-maintenance mode.
Also, the input files presented to MAPGEN are implicitly in the APGEN mode, and
require a similar assimilation to the constraint-maintenance mode.

In this section, we describe the algorithm that is used to modify the solution pre-
sented to APGEN by the Europa system. In this interactive application, efficiency con-
siderations seem to rule out the seeking of true optimality (even the tractable kind dis-
cussed in [5]). Instead, we have adopted a greedy algorithm that locally minimizes the
amount of change from the existing positions of activities.

Itis convenient to use a special set of unary singleton constraints to store the current
positions of the start and end times of activities. Then the algorithm for updating after
a constrained move can be outlined as shown in figure 1.

kb11
6

1. Save all the current positions in a temporary list.
Remove all the current position constraints and repropagate.
3. For each saved position t of timepoint x do
if t is within the STN bounds for x then
add a position constraint setting x to t
else if t < the lower bound for x then
add a position constraint setting x to the lower bound
else if t > the upper bound for x then
add a position constraint setting x to the upper bound
Propagate the effect of the new constraint;

[\

Fig. 1. Constrained Update Algorithm

We see that each step that reinstalls a position constraint tries to minimize the de-
parture from the previous position while maintaining consistency. However, the greedy
nature of the algorithm means that the order in which activities are considered may
affect the outcome. For example, suppose that activity A is constrained to end before
activity B starts. If an APGEN file is loaded where activity A is initially simultaneous
with B, then one of A or B must be moved. Which of these occurs will depend upon the
order in which A and B are considered for the position update in step 3.

The algorithm for updates when exiting a relaxed mode is similar, except that the
relaxed constraints are reimposed after step 2. In the case of expedient constraints, the
arbitrary planner choices for resolving the disjunctions are subject to change to reflect
the saved positions of the timepoints as much as possible.

There are certain situations in which the user needs to ensure that a particular ac-
tivity prevails in the update lottery. For example, after a constrained move, clearly the
activity that is moved should be held to its new position. This is easily done by consid-
ering it first. (The new position is guaranteed to be within the STN bounds because a
visual indication of these bounds is given during the move, and attempts to move the
activity outside that range are ineffective.)

For more general situations, a pinning mechanism is provided that allows the user
to lock specified activities at their current positions. This is achieved by applying ad-
ditional constraints. There is a visual indication of which activities are pinned, and
they can be unpinned on request. (Certain engineering activities, such as generally im-
mutable communication windows, are pinned by default.)

Note that step 2 of the algorithm requires a repropagation of the network after dele-
tion of constraints. In general, propagations of an STN after deletions are more costly
than the simple incremental propagations that occur after additions. However, in the
constrained-move case, the deletions are from a consistent state, which means a so-
lution to the STN is already known. This allows us to exploit a trick from Johnson’s
algorithm [2] so that the O(N log V) Dijkstra algorithm can be used to update the flex-
ible set of solutions, rather than the more costly O(EN) Bellman-Ford (where N is
the number of nodes and E the number of edges in the STN). The trick involves using
the known solution to form a new network with non-negative weights that has the same
shortest paths as the original network. This can then be used to guide the propagation

kb11
7

in the original network. (As it turns out, even a near-solution provides excellent guid-
ance for the propagation, so this technique is also helpful in repropagation following
deletions from an inconsistent state.)

With typical networks not exceeding 1000 nodes, the propagation, using the above
mechanism, appears instantaneous to the interactive operator. (Note that if even greater
speed were needed, elaborate techniques for incrementality after deletions [1] are avail-
able in the literature, but they were not needed in our case.)

When switching from relaxed mode to strict mode (see above), it is possible for
the current set of constraints (including pins) to be inconsistent. If inconsistency is
encountered during the greedy update, the system removes the most recent implicated
activity from the plan, and places it in a temporary storage area called the hopper, where
it can be inspected by the operator, and possibly reinserted into the plan after further
modifications.

5 Closing Remarks

We have discussed an application to assist in ground planning for the MER mission
to Mars, and have focused on accomodating change in the context of an interactive
tweaking session following automatic plan generation. The modifications provide a way
of incorporating implicit preferences in the solution while respecting hard constraints.
Since the mission is still ongoing, this is very much a work in progress. Usability
and performance considerations are paramount, and continuing operational readiness
tests provide feedback that help to refine the system. Hopefully, a period of reflection
following the mission may lead to insights that address these issues at a deeper level.
Acknowledgement: We thank the referees for their useful suggestions.

References

1. R. Cervoni, A. Cesta, and A. Oddi. Managing dynamic temporal constraint networks, in ar-
tificial intelligence planning systems. In Proceedings of the Second International Conference
on Artificial Intelligence Planning Systems (AIPS-94), 1994.

2. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT press, Cam-
bridge, MA, 1990.

3. R.Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49:61—
95, May 1991.

4. Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and Benjamin D. Smith.
Planning in interplanetary space: Theory and practice. In Artificial Intelligence Planning
Systems, 2000.

5. L. Khatib, P. Morris, R. Morris, and B. Venable. Tractable pareto optimization of temporal
preferences. In Proceedings of the 18th International Joint Conference on Artificial Intelli-
gence (IJCAI-03), Acupulco, Mexico, 2003. Morgan Kaufmann, San Francisco, CA.

6. Maldague, Ko, Page, and Starbird. Apgen: A multi-mission semi-automated planning tool.
In Proceedings of the Ist International Workshop on Planning and Scheduling for Space,
Oxnard, California, 1997.

7. N. Muscettola, P.P. Nayak, B. Pell, and B.C. Williams. Remote agent: to boldly go where no
Al system has gone before. Artificial Intelligence, 103(1-2):5-48, August 1998.

kb11
8

Execution Monitoring and Schedule Revision for
O-OSCAR: a Preliminary Report

Amedeo Cesta and Riccardo Rasconi

Planning & Scheduling Team — http://pst.ip.rm.cnr.it
Institute for Cognitive Science and Technology
National Research Council of Italy
Viale K. Marx 15, I-00137 Rome, Italy
{cesta | rasconi }@ip.rm.cnr.it

Abstract. This paper addresses the problem of maintaining the consis-
tency of a pre-defined schedule during its execution in a real or simulated
environment. This issue, referred to as Reactive Scheduling Problem, is
known to be inherently difficult due to the usually strict timelines in
which the revising procedure is called to react. Schedule revision must
be quick, and sometimes solution quality must come as a secondary pri-
ority as the execution of the schedule does not allow for time-intensive
computations. In this work we present a Schedule Execution Monitor
and Control System which seizes upon the O-OSCAR (Object-Oriented
SCheduling ARchitecture) scheduling tool, a constraint-based software
architecture for the solution of complex scheduling problems. The core
solving engine of O-OSCAR is represented by the ISES algorithm (Iter-
ative Sampling Earliest Solutions), a constraint-based method for the
solution of the RCPSP/Max problem (Resource Constrained Project
Scheduling Problem with Time Windows). We have used the preceeding
software architecture as a starting point to develop a Schedule Execution
Monitor and Control System, capable of reactively maintaining the con-
sistency of the schedule in spite of possible unexpected events to occur
at schedule execution time. This paper describes this new module and
the current idea of schedule revision also based on the ISES algorithm.

1 Introduction

The problem we are currently studying concerns how to manage a pre-defined
schedule while it is being executed in a real or simulated working environment.
When we talk about “real” or “simulated”, we mean an environment which
retains some degree of unpredictability. A schedule (or solution) consists of a
certain number of activities, possibly aggregated in jobs, each of which require
some resources in order to be executed.

One key point is the fact that resources are limited in number and capacity.
Hence, the need to find a suitable temporal collocation of all the activities such
that no resource conflict arises. A resource conflict arises every time one or more
activities attempts to use a resource beyond its available capacity. When such a

kb11
9

consistent temporal allocation of all the activities is found, the schedule is said
to be feasible.

A further level of complexity is introduced by the fact that activities can
in general be temporally constrained, either individually or among one another:
for instance, some operation in a schedule might be constrained not to start
before, or not to finish after, a certain instant; in addition, there might be several
precedence constraints between any two activities in the schedule: for instance,
activity B might not be allowed to start before the end of activity A, and so
forth.

The issue of schedule consistency has therefore two aspects: on one side, re-
source consistency must be maintained at all times, since it is obviously not
possible to perform operations when the necessary resources are not available; on
the other side, the schedule temporal constraints, i.e. release time constraints,
deadline constraints, precedence constraints as well as others, should be kept
satisfied as well, as they constitute an integral part of the schedule specifica-
tions. A schedule where all the temporal constraints are satisfied, is said to be
temporally consistent.

Another key issue is the quality of the solutions. During schedule execution,
we will be faced with the need of revising the actual solution when its consistency
has been spoiled by an exogenous event; the activities of the schedule must be
allocated anew in order to re-gain consistency and in most cases it is of great
importance to keep the new solution as close as possible to the previous one. In
other words, it is desirable that the impact of an unforeseen event on the solution
be kept to a minimum. In broad terms, a meaningful quality measure could be
determined by the level of continuity which we are able to guarantee after the
revision of the solutions. Of course, there might be cases where maintaining such
a high level of continuity is not so important (as well as cases where it is simply
not possible!).

One of the major difficulties when working in real environments consists in
counteracting the effects that the possible unexpected events may have on the
schedule in a timely manner. Schedule revision must be quick, and sometimes
solution quality must come as a secondary priority because the execution of the
schedule does not allow for time-intensive computations.

There are traditionally two approaches to this problem, the Predictive ap-
proach and the Reactive approach [5]. The first one is based on the synthesis
of an initially robust schedule, that is, a schedule which is capable to absorb,
within a certain limit, the spoiling effects of unexpected disturbances without
the need of re-scheduling; the second one, which is the approach we are currently
studying, tries to maintain consistency by manipulating the schedule every time
it is deemed necessary.

In this work, the occurrence of unexpected events will be simulated by ran-
domly changing the actual “world description” by introducing some disturbances
taken from a pre-defined set, in an attempt to realize a life-like scenario. A soft-
ware module has been developed specifically to create and inject such distur-
bances during the schedule execution, the Contingency Simulator. The main

10

kb11
10

goal of the scheduling system will therefore be the one of representing the possi-
ble damages, fire the repair action and continously guarantee the executability
of the schedule.

To this aim, an Execution Monitor has been developed, which is capable to
realize a sort of reactive behaviour and conveniently re-adjust the schedule acti-
vities by means of the ISES procedure (Iterative Sampling Earliest Solutions)
[3], a constraint-based method originally designed to solve the RCPSP/Max
problem (Resource Constrained Project Scheduling Problem with Time Win-
dows).

The Schedule Execution Monitor has been developed as an integration to the
0O-OSCAR (Object-Oriented SCheduling ARchitecture) tool [2], an existing
constraint-based software architecture for the solution of complex scheduling
problems. The Contingency Simulator is designed as an external module that
brings the constraint-based representation abilities into play.

The paper is organized as follows: Section 2 gives a brief overview of the O-
OSCAR architecture and its main components; Section 3 introduces the problem
of generating contingencies and representing them within O-OSCAR constraint
modeling ability, while the Execution Monitor will be described in Section 4.
Some conclusions end the paper.

2 The O-OSCAR Software Architecture

In this section we describe the original O-OSCAR scheduling architecture (Fig.1)
upon which the Execution Monitor was developed. The whole system initially
implemented under MS Windows, is currently being ported to Linux.

The approach used to tackle the scheduling problem is definitely constraint-
based. Constraint satisfaction is exploited both as a representation tool as well
as mechanism to guide problem solving. Ancestors of O-OSCAR can be consid-
ered for example blackboard based architectures like those described in [11,9,
7]. Similar is also the approach followed in [1]. Distinctive features in O-OSCAR
are the particular emphasis given to the flexibility of the core contraints repre-
sentation, as well as on the central role played by the ISES algorithm [3].

The kernel of the system is the Representation Module. Its task consists
of maintaining the description of the world (Domain Representation) and the
description of the problem to be solved (Problem Representation).

— Domain Representation: All the relevant features of the world and the
rules which regulate its dynamic evolution should be described in a symbolic
language. 1t is thanks to this basic knowledge that the system is able to offer
services.

— Problem Representation: A description of the goals in terms of desired
states of the world must be given, and the scheduler will try to reach the
specified goal states starting from the initial one.

O-OSCAR uses a Constraint Satisfaction Problem (CSP) approach [12, 8]
as the basic modeling tool for scheduling problems. Therefore, all the informa-
tion maintained in the Representation Module must be organized in terms of

11

kb11
11

SOLVER

Algorithms and heuristics

domain refinem ent [

solution, answer to queries
andupdate I -

REPRESENTATION MODULE

b
INTERACTION MODULE

TEMPORAL NETWORK RESOURCE PROFILES

Fig. 1. The O-OSCAR Architecture.

constraints. All the data necessary for the solving process is then stored and
kept continously updated in a Constraint Data Base (CDB), which is the core
component of any architecture which tackles a CSP. The CDB offers an active
service which aims at automatically enforcing, whenever possible, the satisfaction
of the set of constraints which represent both the domain and the problem. To
be more specific, it is in charge of the two following aspects:

1. Domain and Problem Representation: The Domain Representation
Language allows the representation of classes of problems as well as the
definition of the typical contraints related to each class. In the specific
case, O-OSCAR is capable of solving scheduling problems belonging to the
RCPSP (Resource Constrained Project Scheduling Problem) class,
in particular, the RCPSP variant with Generalized Precedence Relations
(RCPSP/Max) [10]. The Problem Representation Language consists of a set
on constraints specifying the activities and their constraint requirements as
specified by the RCPSP /max characteristics.

2. Solution Representation and Management: The CSP approach to pro-
blem solving is based upon the representation, modification and maintenance
of a solution. The representation of a solution in O-OSCAR is built on top
of two specialized Contraint Reasoners, each of them is in charge of a
particular aspect of the domain. Two fundamental pieces of information are
to be maintained: the information on the temporal features of the domain
and the information about resource availability. The constraint reasoners are
called to action every time some changes are made to the current solution
description.

12

kb11
12

The two main domain characteristics that need to be supported in the devel-
opment of the Constraint Data Base for the resource constrained scheduling
problems are:

— quantitative temporal constraints allowing specification of both minimum
and maximum separation constraints;

— multi-capacity resources, that is, the ability of dealing with resources with
capacity greater than one.

As shown in Fig.1, the Representation Module is endowed with two constraint
reasoners which take charge of the two preceeding aspects: the first one, devoted
to the temporal constraint management, stores and analyzes the temporal infor-
mation making use of a Temporal Network and solving in every respect a Simple
Temporal Problem [6]; the second one stores the resource constraints and rein-
forces resource consistency by dynamically maintaining specific data structures
called Resource Profiles which keep information about the consumption level of
the available resources.

The features described above are hidden to the external user, who is presented
a higher level interface, the Domain Description Language. This language brings
the typical objects involved in a schedule to the user in terms of higher level
entities, such as activities, resources, constraints and decisions.

A number of active services can be implemented which seize upon the Rep-
resentation Module, the first being the Automated Problem Solving module (the
SOLVER, in Fig.1).

This module guides the search for a solution and is based upon the ISES al-
gorithm (Iterative Sampling Earliest Solutions) [3]. The module is endowed with
two main features: (a) an open framework to perform the search for a solution;
(b) heuristic knowledge used to guide the search and lower the computational
effort. ISES is defined as a profile based procedure: it relies on a core greedy al-
gorithm which operates on a temporally consistent solution, detects the resource
conflicts using the information stored in the Resource Profiles data structures,
and finally attempts to find a new solution that is resource consistent, by im-
posing some additional precedence constraints between the activity pairs which
are deemed responsible for the conflicts, thus flattening the resource contention
peaks below the maximum capacity level. This algorithm is iterated until either
a resource consistent solution is found or a dead-end is encountered. The greedy
algorithm is usually run according to some optimization criteria so to eventually
obtain multiple, increasingly better solutions. Some degree of randomization is
finally injected in the sampling loop to retain the ability to restart the search
in the event that an unresolvable conflict is encountered, without incurring the
combinatorial overhead of a conventional backtracking search.

A second, very important module which is present in the O-OSCAR. archi-
tecture is the one which implements a quite complex Graphical User Interface
aimed at guaranteeing a friendly User-System interaction. The services offered
by this module vary from simple visualization functionalities, to more sophisti-
cated ones, allowing for instance the direct manipulation of the solution by the
user. The goal of such a module is to keep the user always aware and in control

13

kb11
13

of the evolving situation so to enhance collaboration and a synergetic interaction
between the intuition capabilities and specific knowledge of human beings on one
side, and the computational power of the automated system on the other.

The constraint-based representation mechanism offers the invaluable advan-
tage that additional services can be easily added to the system, relying on the
same representation. This will become even more clear in the next sections where
we will present the Execution Monitor, a module which closes the loop with the
real world and dispatches the activities for execution. The Execution Monitor
module seizes upon the CSP representation as it implements a reactive approach
based on schedule repair, by continously updating the CDB (representing the
current status of the solution), according to the possible sudden variations of
the schedule at execution time.

3 Simulating and Representing Contingencies

The need to simulate a real working environment led us to develop a particular
module, that we called the Contingency Simulator (CS). Its only purpose
is to re-create the same conditions of uncertainty which typically affect the real
world, in order to test the repair capabilities of the Execution Monitor. As shown
in Fig.2, we have added the Contingency Simulator Module as a block external
to the system, with the aim of synthesizing the environment where the schedule
will be put in execution.

Server | Client

Representation

Module
ﬁﬁ‘\
N\ User Interaction
/ Module
Y ——

Resolution
Module
(ISES)
Execution
Execution Environment
Control
Module Contingencies

Simulator

Fig. 2. The O-OSCAR’s structure.

14

kb11
14

The basic job of the CS consists of injecting, during the execution of the sched-
ule, some kind of unexpected events in the environment at random instants.
This generates input for the O-OSCAR Representation Module, which stores
the world representation.

For instance, at a certain point in execution, the CS may “decide” to sud-
denly delay an activity, simulating the same kind of incident which could nor-
mally occur in everyday’s working life. Such delay comes hardly ever without
consequences, especially if the schedule has strict time and resource constraints,
as it is often the case. Typical consequences triggered by the delay may be for
instance the introduction in the schedule of:

— temporal inconsistency: the delay may have pushed some activities well be-
yond some pre-defined temporal deadlines, and the temporal constraint rea-
soner (see section 2) would promptly assess the situation as not consistent;

— resource inconsistency: the delay may have pushed the activity in a time
zone where the overall resource requirement exceeds the maximum resource
capacity, due to the requests of the other activities which operate in the
same interval; as before, the resource constraint reasoner would immediately
recognize the conflict.

Three kind of events are currently being simulated by the CS, as they represent
a realistic set of probable incidents to occur, for instance, in a real workflow.

Delays on the activities. As mentioned above, the Contingency Simulator may
induce a sudden and unexpected time shift on one activity. This is represented
within O-OSCAR by inserting a new precedence constraint between a particular
time point (namely, the origin of the temporal network) and the start time of the
delayed activity. It is worth mentioning here, but it will be reprised later, that
the system is endowed with ad-hoc primitives which allow the dynamic insertion
and deletion of a number of temporal constraint in and from the schedule. The
new insertion is reflected in the insertion of a new constraint between two time
points at Temporal Network level. Such change is immediately propagated in the
network by the proper constraint reasoner. If temporal consistency is not spoiled,
we will obtain a new collocation of the activities in the schedule; in the opposite
case, the schedule will be found overconstrained, meaning that the occurred delay
has gone beyond some pre-existing temporal boundaries. As previously stated,
resource consistency will then have to be checked as well, and this is when the
Execution Monitor revision action may come into play.

Variations on activity durations. Next exogenous event that we have modeled
is the change of duration of an activity. This change is represented by substitut-
ing the activity with a new one having the same characteristics as for resource
requirements, but of course different duration (which may not necessarily be
larger). As with temporal constraints, proper primitives have been designed
which allow the dynamic insertion and deletion of schedule activities.

Again, such a change in the schedule triggers a new propagation in the under-
lying temporal network to assure that no pre-defined time constraints between
any two time points are violated by the substitution.

15

kb11
15

If the difference AT in the activity duration is positive, then resource con-
sistency will again have to be checked, exactly as in the previous case; in case
AT should be negative (the activity will last shorter than expected), no resource
conflict may ever arise, yet a revision of the schedule is still recommended so to
take profit of possible opportunities, created by the sudden vacancy of resource
usage.

Resource breakdowns. The last event we are going to model is the unexpected loss
of some resource. In case of such an occurrence, it is very likely that a resource
conflict may arise, therefore the need of a quick re-schedulation of the activities.
Our system can handle multicapacity resources, that is, resources having capacity
greater than one: therefore the CS should be able to simulate also the partial
loss of a resource capacity, (temporary or definitive). For example, assuming the
presence of three identical trucks as resources in a schedule (resource type: truck,
resource capacity: three), one might want to re-create the loss of just one truck.

0O-OSCAR models resource breakdown by the simple insertion of a new ghost
activity with the only aim to add another source of contention in the schedule.
The ghost activity will make use of the resources which have to be collapsed,
of exactly the capacity that has to be collapsed. In other words, the condemned
resource will be “eaten out” by the ghost activity, obtaining as an overall effect,
its partial or total breakdown.

An important issue has to be raised at this point: the ghost activities which
are added by the CS to simulate resource unavailability are activities which do
not belong to the schedule and as such, must not participate to any possible
schedule revision process. As we will see in the next section, the ISES procedure
is not capable of distinguishing ghost activities from the ordinary ones, so the
only way to exclude the former from being re-scheduled is to “anchor” them,
once and for all, to the time interval where they have been placed initially.
This is achieved by inserting a so called Fixtime constraint (see section 4)
and relating it to the start time of each ghost activity. The Fixtime constraint
basicly imposes a rigid distance between any two time points; any attempt to
change their mutual distance will be forbidden by the time constraint reasoner
as it may cause a violation of the Temporal Network consistency. In our specific
case, the Fixtime constraint imposed on a ghost activity simply fixes the distance
between the time point origin of the Temporal Network and the ghost activity
start time.

As it will be shown in detail in the next section, the expressiveness of the
constraint-based design of O-OSCAR has been fully exploited in the development
of the CS module. A set of higher level primitives for the insertion/deletion of
constraints in/from the schedule has been implemented which guarantees rich
and complete representation capabilities. Based on the versatility of O-OSCAR,
these primitives not only permit a dynamic management of all kinds of temporal
constraints on the basis of a few simple parameters to be supplied by the user,
but as will be more clear shortly, they add a further degree of expressiveness to
the system by introducing the capability to add or remove new activities on the
fly, during schedule execution.

16

kb11
16

4 The Execution Monitor

Once an initial solution to a given problem is obtained, the Execution Control
module (see Fig.2) is responsible for dispatching the activities of the plan for
execution and detecting the status of both the execution and of the relevant
aspects of the world.

As explained in the previous section, the detected information is used to
update the CDB in order to maintain the world representation perfectly consis-
tent with the evolution of the real environment; the main issue is that updating
the data stored in the Representation Module in accordance to the informa-
tion gathered from the environment may introduce some inconsistency in the
schedule representation.

We have implemented an Execution Monitor which reacts to these inconsis-
tencies as they are detected, namely attempting to take the schedule back to a
consistent state, so as to keeping it executable.

The repair action is performed by exploiting the capabilities of the ISES
algorithm, which is used as a “black box”; in other words, schedule revisions are
approached as a global re-scheduling actions, without focusing on a particular
area of the solution, as realized with different approaches, e.g., [11].

Updating the schedule representation. Our global approach requires some pre-
ventive action to be taken before the ISES procedure is fired, in order to have
the necessary control on schedule repair choises. In other words, we can guide
the revision process by preventively constraining the activities, depending on the
strategies we want to realize. A number of primitives have been developed which
make the dynamic insertion and deletion of temporal constraints possible.

At present time these primitives handle the following constraints:

1. Precedence Constraint: imposes a temporal relationship between two

activities; in the shown example, activity A2 cannot start before the end
of activity Al [st2 > st1+dur(A1)].
This is achieved by imposing a minimum distance between the start times of
the activities A1 and A2, equal to the duration of Al. In this way, we keep
the two activities relatively separated, so that a temporal shift executed on
A1 would immediately induce a shift on A2 as well;

2. Deadline Constraint: imposes a time boundary on the activity end time;

the activity cannot end after the deadline dl [et < dl];
This is achieved by imposing a maximum distance between the time point
origin and the end time of the activity. In this way, we do not force the ac-
tivity to end at instant dl, but we certainly ensure that it will not terminate
beyond that point;

3. Release Time Constraint: imposes a time boundary on the activity start

time; the activity cannot start before the release time rt [st > rt];
This is achieved by imposing a minimum distance between the time point
origin and the start time of the activity. In this way, we do not force the
activity to start at the instant rt, but we certainly ensure that it will not
attempt execution before that point;

17

kb11
17

4. FixTime Constraint: similar to the previous one, imposes a more rigid

constraint on the activity start time; the activity cannot start neither before,
nor after a determined fixed instant ft [st = ft];
This is achieved by imposing a minimum and a maximum distance, mind
and maxd respectively, between the time point origin and the start time of
the activity, with mind = maxd = st. In this way, any attempt to move
the activity away from its determined FixzTime instant will be forbidden by
the temporal constraint reasoner.

1T+«——0

2 execSched «— schedule

3 while(Schedule NOT executed)
4 ENVIRONMENT SENSING

5 if (Unforeseen Events)

6 UPDATE REPRESENTATION

7 if (NOT Temporal Consistency)

8 EXIT WITH FAILURE

9 else if (NOT Resource Consistency)
10 SCHEDULE REVISION

11 if (Conflicts NOT eliminated)

12 EXIT WITH FAILURE

13 else

14 T =T+1

Fig. 3. The execution algorithm.

Ezecuting the schedule. The pseudo-code in Fig.3 describes the execution algo-
rithm. At the beginning, the time variable T is initialized and so is the variable
execSchedule which refers to the schedule under execution.

At every cycle, the environment is sensed in order to detect any possible
deviation between the expected and the actual situation; if unforeseen events
have occurred, we update the world representation stored in the CDB, to reflect
the new world status.

Next step consist of checking temporal consistency, as in the CDB updat-
ing process we may have added to the representation some temporal constraints
which are in conflict with the existing ones.

If consistency is lost, the algorithm must terminate with failure, as no repair
action is possible unless some previously imposed constraints are relaxed; if time
consistency is not spoiled, resource consistency must be checked as well, be-
cause the occurrence of the exogenous event may have introduced some resource
conflicts in the schedule, although leaving it temporally consistent.

If no resource conflicts are present, the execution of the schedule may con-
tinue; otherwise, a schedule revision must be performed, in the attempt to

18

kb11
18

eliminate resource contention. If the schedule revision process succeeds in elimi-
nating the conflicts, execution may continue; otherwise the algorithm must exit
with failure.

4.1 Schedule Revision

Let us take a closer look at the way the activities in the schedule are actually
manipulated during execution and repair. As previuosly stated, the approach
used in our Execution Monitor can be considered as global [4,13] in that the
revision procedure accepts the schedule as a whole, tries to solve all the presents
conflicts and returns the solution. In other words, the ISES procedure does not
make any difference between terminated, started or yet-to-start activities, and
has no concept of time. As a consequence, the only chance at our disposal to
exert some control over the activities is to do it in a preventive way, that is,
before the ISES procedure begins the manipulation of the schedule.

Such control is necessary for at least two reasons: (a) we want to keep the
solutions physically consistent at all times; (b) we want to retain the possibility
to satisfy a set of preferences given by the users.

Let’s go deeper in the subject by focusing on some practical issues arising
during schedule execution that we have to face in order to obtain meaningful
results from the revision pocess. We assume the schedule under execution with
current execution time = tg.

Physical Consistency. The consistency must be satisfied at all times, because
the current solution always embodies the description of a real world situation.

There are many ways in which physical consistency may be spoiled as a
result of an inattentive action: for instance, the re-scheduling procedure may try
to re-allocate some activities which have already started execution.

Clearly, this represents an inconsistent situation and must be avoided at
all costs. The problem is solved by inserting a new FixTime constraint for
every activity whose start time st = tg. By doing so, we impose a very strict
temporal constraint on the activity start time: all the solutions found by ISES
which require a temporal shift of the constrained activity, will be rejected.

As another example, the re-scheduling procedure may allocate some activities
at the left of tg in the temporal axis, which would be equivalent to allocating
operations in the past. All we have to do in this case is to introduce in the
schedule as many Release Time constraints as are the activities whose start
time st is greater or equal than tg. In other words, we constrain all the activities
which have not yet started, not to begin execution before the current execution
time. Again, this does not necessarily mean that these activities will be moved
by ISES: anyway, should they be re-allocated, they would certainly be positioned
at the right of tp.

Preferences Management. As anticipated at the beginning of this paper, Solution

Continuity can be a very important quality measure of the schedule. In many
cases it is essential that any revised solution be as close as possible to the last

19

kb11
19

consistent solution found by ISES; the closer any two solutions are, the higher
their level of continuity.

It is in fact desirable (and plausible) that despite the possible exogenous
events that may occur during the execution of a schedule, this remains as similar
as possible to the initial solution, as it is supposed to be close to the optimal one.
Schedule continuity can be controlled by leaving or removing the precedence
constraints possibly imposed in the last execution of ISES. It is known that
ISES resolves the conflicts by inserting a certain number of extra precedence
constraints between the activities, in order to separate them in the areas of
greater resource contention; these extra constraints are not part of the original
problem and are only there to solve a particular resource conflict. In case ISES
should be run one more time, one might decide to remove these constraints,
counting on the fact that the conflicts re-introduced by this removal will be
solved by the next execution of ISES.

Depending on which decision is taken, (removing or leaving these constraints),
it has been observed that the new solution shows respectively a lower or higher
level of continuity with respect to the old one, obviously due to the different de-
gree of liberty retained by the activities in the two cases. The more constrained
the activities are, the lower the possibility that the new solution differs from the
old one. Depending on how important continuity is for the problem at hand, one
may choose which approach to adopt.

There are instances in which an intensive reallocation of the scheduled acti-
vities in response to an exogenous event may represent a serious problem; let’s
think of a workflow in a manifacturing environment: its execution may involve
a great work spent in team organization and manpower management. In such
cases, the main interest is to preserve solution continuity should something go
wrong, so as to minimize the amount of work which would be necessary to re-
organize all the employees’ working shifts, not to mention the work to re-organize
the raw materials shipment deadlines.

On the other hand, there are working environments (maybe more auto-
mated), where not only the re-allocation of scheduled activities does not rep-
resent a problem, but where a major re-allocation of the operations, even if
caused by an unexpected event, may be considered as an opportunity not to be
renounced. In these last cases, solution continuity is not a major concern.

As a last observation, with a proper handling of the temporal constraints
it is also possible to bias the schedule in order to satisfy user’s preferences; for
instance, before schedule revision it could be possible to specify the degree of
mobility of the activities, such as maximum delays, preferred anticipations, and
SO on.

By exerting this kind of preventive control, it is possible to express preferen-
ces on the behaviour of every individual activity before schedule revision, thus
obtaining a solution which best suites the user’s desires.

20

kb11
20

4.2 Current Status

The actual system has been implemented and tested on a preliminary set of
Multi-Capacity Job Shop Scheduling benchmark problems of the order of 15+-30
activities. The obtained results are very encouraging: as contingencies of different
nature and gravity are injected in the execution environment, the system suc-
ceeds in quickly working out a new consistent solution. For example, we tested
the system ability to recover from sudden delays of different gravity of one or
more activities, at various stages of execution, as well as from sudden resource
breakdowns, with partial or total loss of one or more resources, still at various
stages of execution.

At the current stage of development we are focusing our attention on the
methodologies (constraint posting strategies, general user service design, etc.)
more than on true system performance. Resolution speed will be our next ob-
jective: the actual implementation of O-OSCAR presents a number of points
where computation can be made faster, depending merely on implementing is-
sues. To give an idea of the present performance level, the system succeeds in
rescheduling a RCPSP/Max problem with 20 activities and 3 resources in an
average time of 190 milliseconds, during schedule execution.

It is worth noting that the nature of the reactive scheduling problem entails
the presence of several parameters, and therefore much attention must be paid
in order to synthesize a meaningful benchmark. Among the parameters involved
are the following:

— temporal separation between the current instant of execution and the sensed
conflict;

— type of contingency occurred;

— number of activities affected;

— number of resources affected;

— for each resource, the capacity affected.

Each one of the previous variables may trigger a different response from the
system, and in case of multiple occurrences, their mutual timing will be another
major source of performance variability. In general a lot of work is still to be
done, but the building blocks descibed in this paper were a needed precondition
for actually performing such work.

5 Conclusions

In this paper we have presented the current status of the execution monitoring
module of the O-OSCAR architecture. The model implements an approach to
schedule revision that we call global reaction approach to distinguish it from the
one followed for example in [11] that coud be called local reaction approach. Ac-
cording to this strategy, we perform the rescheduling of the entire set of activities
not executed before the current execution time, including those not affected by
the exogenous event.

21

kb11
21

The global approach we have dscribed relies entirely on the solving capa-
bilities of the ISES procedure, coupled with the expressive power of a set of
primitives which extensively exploit O-OSCAR representation features. ISES is
used as a black box, and this requires a careful preventive action in order to ex-
ert some control on the dynamic evolution of the whole system. This control is
exerted by means of a skillful use of the above mentioned primitives, which allow
to easily manipulate both the activities of the schedule and the time constraints
insisting on those activities.

On the opposite, the local reaction methodology seizes on the analysis of
the occurred conflicts and on the utilization of specialized metrics in order to
execute the most suitable repair action, chosen from a set of pre-defined revision
procedures, on the most urgent conflict among those waiting to be attended;
whatever the chosen repair method and the chosen conflict, the solution revision
will be not be performed on the entire schedule as with the global approach,
but on a limited number of activities, namely, those which are deemed to be
the most seriously involved in the conflict. The previous step is iterated until all
pending conflicts are solved (see [11] for further details).

We believe that our system with its core constraint-based architecture and the
primitives at disposal, constitutes a solid framework also for the implementation
of a locally reactive scheduling system, as just described. Future developments
of our work include the realization of such a alternative approach by means
of the existing O-OSCAR building blocks. The idea is to measure the system
responsiveness of both approaches and their ability to recover from inconsistent
states under different conditions of execution. Among the measures of interest we
identify the schedule makespan at the end of the execution, the schedule global
lateness as a weighed average of the individual delays with respect to the initial
solution, and of course an appropriate measure of solution continuity, which can
be initially taken as a meaningful measure of schedule quality.

Acknowledgements

This research is partially supported by ASI (Ttalian Space Agency) under project
ARISCOM (Contract I/R/215/02) and by MIUR (Italian Ministry of Education,
University and Research) under project RoboCare (A Multi-Agent System with
Intelligent Fixed and Mobile Robotic Components). The authors are part of the
Planning and Scheduling Team [PST] at ISTC-CNR and would like to thank the
other members of the team for several technical interactions.

References

1. BEck, J. C., DAVENPORT, A., Davis, E., AND Fox, M. S. The ODO Project:
toward a unified basis for constraint-directed scheduling. Journal of Scheduling 1
(1998), 89-125.

2. CESTA, A., CORTELLESSA, G., OpDI, A., PoLICELLA, N., AND Susi, A. A
Constraint-Based Architecture for Flexible Support to Activity Scheduling. In

22

kb11
22

10.

11.

12.

13.

Proceedings of 7th Congress of the Italian Association for Artificial Intelligence
(2001).

CESTA, A., ODDI, A., AND SMITH, S. F. A Constrained-Based Method for Project
Scheduling with Time Windows. Journal of Heuristics 8, 1 (2002), 109-135.
CHURCH, L. K., AND Uzsoy, R. Analysis of Periodic and Event-Driven Reschedul-
ing Policies in Dynamic Shops. Inter. J. Comp. Integr. Manufact. 5 (1991), 153—
163.

DAVENPORT, A., AND BEcK, J. C. A Survey of Techniques for Scheduling with
Uncertainty. http://www.eil.utoronto.ca/profiles/chris/chris.papers.html.
DECHTER, R., MEIRI, I., AND PEARL, J. Temporal Constraint Networks. Artificial
Intelligence 49 (1991), 61-95.

LE PAPE, C. Scheduling as Intelligent Control of Decision-Making and Constraint
Propagation. In Intelligent Scheduling, M. Zweben and S. M. Fox, Eds. Morgan
Kaufmann, 1994.

MonTANARI, U. Networks of Constraints: Fundamental Properties and Applica-
tions to Picture Processing. Information Sciences 7 (1974), 95-132.
MusceTTOLA, N. HSTS: Integrating planning and scheduling. In Intelligent
Scheduling, M. Zweben and S. M. Fox, Eds. Morgan Kaufmann, 1994.
ScHWINDT, C. Generation of Resource Constrained Project Scheduling Problems
with Minimal and Maximal Time Lags. Tech. Rep. WIOR-489, Universitat Karl-
sruhe, 1996.

SmiTH, S. F. OPIS: A Methodology and Architecture for Reactive Scheduling. In
Intelligent Scheduling, M. Zweben and S. M. Fox, Eds. Morgan Kaufmann, 1994.
TsaNG, E. Foundations of Constraints Satisfaction. Accademic Press, London,
1993.

Wu, S. D., STORER, H., AND CHANG, P. C. One-machine rescheduling heuristics
with efficiency and stability as criteria. Comput. Oper. Res. 20 (1993), 1-14.

23

kb11
23

Super CSPs

Emmanuel Hebrard, Brahim Hnich, and Toby Walsh*

Cork Constraint Computation Centre
University College Cork
{e.hebrard, brahim, tw}@4c.ucc.ie

Abstract. Fault tolerant solutions [12] and supermodels [8] are solu-
tions with strong properties of stability. In this paper, we study super so-
lutions, the generalization of supermodels to the constraint satisfaction
and optimization framework. We explore two different approaches to find
super solutions. In the first, we reformulate a constraint problem so that
the only solutions are super solutions. In the second, we introduce notions
of super consistency and enforce them during search. We also propose
a branch and bound algorithm for finding the most robust solution, in
case no super solutions exist. Finally, we run extensive experiments to
compare the different approaches and study the difficulty of finding su-
per solutions. We show that super MAC, a new search algorithm for
finding super solutions outperforms the other techniques.

1 Introduction

Many Al problems may be modelled as constraint satisfaction and optimization
problems. However, the real world is subject to change: machines may break,
drivers may get sick, stock prices increase or decrease, etc. In such cases, our
solutions to the problems may ”break”. In this context, one may want a solution
to be robust, that is able to remain valid despite changes.

Uncertainty and robustness can be incorporated into constraint solving in
many different ways. Some have considered robustness as a property of the al-
gorithm, whilst others as a property of the solution (see, for example, dynamic
CSPs [1] [7] [10], partial CSPs [5], dynamic and partial CSPs [9], stochastic CSPs
[11], and branching CSPs [3]). In dynamic CSPs, for instance, we can reuse pre-
vious work in finding solutions, though there is nothing special or necessarily
robust about the solutions returned. In branching and stochastic CSPs, on the
other hand, we find solutions which are robust to the possible changes. However
both these frameworks assume significant information about the likely changes
(e.g. the stochastic CSP framework assumes we have independent probabilities
for the values taken by the stochastic variables). In this paper we generalize a
definition of solution robustness introduced in SAT [8] to constraint program-
ming. This definition allows us to estimate the robustness of solutions without
any additional knowledge.

* All authors are supported by the Science Foundation Ireland.

24

kb11
24

Solution stability' is the ability of a solution to share as many values as pos-
sible with a new solution if a change occurs. For example, a stable solution in
a trip planning problem would not require cancelling a flight because of a train
drivers’ strike: the plan should change locally and in small proportion. Where
large changes to a solution introduce additional expenses or reorganization, sta-
bility is valuable. Moreover, stability can help us find a new solution. Stability
can then be seen as a particular form of robustness.

Fault tolerant solutions [12] and supermodels [8] are examples of solutions
that exhibit strong properties of stability: a solution is fault tolerant if any of its
values can be replaced by another one. For each part of our trip we need at least
two different ways to get from one point to another (we can replace the train
by a bus). Supermodels are models of SAT formula that can be repaired once a
small number of variables have changed by changing only a few other variables.
Supermodels are a powerful way to capture robustness and stability of solutions.
Supermodels are computed offline, in advance of any changes. A supermodel
guarantees the existence of a reasonably small repair in case of a small change in
the future. Supermodels do not require any particular knowledge about future
changes. However, supermodels have only been studied for SAT problems. In
this paper, we generalize the concept of supermodels to constraint satisfaction
problems (CSPs). We conjecture that constraint programming is in many ways
a better framework for supermodels: they will be more likely, and they will more
likely be useful. The definition of supermodels given in [8] has to be modified to
deal with CSPs. From now on, we will refer to supermodels for SAT problems,
whereas super solutions will denote stable solutions to CSPs. Note that our
definition of super solutions (section 2) reduces to the definition of supermodels
if the SAT variables are considered as CSP variables with binary domains.

2 Super Solutions

Supermodels were introduced in [8] as a framework to measure inherent degrees
of solution stability. An (a, b)-supermodel of a SAT problem is a model (a satisfy-
ing assignment) with the additional property that if we modify the values taken
by the variables in a set of size at most a (breakage variables), another model
can be obtained by flipping the values of the variables in a disjoint set of size at
most b (repair variables). A necessary but not sufficient condition that need to
be satisfied in order to find a supermodel is the absence of backbone variables.
A backbone variable is a variable that takes the same value in all solutions. The
presence of a backbone variable in a SAT problem makes it impossible to find
any (a,b)-supermodels as that particular variable has no alternative.

There are a number of ways we could generalize the definition of supermodels
from SAT to constraint satisfaction as variables now can have more than two
values. A break could be either “losing” the current assignment for a variable
and then freely choosing an alternative value, or replacing the current assignment

! sometimes also referred to as “similarity” in the literature

25

kb11
25

with some other value. Since the latter is stronger and therefore less useful, we
propose the following definition.

Definition 1. A solution S to a CSP is (a,b)-super solution iff the loss of the
values of at most a variables in S can be repaired by assigning other values to
these variables, and modifying the assignment of at most b other variables.

A number of properties follow immediately, for example, a (¢, d)-super solu-
tion is a (a, b)-super solution if (a < cord <b) and c+d < a+ b,

We will focus mostly on (1,0)-super solutions in the rest of the paper. They
are called fault tolerant solutions and described in [12]. Deciding if a SAT prob-
lem has an (a, b)-supermodel is NP-complete [8]. It is not difficult to show that
deciding if a CSP has an (a, b)-super solution is also NP-complete, even when
restricted to binary constraints.

Theorem 1. Deciding if a CSP has an (a,b)-super solution is NP-complete for
any fized a.

Proof. To see it is in NP, we need a polynomial witness that can be checked in
polynomial time. This is simply an assignment which satisfies the constraints,
and, for each of the O(n®) (which is polynomial for fixed a) possible breaks, the
a + b repair values.

To show completeness, we show how to map a binary CSP onto a new binary
problem in which the original has a solution iff the new problem has an (a,b)-
supersolution. We duplicate the domains of each of the variables, and extend
the constraints so that the behave equivalently on the new values. For example,
suppose we have a constraint C'(X,Y") which is only satisfied by C'(m,n). Then
we extend the constraint so that is satisfied by just C(m,n), C(m',n), C(m,n’)
and C(m/,n’) where m' and n' are the duplicated values for m and n. Clearly,
this binary CSP has a solution iff the original problem also has. In addition,
any break of a variables can be repaired by replacing the a corresponding values
with their primed values (or unpriming them if they are already primed) as well
as any b other values.

3 Motivational Example

The approach taken in this paper, whilst it concerns repairs, is a proactive
approach. A super solution is a solution to the deterministic, regular, CSP which
we expect may change before we come to apply the solution. The changes occur
after we have found a solution and must then be tackled. We aim to ensure that
any break (loss of one value) will be repairable if it eventually occurs.

Let us consider the following CSP: XY, Z € {1,2,3} X <Y AY <Z
The solutions to this CSP are shown in Figure 1, as well as the subsets of solutions
that are (1, 1)-super solutions and (1, 0)-super solutions for this problem.

The solution (1,1,1) is not a (1,0)-super solution. The reason is that if X
loses its value 1, we cannot find a repair value for X that is consistent with YV

26

kb11
26

| solutions [(1,1)-super solutions|(1, 0)-super solutions|

<1) 1) 1)? <1)]‘?2> <]‘? 1)2>) <1) 1)3> <]‘?2? 3)
(1,1,3), (1,2,2)| (1,2,2), (1,2,3) (1,2,2)
<1)2) 3)? <1)3? 3) <]‘?3) 3)) <2) 2) 2) <2? 2? 3)
<2) 2) 2)? <2) 2? 3) <2? 2) 3)) <2) 3) 3)

(2,3,3), (3,3,3)

Fig. 1. solutions, (1, 1)-super solutions, and (1, 0)-super solutions for the problem X <
Y < Z.

and Z because neither (2,1,1) nor (3,1,1) are solutions to the problem. Also,
solution (1,1, 1) is not a (1, 1)-super solution because when X loses its value 1, we
cannot repair it by changing the value assignment of at most another variable,
i.e., there exists no repair solution when X breaks because none of (2,1,1),
(3,1,1), (2,2,1), (2,3,1), (2,1,2), and (2,1,3) is a solution to our problem. On
the other hand, (1,2, 3) is a (1, 0)-super solution because when X breaks we have
the repair solution (2,2, 3), when Y breaks we have the repair solution (1,1, 3),
and when Z breaks we have the repair solution (1,2,2). We therefore have a
theoretical basis to prefer the solution (1,2,3) to (1,1, 1), the former being more
“robust” or “stable”. Note that all algorithms introduced in this paper provide
offline (that is, in advance) the repairs as well as the solution. Hence finding and
applying the repairs online takes constant time.

The way a given problem is modelled influences the super solutions. For
instance, consider the encoding in SAT of this problem. One way to encode
this is to add a Booloean variable z; for every value ¢ that X can take, x; =
True means that X = i. In our case, {z1,z2, 23}, {y1,y2,y3} and {z1,22,23}.
However, such an encoding has no (1,0)-supermodel. Any variable y; standing
for an assignment of y is in conflict with at least one other assignment on z
or z. Moreover, one y; must be set to True, since any solution gives a value
to y. Therefore the variable in conflict with y; must be set to False. If the
assignment of this variable is modified, i.e, flipped to True, then at least y; must
be reassigned to False. Intuitively, in any encoding, the likelihood of finding an
(a, b)-super solution will decrease with the number of variables and increase with
the domain size. Moreover, the meaning of a super solution depends also on the
model. For example, if a variable is a country and a value is a colour, the loss
of a given value is equivalent to the loss of the given colour. On the other hand
if every possible colouring of that country is encoded by a Boolean variable, the
loss of a value means either that the colour is now forbidden or that this colour
must be used. The CSP framework gives more freedom to choose what variables
and values stand for, and therefore what being a super solution means.

4 Reformulation Approach to Finding Super Solutions

One possible approach to finding super solutions is to add further variables
and constraints to the CSP that would eliminate those solutions that are not

27

kb11
27

super solutions. In [12] a definition of fault tolerant solutions is given which
matches exactly the definition of (1,0)-super solutions: two reformulations of
CSP are given in [12] such that any solution of the reformulation corresponds
to a fault tolerant solution of the original CSP. In the following subsections, we
review those reformulation approaches and propose a new one, which we call the
cross-domains representation.

4.1 Boolean Reformulation

The first approach in [12], associates a Boolean variable z, to each value v of
each variable X in a given CSP. Assigning this variable to 1 corresponds to
the assignment X = v in the CSP. Every disallowed tuple =(X = v,Y = w)
translates into the conflict clause which forbids the assignment (1,1) for the two
corresponding variables. Finally, whereas in the original CSP any variable must
implicitly be given exactly one value, here exactly two variables must be satisfied
for every CSP variable. This model allows only fault tolerant solution, but not
all of them and it is shown through the following CSP:

=[1,2,Y =[1,2, X +Y < 4
This CSP translates into the following Boolean CSP (or SAT problem):

z1,22,y1,y2 € {0,1} (1
(z1.22) € {(1, D}, (y1,92) € {
(z2,92) € {(0,0),(0,1), (1,

)
(1,1} (2)
0} (3)

In (1) the Boolean variables associated to the different assignments are given.
In (2) exactly two of the Boolean variables must be true for each corresponding
CSP variable, while in (3), the only disallowed tuple (X = 2,Y = 2) is encoded.
The solution (1,1) is a fault tolerant solution of the original CSP, since for
X or Y, the value 2 can replace the value 1. However, this Boolean CSP has

no solution. This reformulation does not therefore give all the fault tolerant
solutions.

4.2 Adding Extra Variables and Constraints

The second approach proposed in [12] simply duplicates the variables. The ad-
ditional variables have the same domain as the original variables, and are linked
with the same constraints to the same neighbourhood. A not_equal constraint is
also posted between each original variable and its duplicate. The assignment to
the original part of the CSP gives then the solution, while the duplicated part
gives the repair for each variable. We refer to the reformulation of a CSP P with
this encoding as P+P.

28

kb11
28

4.3 Cross-Domains Reformulation

We now present our last reformulation approach. Let S = (vy,v2) be a (1,0)-
super solution on two variables X; and X,. If vy is lost, then there must be a
value in 71 € D(X;) that can repair vy, that is (r;,vs) is a compatible pair.
Symmetrically, there must exists ro such that (vq,72) is allowed. Now consider
the following subproblem involving two variables:

v2 means (vy,v2) is allowed.

Since it satisfies the criteria above, S = (v1, v2) is a super solution whilst any
other tuple is not. One may suspect that values ry, 79,141,472 do not participate
in any super solution and hence can be pruned. However r; and ro are essential
for providing support to v; and vs. So, we cannot simply reason about extending
partial instantiations of values, unless we keep the information about the values
that can be used as repair. So, let us instead think of the domain of the variables
as pairs of values (v, 7}, the first element corresponding to the super value (which
is part of a super solution), the second corresponding to the repair value (which
can repair the former). We call Px P the reformulation of a CSP P = {X,D,(C}
such that any domain becomes its own cross-product (minus the doublons), D;
becomes D;x D; —{(v,v}|v € D;}. The constraints are built as follows, two pairs
(v1,71) and (ve,r2) are compatible iff

— v; and vy are compatible (the solution must be consistent at the first place),
— vy and 79 are compatible (in case of break involving v, 79 can be a repair),
— v9 and r; are compatible.

The new domain CD(X) and CD(Y) of variable X and Y are

{(v1,m1), (V1,41), (r1,v1), (r1yda), (v, o), (i,) }

{(v2,72), (V2 02), (12, 02), (12, 02), (i, v2), (i, 72) }
and the only one allowed tuple is S = ((v1,71), (v2,7r2)). The example below
shows the cross-domain representation of the CSP given in section 3 (X <Y <
Z,D(X)=D(Y) = D(Z) =[1,2,3]). On this augmented CSP, arc consistency
will prune all the pairs that are inconsistent. The process of reformulating with
the cross-domain representation and enforcing a local consistency can therefore
be seen as enforcing a local super consistency. A super solution of the original
CSP can be extracted by keeping only the first element of every pair.

Since the constraint graph of this CSP is a tree, successively enforcing arc-
consistency and assigning a variable leads to a solution without backtrack-
ing. The possible solutions to this augmented CSP are: ((1,2),(2,1),(2,3)),
(1,2), (2,1), (3.2)), ((1,2). (2,3), (3,2)) and ((2,1), (2,3), (3,2)). The first corre-
sponds to (1,2,2), the second and the third to (1,2, 3) and the fourth to (2,2, 3)

29

kb11
29

(1,2)} {1.2)y (L2)) L2

1 I
(1, 3)! (1.3)3 (1,3)! o b
(2, 1) {2, 1) (2, 1)1 (2, 1) (2, 1) b
Y2, 3); {2,3)5 (2,3), L (2,3)] Y2,3)
(3,1)] {3,1)] (3, 1), L L L
(3, 2)! (3,2)! (3, 2)! o P (3,2) 1

5 Finding Super Solutions Via Search

5.1 Super Consistency

Local consistency allows backtrack-based search algorithms such as MAC to
detect unsatisfiable subproblems earlier. Local consistency can also be used to
develop efficient algorithms for finding super solutions. We shall introduce three
ways of incorporating local consistency into a search algorithm for seeking su-
per solutions. The first (AC+), a naive approach, augments the traditionnal
arc-consistency by a further condition, achieving a very low level of filtering.
The second (arc-consistency on Px P) allows us to infer all possible local infor-
mation, just as in arc-consistency in a regular CSP [4]. However this comes at
a high computational cost, though polynomial. The third (super AC) approach
gives less inference, but is a good tradeoff between the amount of pruning and
complexity. Informally, a consistent closure of a CSP contains only partial so-
lutions for a given level of locallity. However, the situation with super solutions
is a little bit more tricky because values that do not get used in any local su-
per solution can still be essential as a repair and thus cannot be simply pruned.
Throughout the rest of this paper we will refer only to (1,0)-super solutions,
and thus to (1, 0)-super arc-consistency.

5.2 Arc-Consistency+

If S is a super solution, then for every variable, at least two values are consistent
with all the others values of S. Consequently, being arc consistent and having
non-singleton domains is a necessary condition of satisfiability. AC+ can then
be defined as follows: for a CSP P = {X,D,C}: AC+(P) & AC(P)AVD €
D,|D| > 1. Whilst AC+ is usually too weak to give good results, it is the basis
for an algorithm for the associated optimization problem (section 6).

5.3 Arc-Consistency on PxP

Px P has the interesting property of having exactly the same topology as the
original problem P. Moreover, each pair (value, repair) is explicitly represented,
therefore, arc consistency on PxP makes all the possible inference, regarding
arcs. The proof that AC on Px P is the tightest filtering introduced in this paper
follows in section 5.5. As a corollary, tree and treewidth bounded tractable classes
of CSPs are also tractable for finding (1, 0)-super solutions, through cross-domain

30

kb11
30

representation, since any tree structure is conserved by the transformation. In a
similar way, if P is binary and Boolean, then P+ P is binary and Boolean, and
hence tractable.

5.4 A Notion of Super Consistency

Arc Consistency on PxP allows us to infer all that can be inferred locally.
In other words, we will prune any value in a cross-domain that is not locally
consistent. However, this comes at high cost, maintaining arc-consistency will
be O(d*) where d is the initial domain size. We therefore propose an alternative
that does less inference, but at a much lower (for example, quadratic) cost. The
main reason for the high cost is the size of the cross-domains. A cross-domain
is quadratic in the size of the original domain since it explicitly represents the
repair value for each super value. Here we will simulate (most of) the inference
performed by super consistency, but will only look at one value at a time, and
not pairs. We will divide the domain of the variable into two separate sets of
domains: the ”super domain” (SD) where only super values are represented and
a ”repair domain” (RD) where repair values are stored.

— A value v is in the super domain of X iff for any other variable Y, there
exists v’ in super domain of ¥ and r in repair domain of Y such that (v,v")
and (v,r) are allowed and (v’ # r).

— A value v is in repair domain of X iff for any other variable Y, there exists
v’ in super domain of Y such that (v,v’) is allowed.

The definition of super arc-consistency translates in a straightforward way
into a filtering algorithm. The values are marked as either super or repair, and
when looking for support of a super value, an additional and different support
marked either as super or repair is required. The complexity of checking the
consistency of an arc increases only by a factor of 2 and thus remains in O(d?).
An algorithm that maintains such a consistency would branch only on the values
in super domains and would fail if either the super domains becomes empty
or the repair domains becomes singleton. The low cost of achieving super arc-
consistency comes at the price of achieving a lower level of consistency compared
to maintaining arc-consistency on Px P, as shown in Figure 4. Moreover, the
consistency must be maintained also on the domains of the variables already
assigned. The super domain of an assigned variable is reduced to the chosen
value and cannot change, but the repair domain can wipe out because of an
assignment in the future. Figure 2 depicts an algorithm enforcing super AC on
the CSP X <Y < Z. The first Figure shows the microstructure of the CSP. In
the following Figure, super consitency is established: Y = 1 and Y = 3 have only
one support, respectively on X and Z, thus they cannot be in super domain.
Furthermore X = 3 and Z = 1 have each only one support on Y, respectively
Y =1 and Y = 3, which are not in the super domain. Hence X =3 and Z =1
are pruned. Y = 2 is the only value remaining in SD(Y") and is thus assigned. In
the last Figure, X is assigned to 2. As a result, Y = 1 is no longer supported and

31

kb11
31

is pruned. Since it was the second support for Z =2 on Y, Z = 2 is no longer
in the super domain anymore. Z = 3 is the only value remaining in SD(Z) and
is assigned.

Fig. 2. Left: The microstructure of the CSP, Middle: its super consistent closure, Right:
a super solution is reached after assigning X = 2.

e v is an assigned value (SD = {v})

m v is in super domain (v € SD) and in repair domain(v € RD)

m v is in repair domain (v € RD)

o v is pruned

5.5 Theoretical Properties

For the theorem and the proof below, we use the notation (x)(P) to denote that
the problem P is “consistent” for the filtering (x). We compare AC on PxP,
AC on P4+ P, AC+ and super AC.

Theorem 2 (level of filtering). For any subproblem P, AC(PxP) = su-
per AC(P) = AC(P+P) < AC+(P).

Proof. (1) AC(P+P) = AC+H(P): Suppose that P is not AC+, then in the arc
consistent closure of P, there exists at least one domain D; such that |D;| < 1.
P+P contains P and then in its arc consistant closure, we have |D;| < 1 as
well. X; is linked to a duplicate of itself which domain D} is then equal to D;
and therefore singleton (with the same value) or empty. However, recall that we
force X; # X|, thus P+P is not AC.

(2) AC+(P) = AC(P+P): Suppose we have AC(P) and any domain D
in P is such that |D| > 1, now consider P+P. The original constraints are
AC since P is AC. The duplicated constraints are AC since they are identiqual
to the original ones. The not_equal constraints between original and duplicated
variables are AC since any variable has at least 2 values.

(3) super AC(P) = AC+H(P): Suppose that P is not AC+, then there
exists two variables X, Y such that any value of X has at most one support on Y,
therefore the corresponding super domain is wiped-out, and P is not super AC.

(4) super AC(P) £ ACH(P): See counterexample in Figure 3.

(5) AC(PxP) = super AC(P): Suppose that AC(PxP), then for any two
variables X,Y there exist two pairs (vl,rl) € D(X) x D(X), (v2,r2) € D(Y) x
D(Y), such that (v1,r2),(rl,v2) and (vl,v2) are allowed tuples. Therefore vl
belongs to the super domain of X and vl and r1 belong to the repair domain

32

kb11
32

of X. Thus, the super domain of X is not empty and the repair domain of X is
not singleton. Therefore, P is super AC.
(6) AC(PxP) # super AC(P): See counterexample in Figure 4. O

-~ -\ -~ -\ -~

I I I
I I b
| | - I
2., i : 2w, : R .\T /f.:
I [I [P G
3‘\ [) 3‘\ [) 3o Tm,

- N N~ N

- N

Fig. 3. The first graph shows the microstructure of a simple CSP, two variables and
3 values each, allowed combinations are linked. P is AC+ since the network is arc-
consistent and every domain contains 3 values. However, P is not super AC since
the greyed values (in the second graph) are not in super domains, they have only
one support. In the second step, the whitened variables (in the third graph) are also
removed from both repair and super domains since they don’t have a support in a
super domain.

Fig. 4. The first graph shows the microstructure of a simple CSP, three variables and
four values each, allowed combinations are linked. P is super AC since the super do-
mains are of size 2 (black values), and the repair domains are of size 4 (black and grey
values). The second graph shows P x P, which is not arc-consistent.

5.6 Super Search Algorithms

MAC+. This algorithm establishes AC+ at each node. That is, establishes
AC and backtracks if a domain wipes out or becomes singleton. In the MAC
algorithm, we only prune future variables, since the values assigned to past
variables are guaranteed to have a support in each future variable. Here, this
also holds, but the condition on the size of the domains may be violated for
an assigned variable because of an assignment in the future. Therefore, firstly
arc-consistency must be established on the whole network, and not only on the
future variables. Secondly variables are not assigned in a regular way (which is
usually equivalent to reducing its domain to the chosen value) but one value
is marked as super value, that is added to the current partial solution, and
unassigned values are kept in the domain: they are possible repairs so far. The
algorithm can be informally described as follows:

— Choose a variable X

— Assign a value v € D(X) to X, but keep the unassigned values in D(X)

— For all Y # X, backtrack if Y has not at least two supports for v

— Revise the constraints as the MAC algorithm, and backtrack if the size of
any domain falls bellow 2.

33

kb11
33

Super MAC. We give the pseudo code of super MAC in Figure 5. This algo-
rithm is very similar to MAC algorithm, the super domains (SD) and repair do-
mains (RD), are both equal to the original domains for the first call. Most of
the differences are grouped in the procedure revise-Dom. The values are pruned
according to the rules described in section 5.4 (loop 1), and the algorithm back-
tracks if a super domain wipes out or a repair domain becomes singleton (line
2). Note that, as for MAC+, the consistency is also established on the domains
of the assigned variables, (super AC loop 1).

We have established an ordering relation on the different filterings. However,
for the two algorithms above, the process of assigning a value to a variable in the
current solution doesn’t lead to the same subproblem as in a regular algorithm.
Whereas for a regular backtrack algorithm, the domains of the assigned variables
are reduced to the chosen value, some unassigned values are still in their domain
(but marked only as “repair”) for the algorithms above. We have proved that a
problem P is AC+ iff P+P is AC. However, consider the subproblem P’ induced
by the assignment of X by MAC+. P'+P’ may have more than one variable
in X, whereas the corresponding assignment in P+ P leaves only one value in
the domain of X (see Figure 6). Therefore the ordering on the consistencies
doesn’t hold for the number of backtracks of the algorithms themselves. However,
MAC(PxP) never backtracks when any other algorithm doesn’t, and MAC+
always backtracks when any other algorithm does. Therefore any solution found
by MAC(PxP) will eventually be found by other algorithms, and MAC+ will
find any solution found by another algorithm. We prove that MAC+ is correct
and MAC(Px P) is complete. Hence all four algorithms are correct and complete.

Theorem 3. For any given CSP P, the sets of solutions of MAC+(P), of su-
per MAC(P), of MAC(PxP), and of MAC(P+P) are the same and is the set
of all super solutions to P.

Proof. MAC+ is correct: suppose that S is not a super solution, then there
exists a variable X assigned to v in S, such that Yw € D(X),v # w, w cannot
replace v in S. Therefore when all the variables are assigned, and thus, remain
in the domains only the values that are arc-consistent with the current solution,
D(X) = {v} and then S is not returned by MAC+.

MAC(PxP) is complete: let S be a super solution, for any variables X,Y, let
v1 be the value assigned to X in S, and r1 one of its possible repairs. Similarly
v2 is the value assigned to Y and r2 its repair. It’s easy to see that the pairs
(vl,71) and (v2,r2) are super arc-consistent, i.e, (v1,v2), (v1,72) and (r1,v2)
are allowed tuples.]

6 Finding the Most Robust Solutions

Finding super solutions may be difficult because (1) from a theoretical per-
spective, the existence of a backbone variable guarantees the non-existence of
super solutions, and (2) from an experimental perspective (see next section),
it is quite rare, even if we have no backbone variables, to have super solutions

34

kb11
34

Algorithm 1: super MAC

Data : CSP: P ={X,8D,RD,C}, solution: S = (), variables: ¥ = X
Result : Boolean // 35 a (1, 0)-super solution
if ¥V = () then return True;
choose X; € V;
foreach v; € SD; do
save SD and RD;
SD; + {’Ui};
if super AC(P,{X;}) then
| if super MAC(P, SU {v;},V — {X;}) then return True;
end
restore SD and RD;
end
return False;

Algorithm 2: super AC

Data :CSP: P={X,S8D,RD,(C}, Stack: {X;}
Result : Boolean // P is super arc consistent
while Stack is not empty do
pop X; from Stack;
1 foreach C;; € C do
switch revise-Dom(SD;, RD;,SD;, RD;) do

case not-cons

| return False;

case pruned
| push X; on Stack;

endsw

end
end
return True;

Procedure revise-Dom(SD;, RD;,SD;,RD;) : {pruned,not-cons,nop}

1 foreach v; € SD; do
if Avi € SD;,v; € RD; such that {vi,v;) € Cij A (vi,v;) € Cij ANvi # vj
then
| SDj « SDj —{v};
end
end
foreach v; € RD; do
if Av; € SD; such that {v;,v;) € C;; then
| RDJ‘ — RDJ‘ — {’U]‘};

end

end

if at least one value has been pruned then return pruned;
2 if |SD;| = 0V |RD;| < 2 then return not-cons;

return nop;

Fig. 5. super MAC algorithm

35

kb11
35

Z 1 2

Fig. 6. Left: A CSP P, P is still AC+ after assigning X to 1. Middle: P+P, each
variable has a duplicate which must be different, the constraints linking those variables
are not represented here, the constraints on X' are exactly the same as the ones on
X. Right: When the same assignment, X = 1 is done in P+P, we have the following
propagation X' #1 Y #1AZ #1—-Y' #2AZ" # 2. Now consider (Y : 1) and
(Z : 2) they are not allowed, the network is no longer arc-consistent.

where all variables can be repaired. To cure both problems, we propose find-
ing the "most robust” solution that is as close as possible to a super solution.
An optimal solution is defined as a solution that is as close as possible to a
super solution.

For a given solution S, a variable is said to be repairable iff
there exist at least a value in its domain different from the one assigned in S,
and compatible with all other values in S.

The optimal solution is a solution where the number of repairable variables is
maximal. Such an optimal robust solution is guaranteed to exist. If the prob-
lem is satisfiable, we will have a solution where, in the worst case, none of the
variables are repairable. We hope, of course, to find some of the variables are
repairable. For example, our experiments show that satisfiable instances at the
phase transition and beyond have a core of roughly n/5 repairable variables. To
find such solutions, we propose a branch and bound algorithm that finds an op-
timal robust solution. The algorithm implemented is very similar to MAC+ (see
5.6), where arc-consistency is established on the non-assigned as well as on the
assigned variables. The current lower bound computed by the algorithm is the
number of singleton domains, the initial upper bound is n. Indeed, each singleton
domain corresponds to an unrepairable variable, since no other value is consistent
with the rest of the solution. The rest is a typical branch and bound algorithm.
The first solution (or the proof of unsatisfiability) needs exactly the same time
as the underlying MAC algorithm. Afterwards, it will continue branching and
discovering better solutions. It can therefore be considered as an incremental
anytime algorithm. We refer to it as super B&B.

For optimization problems, the optimal solution may not be a super solution.
We can look for either the most repairable optimal solution or the super solution
with the best value for the objective function. More generally, an optimization
problem then becomes a multi-criterion optimization problem, where we are
optimizing the number of repairable variables and the objective function.

36

kb11
36

7 Experimental Results

Due to the lack of space, this section gives only some observations from our
experiments, the interested reader is pointed to the technical report [2]. Our
aims were firstly to study the difficulty of finding super solutions, rather than
solutions. As expected, for a given density, the phase transition for MAC begins
at a tightness much larger than the end of the phase transition for super MAC.
That means that a hard problem is very likely not to have a super solution.
Moreover, the highest point of the phase transition peak is orders of magnitude
greater for finding super solutions than for finding solutions. However, we found
that, on the bandwidth problem, for instance, by slightly relaxing the problem (in
that case the optimality criterion) super solutions can be found, or alternatively,
optimal non-super solutions with a relatively high number of repairable variables.

We present here the comparison between MAC on Px P, super MAC, MAC+
and MAC on P+P, on two classes of random problem instances at the phase
transition: (50 variables, 15 values, 100 constraints, 114 disallowed tuples per
constraint) and (100 variables, 6 values, 250 constraints, 10 disallowed tuples
per constraint). Figure 7 gives the cpu time, and the number of backtracks of
these algorithms. We observe that (1) MAC on PxP effectively prunes more
than all other methods, but is not practical when the domain size is too big, and
(2) super MAC outperforms all other algorithms, in terms of runtime, as soon
as the size of the problem increases.

| MAC+ |MAC on P+P|MAC on P><P|super MAC|
n=50d =15 p1 = 0.08 p» = 0.5)

CPU time (5) 788 13 53 1.8
backtracks 152601000 111836 192 2047
time out (3000 5)| 12% 0% 0% 0%
{n=100d =6 p1 = 0.05 pz = 0.27)=
CPU time (3) 2257 130 35 1.2
backtracks 173134000 3786860 619 6487
time out (3000 s)] 66% 7% 0% 0%

Fig. 7. Results at the phase transition. * only 50 instances of this class were given to MAC+

8 Conclusion

Summary. We have studied the properties of supermodels within a CSP frame-
work. We introduced the notion of super consistency, and based upon it, a search
algorithm, super MAC is developed to solve the problem, which outperforms the
other methods studied here. We also propose super B&B as an optimzation al-
gorithm which finds the most robust solution that is as close as possible to a
super solution.

37

kb11
37

Related work. Supermodels [8] and fault tolerant solutions [12] have been
discussed earlier. Neighborhood interchangeability [6] and substitutability are
closely related to our work, but whereas, for a given problem, interchangeability
is a property of the values and works for all solutions, reparability is a property
of the values according to a certain solution (it can be seen either as a property of
a variable, or of the value given to this variable into a solution). Therefore those
properties are incomparable. For instance, by definition if no solutions exists,
then any two values are interchangeable whilst there is no repairable variable.
On the other hand consider a CSP with two variables X,Y and the following
solutions: (1,1),(1,2),(2,1),(2,3). This problem has two super solutions, (1,1)
and (2,1). The value X =1 is repairable in both super solutions by X = 2, and
vice versa, but neither X = 2 is substitutable to X = 1, since (1,2) is solution
and not (2,2), nor X = 1 is substitutable to X = 2, since (2, 3) is solution and
(1, 3) is not.

Future directions. The problem of seeking super solutions becomes harder
when multiples repairs are allowed, i.e, for (1,b)-super solutions. We aim to
generalize the idea of super consistency to (1,b)-super solutions. In a similar
direction, we would like to explore tractable classes of (1,b)-super CSPs. Fur-
thermore, as with dynamic CSPs, we wish to consider the loss of n-ary no-goods
and not just unary no-goods.

References

1. A. Dechter and R. Dechter. Belief maintenance in dynamic constraint networks.
In Proceedings AAAI-88, pages 37-42, 1988.
2. B. Hnich E. Hebrard and T. Walsh. Super csps. Technical Report APES-66-2003,
APES Research Group, 2003.
3. D. W. Fowler and K. N. Brown. Branching constraint satisfaction problems for
solutions robust under likely changes. In Proceedings CP-00, pages 500-504, 2000.
4. E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the
ACM, 32:755-761, 1985.
5. E. C. Freuder. Partial Constraint Satisfaction. In Proceedings IJCAI-89, pages
278-283, 1989.
6. E. C. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction Prob-
lems. In Proceedings AAAI-91, pages 227-233, 1991.
7. N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency within
dynamic backtracking. In Proceedings CP-00, pages 249-261, 2000.
8. A. Parkes M. Ginsberg and A. Roy. Supermodels and robustness. In Proceedings
AAAI-98, pages 334-339, 1998.
9. I. Miguel. Dynamic Flexible Constraint Satisfaction and Its Application to Al
Planning. PhD thesis, University of Edinburgh, 2001.
10. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problem. IJAIT, 3(2):187-207, 1994.
11. T. Walsh. Stochastic constraint programming. In Proceedings ECAI-02, 2002.
12. R. Weigel and C. Bliek. On reformulation of constraint satisfaction problems. In
Proceedings ECAI-98, pages 254-258, 1998.

38

kb11
38

Steps toward Computing Flexible Schedules

Nicola Policella'****, Stephen F. Smith?, Amedeo Cesta!, and Angelo Oddi'

! Planning & Scheduling Team, Institute for Cognitive Science and Technology
Italian National Research Council
Rome, Italy
{policella,cesta,oddi}@ip.rm.cnr.it
2 The Robotics Institute, Carnegie Mellon University
Pittsburgh, PA, USA
sfs@cs.cmu.edu

Abstract. In this paper we consider the problem of building sched-
ules that retain temporal flexibility. Such a feature represents a relevant
benefit for managing changes in a dynamic environment. We begin by
formalizing the concept of flexibility, to provide a set of metrics against
which the flexibility of competing schedules can be compared. Then, us-
ing a common solving framework, we develop two orthogonal procedures
for constructing a flexible schedule. The first, which we call the resource
envelope based approach, uses computed bounds on cumulative resource
usage (i.e., a resource envelope) to identify potential resource conflicts,
and progressively winnows the total set of temporally feasible solutions
into a smaller set of resource feasible solutions by resolving detected con-
flicts. The second, referred to as the earliest start time approach, instead
uses conflict analysis of a specific (i.e., earliest start time) solution to
generate an initial fixed-time schedule, and then generalizes this solution
to a set of resource feasible solutions. We evaluate the relative effective-
ness of these two procedures on a set of project scheduling benchmark
problems, considering both their problem solving performance and the
flexibility of the solutions they generate.

1 Introduction

In most practical scheduling environments, off-line schedules can have a very
limited lifetime and scheduling is really an ongoing process of responding to un-
expected and evolving circumstances. In such environments, insurance of robust
response is generally the first concern. Unfortunately, the lack of guidance that
might be provided by a schedule often leads to myopic, sub-optimal decision-
making.

In this paper we pursue the idea of promoting robust response through the
generation of flexible schedules — schedules that encapsulate a set of possible
execution futures and hence can accommodate some amount of executional un-
certainty. Our particular focus is generation of schedules that retain temporal

* Ph.D. student at the Department of Computer and Systems Science, University of

Rome “La Sapienza”, Italy
** Visiting student scholar at the Robotics Institute, Carnegie Mellon University

39

kb11
39

flexibility. Historically, a major obstacle to generating temporally flexible sched-
ules has been the difficulty of accurately computing the number of resources
required across all possible executions. Without this capability, it is difficult
to obtain sufficient search guidance to achieve scalable problem solving perfor-
mance. In [1], this problem is circumvented through use of a two-step procedure,
where attention is first focused on generating a particular resource-feasible solu-
tion, the earliest start time solution, and then this solution is generalized into a
flexible solution. However, in [6], a new procedure for computing resource usage
bounds for a flexible schedule has been proposed, referred to as the resource en-
velope. Since this procedure generates “the tightest possible resource-level bound
for a flexible plan”, it suggests the possibility of generating a flexible schedule in
a more direct, least-commitment fashion, using the resource envelope to detect
potential resource conflicts and transforming the set of possible solutions into
a small set of resource-feasible solutions by successively posting new conflict-
resolving constraints between competing activities. Intuitively, we might expect
that a schedule generation scheme which operates in such a least-commitment
fashion would produce a solution with greater flexibility than an approach that
instead produces a single point solution and attempts to generalize from this.
But the performance tradeoffs are not immediately clear. To investigate these
tradeoffs, we develop concrete implementations of each of the above approaches.
To sharpen the comparison, we utilize a common scheduling framework wherein
schedule generation is formulated as an incremental, conflict removal (or lev-
eling) process. We experimentally compare the performance of each procedure
on a set of known resource-constrained project scheduling problems, considering
both problem solving and solution flexibility characteristics.

The paper starts by discussing the concept and benefits of flexible solutions
in uncertain environments and specifying two parameters for measuring solution
quality along this dimension (Sect. 2.1). In Sect. 3 we describe the precedence
constraint posting (PCP) framework in which the two schedule generation ap-
proaches are to be defined and compared. In Sect. 4 and Sect. 5 the resource
envelope and the earliest start time approach are respectively introduced. Sec-
tion 5.1 then presents a method for obtaining flexible solutions from fixed time
ones. An empirical evaluation is presented in Sect. 6, analyzing the feature of
flexibility in Sect. 6.1. Finally we summarize our main results.

2 Flexibility and the Uncertainty in Scheduling

In the realm of scheduling problems different sources of uncertainty can arise:
durations may not be known, resources may have lower capacity than expexted
(i.e., machine breakdown), new tasks may need to be taken into account. Given
this, one highly desirable characteristic of a schedule is that the reactions to
unexpected events during execution entail small and localized changes.

One way to face this problem consists of using on-line (reactive) approaches.
These approaches try to repair the schedule each time a new disruption happens.
Keeping the pace with execution requires that the repair process be both fast and
complete. A repair must be fast because of the need to re-start execution of the
schedule as soon as possible. A repair also has to be complete in the sense that
it has to take into account all changes that have occurred, avoiding to produce

40

kb11
40

new ones. As these two goals can be conflicting a compromise solution is often
needed. Different approaches exist and they tend to favor either the swiftness of
their reaction [10] or the completeness of the new solution [8].

Alternative approaches to managing execution in dynamic environments have
focused on building schedules that retain flexibility and hedge against uncer-
tainty (off-line or proactive approaches). Robust approaches aim at building so-
lutions able to absorb some level of unexpected event without rescheduling. To
achieve such a feature, different techniques have been investigated. One consists
of building redundancy-based solutions, both of resources and of time, taking
into account the uncertainty present in the domain [3]. An alternative technique
is to construct a set of contingencies (i.e., a set of different solutions) and use
the most suitable with respect to the actual evolution of the environment [4].
An important point to note is that both types of approaches above need to be
aware of the possible events that can occur in the environment. In some cases,
this need for knowledge about the uncertainty in the operating environment can
present a barrier to their use.

For this reason, in the perspective of robust approaches, we consider a less
knowledge-intensive approach: to simply build solutions that retain temporal
flexibility where problem constraints allow. The aim is to produce solutions that
enable reaction to exogenous events without large changes or explicit assistance
(or repairs). A similar concept of producing solutions that promote bounded,
localized recovery from execution failures is also proposed in [5]. The two con-
ditions above are desired to insure an ability to keep pace with execution and,
at the same time, maintain stability in the solution. To achieve these features,
the idea is to construct partially ordered solutions, by introducing ordering con-
straints to resolve resource conflicts between pairs of activities. By providing
greater execution flexibility, such solutions are more advantageous than fixed-
time schedules (where precise start and end times are assigned to all activities).
Fixed-time schedules are quite brittle and it is typically very difficult to follow
them exactly during execution. Moreover, a flexible solution allows explicit rea-
soning about the uncontrollability of external events and the ability to include
execution countermeasures.

2.1 Evaluation criteria

A fundamental point related to the flexibility concept introduced above is the
need for metrics that characterize the quality of a flexible solution, and in gen-
eral, the extent to which a solution is suitable for the execution phase. Different
concepts can be used to describe the behavior of a given system facing uncer-
tainty in the world - stability, flexibility or robustness - but these notions remain
vague unless both the perturbations and features of interest are specified. In-
deed it makes no sense to define the quality of a system without first specifying
which of its characteristics have been considered. In the following we represent
the scheduling problem by a graph where for each activity a; there are two nodes
(events), the start time s,, and the end time e,, and for each constraint there is
an edge in the graph. Applying Dijkstra’s Shortest Path Algorithm the earliest
and latest values for both events of each activity are computed: est(a;), lst(a;)
eet(a;) and let(a;).

41

kb11
41

In [1] a metric® based on the temporal slack associated with each activity is
introduced:

|d(€a,,, Sa;) — d(8a;, €a),)|
flex =) ffx](fx(N—Lmh x 100 (1)
h£1

in which H is the horizon of the problem, N is the number of activities and
d(tpi1,tps) is the distance between the two time points. This metric aims at
measuring the fluidity of a solution, i.e., the ability to use flexibility to absorb
temporal variation in the execution of activities. The higher the value of flex,
the less the risk of a “domino effect”, i.e. the higher the probability of localized
changes.

While the previous parameter measures the ability to avoid domino effects,
another aspect of solution flexibility is the expected magnitude of potential
changes. We introduce a new parameter that takes into account the impact
of disruptions on the schedule, or disruptibility of a solution:

let(a;) — eet(a;)

NUMchanges (ai) Aal)

N
1
dsrp = N ; Praisr(a;) x (2)

where Prgs.-(a;) is the probability that a disruption occurs during the exe-
cution of the activity a;. The value let(a;) — eet(a;) represents the temporal
flexibility of each activity a;, i.e., the ability to absorb a change in the execu-
tion phase. The probability is considered because the flexibility of each activity
gives a different contribution to the solution quality according to the possibility
that a disruption can occur, or not, during its execution. Through the function
NUMchanges (@i, Aq,) the number of entailed changes given a right shift A,, of the
activity a; is computed. In Sect. 6.1 both the probability distribution, Prg;s-(a;),
and the right shift, A,,, used in the empirical evaluation are described.

The intuition behind this parameter consists of considering the trade-off be-
tween the flexibility of each activity, let(a;) —eet(a;), and the number of changes
implied, numchanges(@i, Aq;). The latter can be seen as the price to pay for the

flexibility of each activity.

3 A Precedence Constraint Posting Framework

The goal of the paper is to evaluate the ability to find flexible solutions using
two different methods to estimate the resource needs at each instant: the earliest
start time profile [1] and the resource envelope [6]. For performing such a com-
parison we will use each to guide the search within a profile-based scheduling
framework. Within this framework, a resource feasible solution is produced by
progressively detecting time periods where resource demand is higher than re-
source capacity and posting sequencing constraints between competing activities
to reduce demand and eliminate capacity conflicts. There are different ways of
representing and maintaining profile information. We will compare the extreme
ones: the resource envelope, which maintains all possible solutions, and the ear-
liest start time approach, which considers a single solution. In the latter case, as

3 Named rb, robustness, in [1].

42

kb11
42

PCP-greedy(Problem)
Input: A problem
Output: A conflict-free solution
1. CurrentSituation < Problem
if Exists-Unresolvable-Conflict(CurrentSituation)
return NIL
else
ConflictSet «— Select-Conflict-Set(CurrentSituation)
if ConflictSet = ()
return CurrentSituation
else
constraint «—Select-Leveling-Constraint(Con flictSet)
Add-Constraint(CurrentSituation, constraint)
PCP-greedy(CurrentSituation)

HE 00N SO A NN

(=)

Fig. 1. Conflict-free Algorithm

it finds a single solution, a robust solution will be built as a two step process of
finding a fixed-time solution and then generalizing from it as current constraints
will permit.

The framework is based on a constraint satisfaction model of scheduling
problems in which each activity a; is represented by two events, the start time
Sa; and the end time e,,. There are two aspects to take into account: the time
and the resource constraints. The former introduces a set of constraints that
represent either the duration of the activity, dur;’fm < eq; — Sq; < durgi®®, or
the relation between a pair of activities, CZ”” < Sa; — Sa; < %", Representing
the resources requires taking into account the usage of each resource r; by the
different activities. This is done by associating a resource usage value at each
event, ru;,(tp). This allows the representation of different kind of activities: for
instance, for an activity a; that uses ru;; capacity units it will be sufficient to
set ruk (stq;) = rug, and ru;g(ety,) = —ru;,. According to previous models the
resource constraint for a resource ry is defined as prjgt ruik(tp;) < capy for
each instant t.

Fig. 1 shows the conflict removal procedure. Given a problem, in terms of
a partial ordered plan, the first step consists of building an estimate of the re-
source levels needed (lines 2-5). This analysis can highlight an infeasible current
situation, where resource needs are greater then the availability: contention peak
(line 6). For solving such a case, a new precedence constraint is synthesized
and added to the problem (lines 9-11). What is needed to configure a complete
search procedure are mechanisms and heuristics for recognizing, prioritizing and
resolving conflicts. These strategies derive from those first introduced in [11] and
extended to the cumulative resource case in [1]. A conflict is defined to be any
pair (a;,a;) of activities in a given contention peak. Four possible conditions
can held between the two activities according to the maximum distance, d(),
between two events:

condition 1 : d(e,;,5.;,) < 0Ad(eq,,5q4,) < 0. In this case there is no way to
order the activities. This is identified as a pairwise unresolvable conflict.

43

kb11
43

condition 2 : d(eq,,54;) < 0 Ad(eq;,5q;) > 0 Ad(54;,€q;) > 0. There is only
one feasible ordering the two activities a;{be fore}a;.

condition 3 :d(eq4,, 54;) > 0Ad(eq;, Sq;) < OAd(Sq,, €q;) > 0. Like the previous
one this is also a pairwise uniquely resolvable conflict. In this case the relation
is a;{before}a;.

condition 4 : d(eq;,Sq4;) > 0 A d(eq;,54,) > 0. In this case we have a pair-
wise resolvable conflict. Both orderings a,{before}a; and aj{before}a, are
feasible and a choice is needed.

The previous conditions are used for implementing the following functions uti-
lized in the general schema introduced in Fig. 1:

Exists-Unresolvable-Conflict (CurrentSituation). This procedure identifies
whether the current situation is infeasible, by propagating the constraints
defined in the problem. It detects a contention peak where for each pair of
activities condition 1 holds.

Select-Conflict-Set (CurrentSituation). This procedure selects a pair (a;, a;)
of activities within a resolvable peak. Two cases are distinguished. When one
or more pairwise conflicts satisfy conditions 2 or 3 then the conflict with the
minimum (and negative) value wyes(as, a;) = min{d(eq,, Sq,), d(€a,, 5q,)} is
selected. Alternatively, if condition 4 holds, then is selected the pairwise
conflict (a;,a;) that minimize the value

(eai) Sa]‘) d(eaj 9 Sai)

Vs Vs

Wres (@i, a;) = min{d }

min{d(eq, 1Sa)7d(euj 1Sa;)}

max{d(eq, 1Sa),d(eaj 1Sa;)}’

Select-Leveling-Constraint (Con flictSet). This procedure returns the order-
ing constraint that leaves the most temporal flexibility: a; < a; whether
d(€a;»5a;) > d(ea;,5q,) and a; > a; otherwise.

where S =

As the reader can see, decisions are taken according to a least commitment
principle, trying to retain the maximum amount of temporal flexibility. For that
reason the values of the distances d(eq,, S4,) and d(eq,;, sq4,) have a key role.

To explore the impact of additional heuristic bias on the effectiveness of
various instantiations of this greedy search algorithm, we also define an enhanced
Select-Conflict-Set procedure which incorporates a further heursitic estimator.
Specifically, we add a method for analyzing conflict sets with the aim of avoiding
redundant constraints, through identification of Minimal Critical Sets [7]. A
Minimal Critical Set, MCS, is a set of activities that simultaneously requires a
resource r; with a combined capacity requirement greater than its capacity c;
and the requirement of any subset is lower than, or equals to c¢;. Application
of this method can be seen genrally as a filtering step. It extracts from several
conflict sets those sub-sets of activities that are necessary to solve. In [7] a
heuristic estimator is also provided. Given a MCS and a set of possible ordering
constraints {ocy, ..., oci} which can be posted between pairs of the activities in
MCS the estimator K (MCS) is defined:

1 1
= 3
K(Mmcs) ; 1 4+ commit(oc;) — commit(0Cmin) ®)

44

kb11
44

where commit(oc;) estimates the loss in temporal flexibility as explained in [7].
As a matter of fact the high computational complexity of enumerating all MCSs
prohibits its use on scheduling problems of any interesting size. In [2] two meth-
ods to overcome such a problem are described. They consist of sampling a subset
of the set of all McSs.

Linear sampling. A queue @ is used to select an MCS from a contention peak
P. Activities a; are considered sequentially and inserted in () until the sum
of the resource requirement is greater than the resource availability. Then
the set @ is saved in a list of MCS and the first element in @ is removed. The
previous steps are iterated until there are no more activities.

Quadratic sampling. This is an extension of the previous schema in which the
second step is expanded as follows. Once the correct MCs has been collected,
instead of removing the first element from @ a forward search through the
remaining activities is performed to collect all MCS that can be obtained by
dropping the last item placed in @) and substituting with single subsequent
activities until an MCS is composed.

This heuristic estimator leads to a modified Select-Conflict-Set procedure (line
5 of the algorithm in Figure 1): it chooses the MCs with highest K value. The
conflict resolution heuristic (Select-Leveling-Constraint) simply chooses o¢p i, -

The next sections introduce the two approaches of interest in this paper for
representing and maintaining resource profile information, the resource envelope
approach and the earliest start time approach.

4 The Resource Envelope

The first method considered for guiding the search for reaching flexible solutions
is the resource envelope defined in [6]. This work proved that it is possible to
find “the tightest possible resource-level bound for a flexible plan” through a
polynomial algorithm. The advantage of using the resource envelope is that all
possible temporal allocations are taken into account during the solving process.
Thus, unlike the fixed time approaches, a solution consists of a set of feasible
solutions. In the remainder of this section we briefly review the idea behind the
computation of the resource envelope.

To find the maximum (minimum) value of the resource level in an instant ¢
most methods subdivide the set of time points (events) into the following subsets:

— By: the set of events tp; s.t. let(tp;) < t;
— E;: the set of events tp; s.t. est(tp;) <t < let(tp;);
— A;: the set of events tp; s.t. est(tp;) > t.

Since the events in B; are those which will end before or at time ¢, they all
contribute, with the associated resource usage ru;(tp;), to the value of the
resource profile of 75 in the instant t. By the same argument we can exclude
from such a computation the events in A;. Then the crucial point is to determine
which of those in E; have to be take into account. A basic method consists of
enumerating all the possible combinations of events in E;. This method implies a
high computational cost, and for this reason approximate techniques have been

45

kb11
45

I l_" — i lt L l_zlt

Fig. 2. Chaining method: intuition

developed. In [6], instead, the author proves that to find the subset of E; for
computing the upper (lower) bound, it is possible to avoid such an enumeration.
He shows that a polynomial algorithm can be found, taking the relations among
the events into account through a reduction to a well-known tractable problem:
the Max-Flow Problem. The effectiveness of the reduction is due to the fact
that it allows to underline the relations among the set of the events and to
consider the subset of feasible combinations. The details of the algorithm are
omitted here. We simply recall that the method broadly consists of building a
Max-Flow problem from the set of events belonging to E; and, after the max
flow is found, the subset Py ar € Et (Pmin), of events that gives the maximum
(minimum) value of the resource level at the instant ¢, is computed by collecting
all activities that are reachable from the source in the residual graph of the
Max-Flow problem. We will discuss the approach obtained using the resource
envelope to guide the search (EBA) in Sect. 6.

5 The Earliest Start Time Approach

In [1] it has been shown that use of the earliest start time profile is an effective
way to solve scheduling problems. This profile is based on a temporal net prop-
erty: at each time point (event) ¢p; there is an associated interval of possible
values [lbyp,, uby,,] and the extremes of the interval if chosen as the value for
all time variables tp; identify a solution of the temporal net. In [1] the earliest
start time solution (that is tp; = lby,, for each 7) is considered. The method
(named ESTA) consists of building the resource profile for such a temporal solu-
tion and matching it with the resource bounds. If a violation exists then further
constraints are posted to resolve the resource conflict.

The fundamental difference between the earliest start time approach with
respect to the resource envelope approach is that while the latter gives a mea-
sure of the worst-case hypothesis, the former identifies “real” problems/conflicts
in a particular situation (earliest start time solution). In other words the first
approach says what can happen in such a situation relative to the entire set of
possible solutions, the second one, instead, what will happen in such a particular
case.

As ESTA finds fixed time solutions a method for computing flexible solutions
is needed. In the next section we describe a method for achieving such a feature.

46

kb11
46

Chaining(Problem, Fized-Time Solution)
Input: A problem and an its Fixed-Time solution
Output: A flexible solution

17.
18.

S «— Fized-Time Solution
S* «— Problem
Sort all the activities according to their start time in S
For each activity a;
For each resource r;

k=1
While rug; > 0
If Qjn # 0
(a,t1,t2) < ReadLastElement(Q;)
If estq, > t2
Add (as, estq;, eeta;) to Qjk
Add-Constraint(S™, a{before}a;)
TUi5 = TUq5 — 1
else
Add (as, estq;, eeta;) to Qjk
TUWi; = TUWq5 — 1
k=k+1
Return S*

Fig. 3. Chaining Algorithm

5.1 Producing flexible solutions

In [1] the authors suggest an approach for translating a fixed schedule to a MCM-
SP problem instance into a flexible solution. The MCM-SP problem involves a
set of activities a;, each of them requiring only the use of a single resource for
its entire duration. Given a solution the transforming method, named chaining,
consists of creating sets of chains of activities, one set for each resource. This
operation is accomplished by deleting all previously posted leveling constraints
and using the solution resource profiles to post a new set of constraints. In this
section we generalize that method for problems that involve multi-capacited
resources. This requires a few adjustments:

— a first step is to consider a resource r; with capacity c; as a set R; of n = ¢;

single capacity sub-resources. The idea is to create a similar situation to the
MCM-SP case;

in this light the second step is to ensure that each activity is allocated to
the same subset of ?;. This step can be viewed in Figure 2: on the left there
is the resource profile of a resource r;, each activity is represented with a
different color. The second step consists of maintaining the same subset of
sub-resources for each activity over time. For instance, in the center of Figure
2 the light gray activities is re-drawn in the way that it is always allocated
on the fourth sub-resource;

the last step is to build a chain for each sub resource in R;. On the right of
Figure 2 this step is represented by the added constraints. That explains why
the second step is needed. Indeed if the chain is built taking into account
only the resource profile, there can be a problem with the relation between

47

kb11
47

the light gray activity and the white one. In fact, using the chain building
procedure just described, one should add a constraint between them, but
that will not be sound. The second step allows, indeed, to avoid this problem,
taking into account the different allocation on the set of sub-resources R;.

Figure 3 contains the sketch of a chaining algorithm. It uses a set of queues, @ j,
to represent each capacity unit of the resource r;. The elements of the queues
consists of a triple (a;, est,,, eety,), that is, the activity a; and its start and end
time according to the earliest start time solution S. The algorithm starts by
sorting the set of activities according to their start time in the solution S. Then
it proceeds to allocate the capacity units needed for each activity. It selects only
the capacity units available at the start time of the activity (line 10). Then when
an activity is allocated on a queue a new constraint between this activity and
the previous in the queue is posted (line 12).

The enhanced algorithm obtained by adding the chaining post processing
to the ESTA algorithm has been named ESTA®. Obviously greater CPU-time is
required to use the chaining method, being that it is a post-processing phase.
Furthermore using the chaining method two important features of the ESTA
approach, the number of solved problems and the makespan, are preserved.

6 Experimental Evaluation

In this section we present the results obtained using either the resource enve-
lope or the earliest start time approach embedded in the common framework
introduced in Sect. 3.

For the evaluation we consider the Resource-Constrained Project Scheduling
Problem with Minimum and Maximum time lags (RPCSP /max), which involves
synchronizing the use of a set of renewable resources R = {ry ... 7y} to perform
a set of activities V' = {a; ...ay} over time. The execution of each activity is
subject to the following constraints:

— each activity a; has a duration dur,;, a start time s,, and an end time e,
such that eq; = sq; + durg,;

— each activity a; requires the use of ru;; units of the resource rg.

— a set of temporal constraints ¢, defined for an activities pair (a;,a;) of the
form of ¢*'™ < Sa; = Sa; < Y

— each resource ry has an integer capacity capy > 1;

A solution to a RCPSP/max is any consistent assignment to the start-time of
all the activities in V' which does not violate resource capacity constraints.

The results we will show have been obtained using the benchmarks defined
in [9]. These consist of three sets of 270 instances of different size 10 x 5, 20 x 5
and 30 x 5 where the numbers represent respectively the number of activities and
of resources involved. All algorithms presented in this paper are implemented
in C++ and the CPU times presented in the following tables are obtained on a
Pentium ITI-500 Mhz processor under Windows NT 4.0.

An initial comparison is presented according to the following parameters:
(1) percentage of problems solved from a fixed set, (2) average CPU-time spent
to solve instances of the problem, (3) average makespan and (4) the number

48

kb11
48

size sol. (%) makespan CPU-time(sec.) constraints

10 67.4 55.64 4.211 11.15

20 50.7 92.22 120.4 40.26

30 52.6 130.15 1376.4 87.53
Table 1. EBA

size sol. (%) makespan CPU-time(sec.) constraints

10 97.04 49.1 1.728 7.16
20 95.56 83.5 9.898 21.30
30 95.93 106.1 33.736 38.18

Table 2. ESTAC

of leveling constraints posted to solve the problem. The last gives one estimate
of the kind of flexible solution created (The higher the less desirable). We also
consider the makespan because it gives the quality of the solution in the best
case (no disruptions) possible. Later, in Section 6.1, we analyze the flexibility of
the solutions achieved using each different approach. The parameters introduced
in Sect. 2.1 will be used as a basis for that evaluation.

In Table 1 the results of the resource envelope-based approach without McCs
filtering, EBA, are shown. Comparing these values with those obtained with
ESTA®, Table 2, it can be seen that the EBA approach is actually quite ineffective.
It solves significantly fewer problems than ESTAC in each problem set and incurs
higher CPU times.

A significant drawback of using the resource envelope is its high associated
computational cost. Indeed, the computation of the envelope implies that it is
necessary to solve a Max-Flow problem for each time-point. As indicated in [6],
this leads to an overall complexity of O(n*) which can be reduced to O(n??)
in practical cases. These computational requirements present a formidable bar-
rier to effective application of the resource envelope. In point of fact, use the
resource envelope within a scheduling problem solver requires recomputation of
the envelope at each step of the search.

Comparison with the results obtained with the ESTA® algorithm highlight a
further negative aspect of the EBA approach: EBA consistently adds a larger set
of leveling constraints than ESTAC in generating a solution. In fact, this result
could have been predicted. The ESTAC approach, indeed, posts a set of “implicit”
constraints each time the profile is computed: each activity has to start at its
earliest start-time. These constraints temporarily restrict the solution’s temporal
flexibility (for the purpose of computing resource profiles). This avoids having
to take into account all the possible temporal configurations of the set of the
activities, and it follows that a smaller set of constraints are necessary to order
them.

By adding Mmcs filtering to the EBA search configuration, we obtain a no-
ticeable improvement of the result. Tables 3 and 4 represent respectively the
results obtained using the linear and the quadratic sampling versions of MCS
filtering. The use of MCS linear sampling gives an overall improvement of the ba-

49

kb11
49

size sol. (%) makespan CPU-time(sec.) constraints

10 76.7 54.83 10.29 10.86
20 69.3 99.88 162.95 30.88
30 66.7 132.7 1432.1 62.84

Table 3. EBA + MCS linear sampling

size sol. (%) makespan CPU-time(sec.) constraints

10 96.7 57.71 10.78 12.36
20 86.3 106.05 205.76 34.74
30 81.1 143.76 2101.2 65.74

Table 4. EBA + MCS quadratic sampling

sic approach. Although the results are still worse than the ESTAC case, the MCS
linear gives better values than the simple EBA with respect to all performance
parameters. The use of the quadratic MCS version gives considerable further im-
provement (Table 4) with respect to the number of problems solved, and indeed
the performance along this dimension is closer to that achieved with the ESTA®
approach. This could be predicted from the fact that the quadratic version takes
a larger sample than the linear version from the space of the McS. On the other
hand, EBA with quadratic MCS has a negative impact both the CPU-time and
the number of leveling constraints added. The first aspect follows from use of the
more expensive MCS quadratic sampling procedure in conjunction with the re-
source envelope computation. The second aspect, instead, as suggested above, is
a consequence of the nature of approaches that attempt to retain maximal tem-
poral flexibility. Finally, Tables 5 and 6 present the results obtained using the
two MCs sampling methods in conjunction with the earliest start time approach.
Here we see only slight improvement over the basic ESTAC procedure.

6.1 Flexibility

This section analyzes the flexibility of the solutions obtained using the resource
envelope or the earliest start time profile to guide the algorithm. For each bench-
mark problem set we present the average value. Moreover taking into account
that different sets of problems were solved by each approach we only consider
the subset of problem instances solved by all six approaches. Table 7 presents
the results of the six different approaches according to the parameters described
in Sect. 2.1.

First consider the metric (1), which reflects the degree of “fluidity” of the
generated solutions. The basic EBA approach tends to produce more robust so-
lutions along this dimension when it is able to generate a solution. On the other
hand since EBA is managing the total set of possible solutions, search heuristics
for conflict selection and resolution generally provide less leverage (see Table 1)
than in ESTA and there is greater chance of not finding a solution. Furthermore,
even as the introduction of McCS filtering increases the percentage of problems
solved, it also leads to solutions that on average are less fluid. It thus appears

50

kb11
50

size sol. (%) makespan CPU-time(sec.) constraints

10 98.15 48.55 1.832 3.03
20 96.67 82.97 13.37 11.01
30 97.04 106.35 86.220 22.33

Table 5. ESTA +MCs linear sampling

size sol. (%) makespan CPU-time(sec.) constraints

10 98.15 48.58 1.846 3.03
20 96.30 83.08 14.268 10.91
30 97.41 106.01 125.52 22.38

Table 6. ESTAC +McCs quadratic sampling

that the heuristic bias introduced by Mcs filtering has both positive and nega-
tive aspects, illustrating the difficult challenge associated with injecting heuristic
guidance into the EBA search procedure. This behavior is not observed in the
case of ESTAC: indeed all three algorithms produce solutions with essentially the
same fluidity.

To quantify the impact of possible disruption during the execution of the
schedule, a second metric (2) was introduced in Sect 2.1. In the current evaluation
we consider that the probability that a disruption occurs during the execution of
an activity a; is related to its duration and to the overall duration of the solution
(mk), Praisr(a;) = dzzi . Furthermore for computing the number of changes we
assume the biggest shift A; possible for activity a; in the worst case, that is,

NUMchanges (@i, let(a;) — eet(a;)). Then we can re-write the (2) as:

N
1 dur, let(a;) — eet(a;
dsrp — Z ura, et(a;) — eet(a;) ()
=1

X
mk NUMchanges (@i, let(a;) — eet(a;))

=

Examining the values in the table, we see that along this dimension the ESTA®
approaches dominate the EBA approaches across all problem sets.

Final remarks. Considering the philosophies behind the different approaches
that have been evaluated, one would expect that those that manage the knowl-
edge of all the possible temporal allocations would provide the most effective
basis for generating flexible solutions. As a matter of fact, we have shown a two
step procedure for computing a fixed time schedule and translating it into a flex-
ible solution to be a more effective approach. The first step allows advantage to
be taken of the effectiveness of a fixed time scheduling approach (i.e., makespan
and CPU time minimization), while the second step, has been shown to be ca-
pable of re-instating temporal flexibility in a way that preserves the qualities of
the fixed time solution.

51

kb11
51

fluidity disruptibility

10 20 30 10 20 30
EBA 28.69 31.32 33.35 8.90 12.74 18.21
EBA+MCS linear 27.05 25.78 25.76 8.74 12.18 17.27
EBA+MCS quadratic 25.84 2414 22.35 8.23 12.73 18.57
ESTAC 29.18 29.49 28.09 10.20 16.38 23.80
ESTAY 4+Mcs linear 29.20 29.97 28.45 10.21 16.49 24.90
ESTAC +Mcs quadratic 29.20 30.05 28.06 10.20 15.34 24.31

Table 7. Fluidity & Disruptibility.

7 Conclusion and Future Work

In this paper, we have investigated two approaches for generating schedules that
retain temporal flexibility and possess good robustness properties. Such flexible
solutions promote an ability to react to exogenous events with minimal solu-
tion change and without external assistance. To support assessment of schedules
from this perspective, we first defined measures of solution robustness relating
to fluidity and disruptibility. We then developed two alternative approaches to
constructing a flexible schedule: one based on use of the resource envelope intro-
duced in [6] (named EBA) and the other based on use of the earliest start time
profile [1]. The latter approach also involved the definition of a post processing
method to transform a fixed-times schedule into a flexible schedule (the complete
approach has been named ESTA®). To provide a basis for comparative analysis,
both approaches were formulated within a common framework.

Analyzing initial performance results obtained with both procedures, we
found that EBA was able to solve significantly smaller numbers of problems
than ESTAC at much higher computational cost per solution. To improve EBA’s
performance, we incorporated two approximate methods for generating Minimal
Conflict Sets (Mcs): linear and quadratic sampling. The use of these methods
did increase the number of solutions found but also increased the CPU-time and
the number of leveling constraints posted. And, in all cases, ESTAC continued
to outperform EBA across all performance criteria. In analyzing the robustness
of generated solutions, we found that the basic EBA procedure in fact produced
solutions with greater fluidity when it was able to find a solution. However, as
MCS sampling was incorporated and the number of problems solved increased,
the fluidity of generated solutions simultaneously degraded, below the measured
fluidity of schedules produced by ESTAC. With regard to disruptibility, ESTAC
schedules dominated in all cases. Overall, ESTA® was found to be a much more
effective procedure.

Different aspects of the resource envelope approach and the earliest start time
approach warrant further investigation. The former would benefit considerably
from a more efficient envelope computation, considering that it is called into
play extremely often. In the case of ESTAC the algorithm for translating a fixed
time solution into a flexible solution might be improved through use of more
extended, local search techniques.

52

kb11
52

Acknowledgements

Stephen F. Smith’s work is supported in part by the Department of Defense
Advanced Research Projects Agency (DARPA) and the US Air Force Research
Laboratory under contracts F30602-00-2-0503 and F30602-02-2-0149, and by
the CMU Robotics Institute. Amedeo Cesta, Angelo Oddi and Nicola Poli-
cella’s work is partially supported by ASI (Italian Space Agency) under project
ARISCOM (Contract I/R/215/02). Nicola Policella is currently supported by a
Scholarship from CNR on Information Technology. This work has been devel-
oped during Policella’s visit at the CMU Robotics Institute as a visiting student
scholar. He would like to thank the members of the Intelligent Coordination and
Logistics Laboratory for support and hospitality.

References

1. A. Cesta, A. Oddi, and S. F. Smith. Profile Based Algorithms to Solve Multiple
Capacitated Metric Scheduling Problems. In Proceedings of the 4" International
Conference on Artificial Intelligence Planning Systems AIPS-98, 1998.

2. A. Cesta, A. Oddi, and S. F. Smith. A Constraint-based method for Project
Scheduling with Time Windows. Journal of Heuristic, 2002.

3. A.J. Davenport, C. Gefflot, and J.C. Beck. Slack-based Techniques for Robust
Schedules. In Proceedings of 6! European Conference on Planning, ECP-01, 2001.

4. M. Drummond, J. Bresina, and K. Swanson. Just-in-Case Scheduling. In Proceed-
ings of the 12" National Conference on Artificial Intelligence, AAAI-9), pages
1098-1104. AAAT Press, 1994.

5. M.L. Ginsberg, A.J. Parkes, and A. Roy. Supermodels and Robustness. In Pro-
ceedings of the 15" National Conference on Artificial Intelligence, AAAI-98, pages
334-339. AAAT Press, 1998.

6. N. Muscettola. Computing the Envelope for Stepwise-Constant Resource Alloca-
tions. In Principles and Practice of Constraint Programming, 8" International
Conference, CP 2002, volume 2470 of Lecture Notes in Computer Science, pages
139-154. Springer, 2002.

7. P.Laborie and M. Ghallab. Planning with Sharable Resource Constraints. In
Proceedings of the 14*" International Joint Conference on Artificial Intelligence,
IJCAI-95, pages 1643—-1649, 1995.

8. H. H. El Sakkout and M. G. Wallace. Probe Backtrack Search for Minimal Pertur-
bation in Dynamic Scheduling. Constraints, 5(4), 2000. Special Issue on Industrial
Constraint-Directed Scheduling.

9. C. Schwindt. A Branch and Bound Algorithm for the Resource-Constrained Project
Duration Problem Subject to Temporal Constraints. Technical Report 544, Institut
fur Wirtschaftstheorie und Operations Research, Universit at Karlsruhe, 1998.

10. S. F. Smith. OPIS: A Methodology and Architecture for Reactive Scheduling. In
M. Fox and M. Zweben, editors, Intelligent Scheduling. Morgan Kaufmann, 1994.

11. S. F. Smith and C. Cheng. Slack-based Heuristics for Constraint Satisfactions
Scheduling. In Proceedings of the 11'" National Conference on Artificial Intelli-
gence, AAAI-93, pages 139-144. AAAI Press, 1993.

53

kb11
53

Preferences and Uncertainty
in Simple Temporal Problems

Francesca Rossi', Brent Venable!, and Neil Yorke-Smith?

! University of Padova, Italy {frossi,kvenable}@math.unipd.it
2 I1C-Parc, Imperial College London, UK. nys@icparc.ic.ac.uk

Abstract Simple Temporal Problems (STPs) are a tractable restriction
of the framework of Temporal Constraint Satisfaction Problems. Their
expressiveness has been extended in two ways. First, to account for un-
controllable events — called Simple Temporal Problems with Uncertainty
(STPUs) — and second, to account for soft preferences — called Simple
Temporal Problems with Preferences (STPPs). The motivation for both
extensions is from real-life problems; and indeed such problems may well
necessitate both preferences and uncertainty. To meet this need we define
Simple Temporal Problems with Preferences and Uncertainty (STPPUs).
We extend the notions of controllability to STPPUs, and describe meth-
ods to determine whether these properties hold.

1 Motivation and Background

Research on temporal reasoning, once exposed to the difficulties of real-life prob-
lems, can be found lacking both expressiveness and flexibility. Planning and
scheduling for satellite communication [7], for example, involves not only quan-
titative temporal constraints between events and qualitative temporal ordering
of events, but also soft temporal preferences and contingent events over which
the agent has no control. For example, communication should be avoided dur-
ing manoeuvers, if possible; while communication durations, which depend on
climatic conditions, are not under the agent’s direct control.

To address the lack of expressiveness of hard constraints, preferences can
be added to the framework; to address the lack of flexibility to contingency,
handling of uncertainty can be added. Some real-world problems, however, have
need for both. It is this requirement that motivates us here.

1.1 Temporal Constraint Satisfaction Problems with Preferences

In a temporal constraint problem, variables denote timepoints or intervals, and
constraints represent the possible temporal relations between them. Dechter
et. al. [2] introduced quantitative Temporal CSPs (TCSPs) and the restricted
subclass of Simple Temporal Problems (STPs). In a STP, variables z; represent
timepoints (events) and constraints represent the relations between them. Be-
cause the constraints are restricted to a single interval — they have the form

54

kb11
54

lij < zj —x; < u;; — a STP can be solved in polynomial time. By solved, we
mean that consistency is decided and the minimal network obtained; applying
path consistency suffices for this. In contrast, general TCSPs are NP-complete.

To address the lack of expressiveness in standard STPs, Khatib et. al. [4]
introduced Simple Temporal Problems with Preferences (STPPs), which merge
temporal CSPs with semiring-based soft constraints [1]. Alongside the hard tem-
poral constraints of a STP, soft temporal constraints are specified by means of
a preference function on an interval, f : I — A, where I = [l;;,u;;] and A is a
set of preference values, part of a semiring (4, +, x,0,1).3

In general, solving a STPP is NP-complete. However, by making the fol-
lowing assumptions, solving is polynomial in the number of timepoints: (1) the
preference functions are semi-convex?, (2) the semiring multiplicative operator
is idempotent, and (3) the preferences are totally ordered.

Rossi et. al. [9,8] present two solvers for STPPs. Both find the globally
optimal solution in terms of maximising the minimal local preference values.
The first, Path-solver, enforces path consistency in the constraint network, then
takes the sub-interval on each constraint corresponding to the best preference
level. This gives a standard STP, which is then solved for the first solution by
backtrack-free search. The complexity is polynomial, but the performance can
be poor because a pointwise (discrete) representation is used for the intervals
and the preference functions. The second solver, Chop-solver, is less general but
more efficient. It finds the maximum level a at which the preferences can be
‘chopped’, i.e. the intervals are reduced to the set {z : ¢ € I, f(z) > a} of values
mapped to at least a by the preference functions. This set is a simple interval for
each I, provided the above assumptions hold. Hence we obtain a standard STP,
say STP,. By binary search, the solver finds the maximal « for which STP,, is
consistent. The solutions of this STP are the solutions of the original STPP. A
third solver, that obtains Pareto optimal solutions, is in [3].

1.2 Simple Temporal Problems with Uncertainty

To address the lack of flexibility in execution of standard STPs, Vidal and Fargier
[10] introduced Simple Temporal Problems under Uncertainty (STPUs).

Here, as in a STP, the activities have durations specified by intervals. The
durations fall into two classes, requirement and contingent. The former, as in
a STP, can be decided, but the latter are decided by ‘Nature’ — we have no
control over when the task will end; we just observe it rather than execute it.
The only information known prior to observation is that Nature will respect the
interval on the duration. Durations of contingent links are assumed independent.

3 A semiring is a tuple (4,4, x, 0, 1) such that: A is a set and 0,1 € A; + is commu-
tative, associative and 0 is its unit element; X is associative, distributes over +, 1 is
its unit element and O is its absorbing element. A c¢-semiring is a semiring in which
+ is idempotent, 1 is its absorbing element and x is commutative.

4 A semi-convex function is function with at most one peak: f : I — A is semi-convex
if Va € A the set of elements {z € I|f(z) > o} forms a unique interval.

55

kb11
55

Controllability of a STPU is the analogue of consistency of a STP. Control-
lable means we have a way to execute the timepoints under our control, subject
to all constraints. Three notions are proposed:

— A STPU is strongly controllable if there is a fixed execution strategy that
works in all realisations. (A realisation is a possible outcome of the world,
i.e. in this case, an observation of all contingent timepoints.)

— A STPU is dynamically controllable if there is a online execution strategy
that depends only on observed timepoints in the past and that can always
be extended to a complete schedule whatever may happen in the future.

— A STPU is weakly controllable if there is a viable global execution strategy:
there exists at least one schedule for every realisation.

The three are ordered by their strength: Strong = Dynamic = Weak.
The first requires no knowledge of the realisation, and checking it is in P. Check-
ing the second, surprisingly, is also in P [6]. It is seen as the most realistic
knowledge assumption in many practical cases, since it interleaves scheduling,
observation and execution. The third requires a prior knowledge of the realisa-
tion, and checking it is co-NP complete [10].

In this paper we formally define a class of temporal constraint satisfaction
problems that feature both preferences and uncertainty. For this class of prob-
lems we consider the equivalent of Strong, Weak and Dynamic Controllability.
In particular we extend the notions of controllability and we give algorithms to
check them. We show that adding preferences does not impact on the complex-
ity of checking these types of controllability. We tackle the most difficult case,
Dynamic Controllability with optimal preference levels, by giving a sound but
incomplete algorithm.

2 STPs with Preferences and Uncertainty

Consider a temporal problem which features preferences, hard constraints and
also uncertainty. Neither a STPP nor a STPU is adequate. Therefore we propose
what we will call a Simple Temporal Problems with Preferences and Uncertainty.

An informal definition of a STPPU is a STPP where timepoints are parti-
tioned into two classes, requirement and contingent, as in a STPU. Since some
timepoints are not controllable, the notion of consistency of a STP(P) is replaced
by controllability. Every solution to the STPPU has a global preference value,
as in a STPP, and we seek a solution which maximises this value.

More precisely, we can extend some definitions given for STPPs and STPUs
to fit STPPUs in the following way. Following [10], we say ezecutable timepoints
are those points, b;, whose date is assigned by the agent, while contingent time-
points are those points, e;, whose uncontrollable date is assigned by the external
world; a generic timepoint t; is either an executable or a contingent timepoint.
We say a decision §(b;) is a value assigned to an executable timepoint, while
an observation w(e;) is a value assigned (by Nature) to a contingent timepoint;
an assignment (t;) is a value assigned by either a decision to an executable
timepoint or by an observation to a contingent timepoint.

56

kb11
56

Definition 1. — A soft requirement constraint r;;, on generic timepoints ;
and t;, is a pair (I;;, fi;), where Ijj = [l;;, ui;] such that l;; < v(t;) —v(t;) <
uij, and fi; : I;; = A is a requirement preference function that maps each
element of the interval into an element of the preference set of a semiring;

— A soft contingent constraint g;; is a pmr (ijs f,]) where I,] = [l,],u,]] such
that 1;; < v(t;) — y(t;) < @, and fij : I;; = A is a contingent preference
function.

Although the definitions of soft requirement and contingent constraints are
similar, there is an important semantic difference between them. Preference on
a requirement, constraint is ‘effective’: the agent can act to maximise this pref-
erence. In contrast, preference on a contingent constraint is ‘reflective’: it shows
the agent’s opinion of a value Nature chooses. For instance, while we cannot
control climatic conditions, we do prefer a short communication duration; a soft
contingent constraint reflects this preference.

We can now state formally the definition of a STPPU, combining preferences
from the definition of STPPs with contingency from the definition of STPUs:

Definition 2 (STPPU). A Simple Temporal Problem with Preferences and
Uncertainty (STPPU) is a tuple P = (N, N., L, L., S) where:

— N, is the set of executable timepoints;

— N, is the set of contingent timepoints;

— L, is the set of soft requirement constraints over S;
— L, is the set of soft contingent constraints over S;
S =(A4,4+,x,0,1) is a c-semiring

An example of a simple STPPU is depicted overleaf in Figure 1.

In order to analyse the solutions to a STPPU, we need further preliminary
definitions. We say a requirement duration v;; is any point in interval I;; of
requirement constraint r;;, i.e. v;; = v(¢;) — v(t;); while a contingent dura-
tion w;; is any point in interval fij of contingent constraint g;;, i.e. w;; =
vy(t;) — v(t;). We say a control sequence § of the STPPU is an assignment
of the executable time points § = {§(b1),...,0(by)}. If it is an assignment
to all the executable timepoints, the control sequence is said to be complete,
otherwise partial. Every control sequence is associated with a preference value,
pref(0) = I1,.. 36(6:).6(0;) fis (0(b;) —d(bs)), where] represents the multiplicative
operator of the semiring.

Finally, the space of complete realisations (2 of STPPU is the Cartesian
product of all contingent intervals, i.e. 2 = [l1,4;] X - -+ X [lg,4¢]. For all w €
(2, the projection P, of STPPU P is the STPP obtained replacing in each
soft contingent constraint gi, the interval I, with [wi,wg]. Every realisation is
associated with a preference value, pref(w) = Hg,-j|z|w(ev),w(ej) fij (w(ej) —w(es)).

Definition 3 (Schedule). A schedule T is a complete assignment to all the
timepoints of STPPU P; a schedule identifies an assignment vy or, more pre-
cisely, a control sequence d1 and a realisation wr = {w 1 (we will write T =

57

kb11
57

9 99 9

201 .01

T T N
78 910 11 12 13 14

(W) ~(o)

9 9 9 99

1
345 6 7 010101 01,01 01

0 12 34 5 678910

Figure 1. Example of a triangular STPPU

(07,wr)). Hence a schedule identifies a unique set of requirement durations {%7;}
and it is said to be consistent if Vr;j, fi; ((55) > 0 and Vgi;, fij (wg) > 0. Fvery
schedule is associated with a preference: pref(T') = pref(dr) X pref(wr).

We can now give the first two types of controllability which take into account
both contingency and preferences. The idea is first to ensure contingency is met,
and only second to maximise the preference. Specifically, for each notion of
controllability, the preferences are combined with the contingency in two ways.
In optimal controllability we require a schedule with maximal preference; in «
controllability we require a schedule with preference at least a.

Definition 4 (Optimal Strong Controllability). A STPPU is Optimally
Strongly Controllable iff there exists a control sequence § such that for all w € {2,
T = (6,w) is a consistent schedule for P,,, and pref(T') is optimal (i.e. there is no
other schedule T' consistent with projection P, such that pref(T") > pref(T)).

Definition 5 (a-Strong Controllability). A STPPU is a-Strongly Control-
lable, with o € A, iff there exists a control sequence & such that for all w € (2,
T = (0,w) is a consistent schedule for projection P,,, and pref(T) > a.

Definition 6 (Optimal Weak Controllability). A STPPU is Optimally
Weakly Controllable iff for all w € (2 there exists a control sequence §, such

that T = (d,,,w) is a consistent schedule for projection P,, and pref(T) is opti-
mal for P,.

Definition 7 (a-Weak Controllability). A STPPU is a-Weakly Control-
lable, with o € A, iff for all w € (2 there exists a control sequence &, such that
T = (6,,w) is a consistent schedule for projection P,, and pref(T) > a.

Intuitively, under Optimal Controllability we may obtain substantially dif-
ferent preference values on different constraints; while under a-Controllability
we obtain more uniform values, but potentially far from the optimum for any
constraint. Which notion will be more useful will depend on the problem domain.

58

kb11
58

Before we are ready to define our extensions to Dynamic Controllability, we
need a few further preliminaries. We say the executed control sequence at t of a
complete control sequence d is the partial sequence d<; s C d executed so far at
time ¢, defined by: d<;5 = {0(b;)|0(b;) < t}. Similarly, the observed realisation
at t associated with d-;; and w is the partial realisation w.ts,., C w such
that: war s, = {wij € w|d<4,6(b;) +ws; < t}. Finally, the subspace of complete
realisations compatible with a partial realisation w, is 2, = {w' € 2w, Cw'}.

Definition 8 (Optimal Dynamic Controllability). A STPPU is Optimally
Dynamically Controllable iff for all w € {2 there exists a control sequence & such
that Vt € §,Vw' € $2,_,;., 30', such that (1) 5215 C ', and (2) schedule
T = (§',w') is consistent with P, and (3) pref(T) is optimal.

Definition 9 (a-Dynamic Controllability). A STPPU is a-Dynamically
Controllable iff for all w € {2 there exists a control sequence § such that Vit €
VW' € 2y, ., 30", such that (1) 645 C ', and (2) schedule T' = (&', w'") is
consistent with P, , and (3) pref(T) > a.

In the following sections, we briefly consider Strong and Weak Controllability.
Then, since it is the most interesting case, we consider Dynamic Controllability
in greater detail. In Section 6 we show that ODC is the most involved case.

3 Strong Controllability

In this section we describe algorithms that check, in polynomial time, whether
a STPPU P is Optimally Strongly Controllable (OSC), and whether P is a-
Strongly Controllable (a-SC).

The algorithms we propose rely on two known algorithms. The first of these is
Path-solver [8], which enforces path consistency on a STPP. The second algorithm
is Strong-Controllability [11], which checks if a STPU is Strongly Controllable.
In order to use these algorithms we require the preference functions to be semi-
convex. For convenience, we will also assume that the semiring underlying our
constraint problems is the fuzzy semiring Sposp = {[0, 1], maz, min, 0, 1}; this
assumption is not restrictive [4].

The main idea is to consider P as a STPP, by ignoring the uncertainty, and as
a STPU, by neglecting the preference. More precisely, any STPPU can be treated
as a STPP by ignoring the fact that some constraints are contingent. Let IU
(‘Ignore Uncertainty’) be a function that maps a STPPU P = (N,, N, L,., L., S)
into STPP IU(P) = (I, f), where the set of intervals I is the set of all the
intervals of soft constraints in L, and L., and preference function f : I — A
acts on each interval as the preference function of the soft constraint in P [8].

3.1 Optimal Strong Controllability

For checking SC, since we are not interested in obtaining an actual solution,
we only need apply the first part of Path-solver. We will call this sub-algorithm

59

kb11
59

Soft-PC-2; it takes a STPP and enforces path consistency. As a result, it squeezes
some intervals and lowers some preference functions. All the preference functions
reach the same maximum preference level, which we will call opt.

Soft-PC-2 returns a STPP that has interesting features. First, the intervals
consist of a minimal STP (i.e. a problem containing only points that appear in at
least one solution). Second, the sub-STP consisting of the sub-intervals mapped
by the preference functions into opt is minimal as well, and all its solutions
are optimal solutions of the original STPP. We will use these properties when
considering dynamic controllability.

We name P,,; the STPU obtained by considering the sub-intervals mapped
into opt on all the requirement constraints after Soft-PC-2, and the original
intervals on all the contingent constraints. The semi-convexity of the preference
functions guarantees that P,,; is a STPU and not a TCSPU. We will call OPT
the procedure that, given as input a path consistent STPP, returns a STPU with
the structure we have just described.

If any contingent constraint is squeezed when enforcing path consistency, we
can conclude that the problem is not pseudo-controllable [5], and hence not SC.
Further, the following theorem allows us to conclude that it cannot be OSC. All
proofs have been omitted for lack of space.

Theorem 1. If a STPPU P is OSC, then the STPU obtained by simply neglect-
ing preference functions on all the constraints is SC. However, the converse in
general is false.

To summarise, the algorithm we propose for checking Optimal Strong Con-
trollability of a STPPU P first applies Soft-PC-2 to IU(P). If any contingent
interval is squeezed during the process then the algorithm stops since the prob-
lem cannot be OSC. Otherwise it extracts Py from path consistent IU(P), and
runs Strong-Controllability on P,,;. We call the method Path-OSC. The following
result guarantees that the algorithm is both sound and complete:

Theorem 2. STPPU P, with semi-convex preference functions, is OSC iff the
corresponding STPU P,y is SC.

Path-OSC has polynomial time complexity. The complexity of Soft-PC-2 is
the same as Path-solver: O(n® x R x [), where n = |N,| + |N.|, R is the maxi-
mum range of an interval, and [is the number of preference levels. Procedures
IU and OPT are linear in the total number of constraints, which is O(n?).
Strong-Controllability has the same complexity as PC-2: i.e. O(n® x R). Hence
Path-OSC has total complexity of O(n® x R x). Note that this is in line with re-
sults on STPUs [11]. In fact, just like SC for STPUs, the complexity of checking
OSC of a STPPU has the same complexity as enforcing path consistency.

It is worth noting that another possibility is to combine Strong-Controllability
with Chop-solver [8] rather than Path-solver. This gives a similar algorithm to
Path-OSC. It has the same complexity, but in practice may exhibit better per-
formance, since Chop-solver has better practical performance than Path-solver.

60

kb11
60

3.2 «a-Strong Controllability

We now tackle the problem of verifying whether a STPPU P is a-SC or not. It
may seem that OSC is equivalent to opt-SC (i.e. a-SC with @ = opt, where opt
is the maximum preference level at which Chop-solver finds a consistent STP).
However this is not the case. OSC means that there exists a control sequence
that, when completed with a realisation, is optimal for the projection corre-
sponding to that realisation. a-SC, however, imposes that the completed control
sequence must have a preference at least o on all the projections. Nonetheless,
the analogue of Theorem 1 does hold:

Theorem 3. If a STPPU P is a-SC, then the STPU obtained by neglecting
preference functions on all the constraints is SC. However, the converse in gen-
eral is false.

We observe that no STPPU can ever be a-consistent for any a > a* =
mingj|gg,. fij (wij). To see this, suppose w is a realisation in which some constraint
has preference smaller than «. Then a projection corresponding to w has only
solutions with preference strictly less than a.

With this observation, it is possible to put a-SC of an STPPU P in one-to-one
correspondence to the SC of a related STPU P®. P¢ is the problem obtained
chopping the preference functions of P at level « (ignoring the uncertainty).
Since a < o™, contingent constraints maintain their intervals after the chop.

Theorem 4. STPPU P is a-SC iff the corresponding STPU P is SC.

To summarise, to check a-SC we propose two steps. Chop IU(P) at level
a; then restore information about contingent links, giving P%, and on P® run
Strong-Controllability. We call the method Chop-a-SC; its complexity is O(n3 x R).

A final query to answer is: what is the highest level a at which P is a-SC?
(Note that in general a <« opt.) We propose a binary search algorithm very
similar to Chop-solver: the only modification is to replace, at every chop level,
PC-2 with Strong-Controllability. We call the method Max-a-SC; its complexity
is O(p x n® x R), where p is proportional to the search precision required.

4 Weak Controllability

We will now consider the impact of adding preferences to the issue of Weak
Controllability. The following theorem states that Optimal Weak Controllability
(OWC) and WC are related in the opposite way to OSC and SC:

Theorem 5. A STPPU P is OWC if the STPU obtained by neglecting prefer-
ence functions on all the constraints is WC. The converse in general is false.

The converse fails in general because we must take into account the possibility
of mapping some elements of the intervals into 0. However if all the elements are
mapped into strictly positive preferences, then the converse does hold.

61

kb11
61

Theorem 5 allows us to conclude that to check OWC, it is enough to apply
algorithm Weak-Controllability proposed in [11].

To check a-WC we have two different approaches. The first approach is to
chop the STPPU at level a and then to apply Weak-Controllability to the STPU
obtained. The second possibility is to use the fact that a STPU is WC iff all
the projections P, with w € {il,ﬁl} X e X {Zh,ﬁh}, where h is the number of
contingent constraints, are consistent STPs [11]. Using this, the second approach
is to chop each projection P,, at level a and then to check the consistency of the
derived STP. The complexity of both algorithms is exponential in the number
of contingent constraints h: O(2" x n® x R).

5 «a-Dynamic Controllability

Our approach to Dynamic Controllability will be the same as in the last two
sections. We reduce the STPPU to chosen STPPs and STPUs, in order to lever-
age existing algorithms. We begin with a-DC because it shares more in common
with the previous cases than does ODC.

As before, we first consider checking a-DC of a STPPU P, and then (if the
property holds) consider finding the maximum « at which P is a-DC. We start
with the analogue of Theorem 3:

Theorem 6. If a STPPU P is a-DC, then the STPU obtained by neglecting
preference functions on all the constraints is DC. However, the converse in gen-
eral is false.

Similar to SC, we can put a-DC of a STPPU P in one-to-one correspondence
to DC of a related STPU P. Recall that P is the problem obtained chopping
P at level a, then restoring the contingency information. Again, if a < a* =
min;j3,,. fij (wij), contingent links will maintain their intervals after the chop.

Theorem 7. STPPU P is a-DC iff the corresponding STPU P® is DC.

Hence we can define an algorithm Chop-a-DC, similar to Chop-a-SC. Check-
ing DC of the STPU involved in this algorithm, however, is more complicated
than checking SC was; we use the polynomial 3DC+ algorithm proposed in [6].

Secondly, to determine the highest level a at which P is a-DC, we proceed
similarly to a-SC. The resulting algorithm Max-a-DC performs a binary search
for the highest level « at which the problem is a-DC; as before, its complexity
is polynomial in the size of the problem and the required precision.

6 Optimal Dynamic Controllability

In this and the next section we consider how to check if a STPPU is Optimally
Dynamically Controllable. Our first step is to examine ODC of triangular STP-
PUs in which only one constraint is contingent, the simplest situation. We refer
to the generic example of a triangular STPPU shown in Figure 2.

62

kb11
62

Figure 2. Triangular STPPU. Link AC is contingent.

We will consider networks to which Soft-PC-2 has been applied. As in the
STPU case, we want to find (if any) the additional tightenings of the bounds
of the intervals that must be obeyed by any optimal solution resulting from a
dynamic strategy. But we also want to consider any changes in the preferences
levels. Following [6], we will consider three cases involving the signs of the bounds
[u,v] of the BC' constraint. For any variable X, we will write T'x to denote the
time at which event X occurs.

6.1 Follow Case

If v < 0 then we are in the Follow Case: B will always follow C. This means
when the agent must decide at what time B should occur, it will already know
that C' has occurred at time T, and it will know what preference is associated
with T —T4 on constraint AC'. The Follow case is thus the simplest of the three;
the following theorem shows that path consistency suffices to decide ODC.

Theorem 8. Consider a triangular STPPU P, with interval [u,v], v < 0, on
the BC' constraint. If P is path consistent then it is ODC.

To ease execution, after checking controllability in general, we benefit if the
checking algorithm returns a minimal network. Recall that minimality holds if
only those elements belonging to at least one optimal solution are retained. In
the Follow case, as in the two following, we will present procedures that, when
applied to an ODC network, reduce it to its minimal form.

To obtain minimality in the Follow case, we perform a binary search for
the highest level, a4, at which chopping constraints AB and BC does not
squeeze the contingent interval [z, y]. We denote this procedure by BS(amaz, P).
Note that the binary search can start at level ayin = mingg(y 4 fAc(t), i.e. the
minimum preference assigned to any of the elements of the contingent interval.?

Theorem 9. P’ is minimal, unless some constraint has an empty interval.

5 This holds since no elements mapped in a preference strictly less than @y, corre-
spond to an optimal solution.

63

kb11
63

To summarise, in the Follow case we can reduce [p, ¢] and [u,v] to [p’, ¢'] and
[u’,v'] such that Vi1 € [p',¢'] and ¢2 € [v/,v'], faB(t1) > Qmas and fec(t2) >
Qmaz a0d Qpaz > Qmin, obtaining STPPU P’.

6.2 Precede Case

If w > 0 then we are in the Precede Case: B occurs before or simultaneously
with C. In [6] it is shown that interval [p, q] can be shrunk to [y — v,z — u], and
that if the STPU network is still pseudo-controllable then it is safe, and so DC.

Let us consider ™% = maxX;e[y—y,—u] fap(t). All the elements of [y—v, z—u]
that are mapped into ™% satisfy the two following requirements: (1) each
element is consistent with all the possible assignments to C, and (2) among the
elements that have this property they are those with highest preference. We thus
reduce [p, q] to [p, ¢'] such that Vt € [p, '], fap(t) = ™.

After this reduction we must reapply Soft-PC-2 to see if any of the preferences
on contingent link AC' are lowered. If so, it means that the optimal solutions of
the corresponding projections have been left out by the reduction. This in turn
means that for such projections it is not possible to guarantee ODC.

The above reduction however is not enough to guarantee completeness of our
algorithm for checking ODC: some elements belonging to [p, ¢'] might extend
an observation on AC' to an element on BC' that has a lower preference. For
example, consider the STPPU shown earlier in Figure 1, where y — v = 4 and
x —u = 7 on the AB interval. Value fpmq,; = 0.9 and interval [p',q'] = [4,7].
However if the agent chooses a time for B that identifies point 6 on the AB
interval, this will not be an optimal choice if the observation on AC is 11, since
point 5 (= 11 — 6) on the BC interval has a very low preference (0.01).

In general, since the agent must choose a time, T, for B before C' occurs,
when it chooses it must be sure, whatever time, T, Nature will assign to C,
that T is consistent with 7o and is optimal. In our terms this means that
faB(Te —Ta) > fac(Tc —Ta) and fpe(Tc —Tg) > fac(Te — Ta).

Thus, to guarantee ODC, we might have to reduce further the interval [p', ¢']
on the AB constraint. Consider any preference «, assigned to some element,
of interval [z,y] on the AC constraint. For each a we can consider the STP
obtained by chopping the problem at level o (note that we chop the contingent
link as well). After running path consistency we obtain intervals [z4,yo] on AC
and [uq,v,] on BC. We then define [py, ¢o] = [Ya — Va, Ta — ta]- Each interval
[Pas ¢a] contains the elements of AB that: (1) are consistent with all the elements
of AC mapped into preferences at least «, and (2) in correspondence with any
such elements on AC, identify an element on BC' that has a preference at least
a. Finally, we reduce AB to the intersection of the [pa, o] intervals, i.e. to the
interval: [p", 4" = Ny atefe), fac (n)=alPas al-

We denote this procedure applied to our STPPU P with M (P). The new
interval [p”,q"], found applying by M, will contain elements that are consis-
tent with any element ¢ of interval [z,y]. Moreover Vt' € [p",q"], Vt € [z,y],
fa(t") > fac(t) and fpc(t —t") > fac(t). Hence the agent may choose any

64

kb11
64

interval on AC

interval on AB

interval on BC
u v

Figure 3. Intervals of the constraints in a triangular STPPU, Unordered case

points in [p”,¢"]: whatever realisation will be observed in the future on AC,
consistency and optimality are guaranteed. In the example shown in Figure 1,
[p"”,q"] = [7,7]; thus the network is ODC. On the other hand, if interval [p”, ¢"] is
empty we can conclude that the network is not ODC. Notice how this reduction
applied to an ODC triangular STPPU gives the minimal network.

To summarise, in the Precede case we first shrink [p, ¢] to the sub-interval
[p', ¢'], containing only elements mapped to £™** and belonging to sub-interval
[y — v,z — u]. Then we reapply Soft-PC-2. If the propagation of the reductions
cause any change on the AC' constraint, we conclude that the triangular network
is not ODC. Otherwise we reduce [p', ¢'] to [p", ¢"] by applying M (P).

6.3 Unordered Case

If u < 0 and v > 0 then we are in the Unordered Case: B may or may not follow
C. In [6] it is shown that B must wait until either C' occurs or y — v instants
pass after A; this wait is denoted by (C,y — v). In a STPPU, where there are
preferences, the agent must try to choose B maximising preferences on AB. The
intervals of the three constraints are shown in Figure 3.

From the analysis of the hard constraint case in [6], we know that no element
belonging to [y — v,y] on the AC interval can be in the same solution as an
element from [p,y — v[on the AB constraint.5 This means that for an optimal
dynamic strategy to be feasible, running path consistency on STP @i, obtained
considering interval [y —v, y] on the AC constraint, [y—wv, g] on the AB constraint
and [u,v] on the BC constraint, and the restriction of the preference functions
on these intervals, must not lower any preference on the AC' constraint. If this
first test fails then we can conclude that the triangular STPPU is not ODC.

The next step, if Soft-PC-2 does not change any preference on AC), is to look
for those values on AB that are optimal and consistent for each projection. We
will do this applying procedure M, as defined above, to Q1. We, thus, find an

5 With notation [a, b[we are considering the continuous representation; in the discrete
case we will write [a,b — 1].

65

kb11
65

interval [p”, ¢"] C [y —v,q] on AB. As before, if [p”, ¢"] is empty we can conclude
that the network is not ODC. If [p”, ¢"] is non-empty we can lower the upper
bound on AB from q to ¢, and, consequently, raise if needed the lower bound
on BC from z to x — ¢".

At this point, we see that in a dynamic strategy, B will have to wait either
for C' to occur or for p"” > y — v after A. This implies that if we consider the
sub-interval [z,p"[on AC' and [p, "] on AB then the only possibility is for B
to occur after C, just as in the Follow case. This means that running Soft-PC-2
on STP @ with sub-interval [z, p"[on AC and [p,¢"] on AB, and [u,0] on BC,
and the preference functions restricted to these intervals, should not lower any
preference on the AC'. If running Soft-PC-2 does produce any change on AC, the
network is not ODC; otherwise we can conclude the triangular network is ODC,
provided the (C,p") wait on AB is satisfied.

In order to have also minimality of the network, a further step is necessary.
Again like in the Follow case, we must search for the a,,, level in @2, discarding
all elements that do not appear in any optimal solution. Running procedure
BS(amaz, @2) might shrink intervals [p, ¢""] on AB to [p2, g2]. We raise the lower
bound on AB to ps, while leaving the upper bound at ¢''. We can consistently
lower, if needed, the upper bound on AB to y — p».

ODC-UNORDERED(triangular STPPU P)
1 STPP J «+ IU(P)
2 SorT-PC-2(Q4)
3 if AC is unchanged
4 then [p”,q¢"] «+ M(Q1)
5 if [pll’ qll] # @
6 then ubsp < ¢",lbpc <~ v —¢"
7 SOFT-PC-2(Q2)
8 if AC is unchanged

9 then [p27 q2] — BS(amam Q2)
10 lbaB < p2,ubpc <y — D2
11 IMPOSE-WAIT((C, p""))

12 return STPPU J

Algorithm ODC-Unordered returns false if the network is not ODC; otherwise
it returns the minimal network, as proved in the following theorem.

Theorem 10. STPPU J, returned by algorithm ODC-Unordered, is minimal.

To summarise, if the network passes all the tests, at the end we have the
original unchanged constraint on AC, the new interval [pas, "] for AB with its
original preference function restricted to this interval, and the new interval [y —
2,z — "] for BC' with the corresponding preference function. We also have a
wait of (C,p") on the AB constraint.

The wait means that, as in STPUs, the Unordered case is disjunctive: B must
wait for C to occur or for p" after A. Of course, if z > p’' then the wait will

66

kb11
66

always expire before C' can occur. The lower bound of AB can be raised to p”; the
disjunction is resolved. Consistently with [6] we will call this the unconditional
Unordered reduction. Whether or not x > p”, observe that the lower bound of
AB can be raised to = as in the general Unordered reduction [6].

Finally, then, we come to the true conditional case, when z < p'. First, if C
occurs before p” instants after A, we must take into account sub-problem (2. The
fact that running Soft-PC-2 on ()2 produced no changes on AC guarantees that
there is a consistent and optimal choice for B. Second, if instead C occurs later
than p after A, the fact that running Soft-PC-2 on)1 produced no changes on
AC guarantees that there is a consistent and optimal choice for B. In particular,
if To > Ta+p", then B can occur at any point between p” and ¢" after A, with
no restriction on whether it should follow or precede C.

We conclude that in the conditional Unordered case there is no way a pri-
ori to know which branch of the disjunction will hold; the wait is required. The
straightforward method to resolve a wait is to branch on the two disjuncts. How-
ever, this will lead to a search of exponential complexity in a general network.”

7 Optimal Dynamic Controllability of General STPPUs

The reductions we have proposed give a procedure for checking ODC of triangu-
lar STPPUs. We have seen that, as in the case of hard constraints, the Unordered
case may be solved by branching. However, we can consider just the uncondi-
tional reductions we have proposed and extend naturally algorithm 3DC [6] to
30DCP (for 8-Optimal Dynamic Controllability with Preferences).

In 30DCP, for a general STPPU, we enforce the reductions explained above
on all triangles that contain at least one contingent link. Triangles containing
two contingent constraints are considered twice, with one link considered con-
tingent and the other requirement, in turn.® The changes, on both preferences
and interval ranges, are propagated to neighbouring triangles, until quiescence.

Just like 3DC, 30DCP is sound but incomplete, i.e. if it fails then the STPPU
P isnot ODC, but it may succeed when P is not ODC. The example in [6] serves
as proof of incompleteness also for 30DCP, since any STPU can be mapped into
an equivalent STPPU by adding to each constraint the constant 1 as preference
function. Indeed, 30DCP will fail whenever 3DC would have failed on the corre-
sponding STPU obtained stripping the preference functions; but it will fail also
due to changes on the preferences. There are two events regarding preferences
that allow us to conclude that the entire STPPU is not ODC: the first event is
the lowering of the preference of an element originally mapped to opt; the sec-
ond event is the lowering of a preference a, at any level on any contingent link,
associated with an element that appears in a solution with global preference at
least . Like 3DC, it can be proved that the complexity of 30DCP is polynomial,
but that it does not necessarily compute the minimal network.

" For general STPUs, 3DC+ ensures completeness by performing constraint propaga-
tion on waits, avoiding exponential search. This is future work for STPPUs.
8 For technical reasons, triangles with three contingent links are prohibited [5].

67

kb11
67

8 Future Work

Temporal constraint problems in the real-world feature both preferences and
uncertainty. In this paper we have introduced the STPPU and defined three
levels of controllability. We have provided algorithms to determine whether the
different levels hold, and shown that the complexity of checking controllability in
a STPPU is the same as that for the equivalent notion in a STPU. In particular,
the key notion of dynamic controllability can be tractably extended to account
for preferences. We are currently working on the implementation and testing of
the algorithms.

We plan to develop a complete algorithm (the analogue of 3DC+) for checking
ODC in a STPPU, and then an algorithm for executing such a STPPU in a
consistent, optimally dynamically controllable way. We are also investigating
the use of probabilities over contingent, constraints and their combination with
preferences and uncertainty.

Acknowledgements. We thank Robert Morris and Carmen Gervet for discussions
on STPPUs, and the reviewers for their constructive comments. The last author is
partially supported by the EPSRC under grant GR/N64373/01.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and
optimization. Journal of the ACM, 44(2):201-236, 1997.

2. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49:61-95, 1991.

3. L. Khatib, P. Morris, R. Morris, and K. B. Venable. Tractable Pareto optimization
of temporal problems. In Proc. of IJCAI’03, pages 1289-1294, 2003.

4. L. Khatib, P. Morris, R. A. Morris, and F. Rossi. Temporal constraint reasoning
with preferences. In Proc. of IJCAI’01, pages 322—-327, 2001.

5. P. Morris and N. Muscettola. Execution of temporal plans with uncertainty. In
Proc. of AAAI-2000, pages 491-496, 2000.

6. P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal
uncertainty. In Proc. of IJCAI’01, pages 494-502, 2001.

7. C. Plaunt, A. Jénsson, and J. Frank. Run-time satellite telecommunications call
handling as dynamic constraint satisfaction. In Proc. of the 20th IEEE Aerospace
Conference, 1999.

8. F. Rossi, A. Sperduti, K. B. Venable, L. Khatib, P. Morris, and R. A. Morris.
Learning and solving soft temporal constraints: An experimental study. In Proc.
of CP’02, pages 249-263, 2002.

9. F. Rossi, K. B. Venable, L. Khatib, P. Morris, and R. Morris. Two solvers for
tractable temporal constraints with preferences. In Proc. of AAAI-02 Workshop
on Preference in AI and CP, 2002.

10. T. Vidal and H. Fargier. Handling contingency in temporal constraint networks:
From consistency to controllabilities. Journal of Experimental and Theoretical
Artificial Intelligence, 11(1):23-45, 1999.

11. T. Vidal and M. Ghallab. Dealing with uncertain durations in temporal constraint
networks dedicated to planning. In Proc. of ECAI-96, pages 48-52, 1996.

68

kb11
68

