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Abstract The constraint programming paradigm has proved to have
the flexibility and efficiency necessary to treat well-defined large-scale
optimisation (LSCO) problems. Many real world problems, however, are
ill-defined, incomplete, or have uncertain data. Research on ill-defined
LSCO problems has centred on modelling the uncertainties by approx-
imating the state of the real world, with no guarantee as a result that
the actual problem is being solved. We focus here on ill-defined data,
motivated by problems from energy trading and computer network opti-
misation, where no probability distribution is known or can be usefully
obtained. We suggest a non-probabilistic certainty closure approach to
model the data uncertainty, discuss the formalism and semantics required
to build a constraint solving system based on such a computation do-
main, and give examples in the case of linear systems.

1 Introduction

Uncertainty can arise from many sources. In the real world, we find dynamic
environments, over-constrained problems, and partial or incomplete data. The
difficulties of a large-scale combinatorial optimisation (LSCO) problem are cor-
respondingly greater when the problem is ill-defined.

Four factors characterise an optimisation problem and uncertainty may fea-
ture in any of them: the input (or data), the constraints, the decision criteria,
and consequently, the output (or solution). Some aspects have been examined
in the literature:

— dynamic environments [1,2]: new/changing constraints, anticipated change
— over-constrained problems [3,4]: hard and soft constraints, decision criteria
— probabilistic models and data [5,6]: incomplete or inconsistent information

The constraint programming (CP) paradigm has been extended to address
the first two of these areas, whereas the third has been more traditionally the
realm of operational research (OR). Interest in uncertainty within CP has been
growing recently [7,8], but there has remained little work on data uncertainty.

Gervet et al. [9] describe a speculative constraint optimisation project in en-
ergy trading. Due to pending market deregulation and in conjunction with other
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ill-defined problem elements, there was no reasonable probability distribution
that could be forecast for the data parameters. Instead, an iterative prototyping
approach using simulation was employed.

In network management, by contrast, all the data may be available in theory
but may be too costly and voluminous to collect in practice. Moreover, the data
(such as traffic flow through a router) fluctuates constantly, and to sample at
all points at one instant would be prohibitive; the data may be expected to
be inconsistent by the time it is collected. It is of commercial interest to make
decisions to optimise the network [10]!, but we must do so based on incomplete
and inconsistent information for which no stochastic description is apparent.

These motivating problems from the real world exemplify that we potentially
face dynamic, non-deterministic data where, harder still, no stochastic charac-
terisation is available. It is clearly inadequate to address this situation in CP
either by ignoring the uncertain data or by assuming the deterministic case.

The experience of traditional OR helps little, on the whole. The approach
to uncertain data [11] has been largely to reduce to the deterministic case and
perform simulation, or to attach a probability distribution, perhaps derived by
forecasting from past data, and consider risk and utility factors. In robust optimi-
sation, for instance, variance measures or expected utilities are used; in stochastic
optimisation, penalties based on expected feasibility of scenarios. In fuzzy pro-
gramming [12], constraints (and hence data) and goals are modelled as fuzzy
sets, but now the set membership functions are assumed known.

All of these approaches rely on a priori knowledge, or empirical estimation, of
a probability distribution for the data or of some other stochastic description of
it. Further, rationality of the decision maker is assumed. Not in every situation,
as we have seen, are these requirements meaningful or even feasible.

The need for a robust, non-probabilistic alternative has been recognised in
OR [13]. As Hoffman writes, “We hope that future research will also address [in
addition to incorporating risk] the issue of how to incorporate ... data for which
even the mean value is not known and for which one only has range estimates
of its value.” [11]

In the following sections, we shall speak of uncertainty to mean data uncer-
tainty. We introduce the concept of the certainty closure and apply the method-
ology to a case study arising from our motivational problems. We then place the
work in a wider context and anticipate future steps.

2 The Certainty Closure

We give a definition of the certainty closure and introduce the semantic and al-
gorithmic concerns that follow for data uncertainty in constraint programming.
The idea is to enclose the uncertainty and so be able to solve an ill-defined prob-
lem without approximation via some mathematical model. Thus we guarantee
that the true problem is solved and that the solutions found are robust.
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Data uncertainty is reflected as uncertainty in the coefficients of the con-
straints: what were constant coefficients have become uncertain in value. We
suppose that all the constraints are hard and static; such issues have been con-
sidered elsewhere (e.g., [3]). An introduction to CP may be found in [14].

Definition 1. An uncertain constraint satisfaction problem (V,D,C;U) is a
standard CSP in which the coefficients in the constraints C may range, not nec-
essarily independently, over an uncertainty set U.

It is unknown which values in the uncertainty set the data might take, but
it is necessary in every case that no solution to the resulting constraints be
excluded. This motivates the definition of the certainty closure:

Definition 2. The certainty closure of an uncertain constraint satisfaction prob-
lem (V,D,C) is the CSP (V,D,C"), where C' is derived from C as follows. For
each constraint C € C, let CD be the 0 < k < oo possible constraints resulting
as the coefficients in C vary over the uncertainty set of their possible values. Let
C = Vi, C9 be the disjunction of the C). Then let C' be the conjunction of
the constraints C, wlog removing repeated and trivially redundant constraints.

That is, the constraints in C' are the generalisation of those in C to hold
under all possible realisations of the data. We write p to denote the certainty
closure mapping: (V,D,C) % (V,D,C'). Any solution to the true problem T is
guaranteed to be a solution to p(T'), and no solution of T is excluded.

The idea can be seen in the transformation of the simple uncertain constraint
X > a, where a ranges in [20,30] ([X, X] denoting a real interval), under p to
X > 20. Satisfaction of the former constraint guarantees satisfaction of the latter,
no matter what the true value of the data. A case study is given in Sect. 3.

It might be objected that this is the worst case and over-emphasises pes-
simistic combinations of data values. In reply, we assume (motivated by Sect. 1)
only that all elements of I/ are possible; we have no information as to likelihood.
Further, random values within I/ can be almost as bad as the most difficult
values [15].

We do not assume that U/ is the direct product of the coefficients of C: the val-
ues for the data may be dependent.? This is in contrast to probabilistic models,
where independence of data parameters is nearly always required.

The certainty closure allows robust inference on the original problem in the
sense that the domains resulting for the variables are sure: valid whatever the
realisation of the data within the uncertainty set. The new CSP will be sat-
isfiable provided the original is satisfiable for some element of I/: the system
X > [20,30] A X < [20,25] need not be satisfiable, for example, whereas its
certainty closure will be.

The solution of an uncertain CSP is derived from its certainty closure such
that all possible solutions to the original CSP are contained within. This means

2 If the dependence is between data in different constraints, the above formulation
must be amended slightly.



the decision variables will take a set of possible values, in general, rather than
be instantiated to one value, but the domains that result are sure and correct.

The distinction must be made between the natural domains of the variables V
and the calculus domain which is reached by applying the certainty closure. The
former is the domain with which the user interacts and over which constraints
are applied; the latter is how we represent the inferences and calculate with
surety, and is hidden from the user.

In enhancing the CP paradigm to cope with uncertainty, we do not at the
calculus level assume the rationality of the decision maker. Rather than propos-
ing a single instantiation, precluding all others, we return all possible solutions.
This contrasts with the fundamental assumption of rationality often made in
probabilistic approaches.

The type of constraints found in the energy trading and network optimisation
problems of Sect. 1 are principally linear. Motivated by this, consider the case
of data uncertainty in a linear problem, formalised as an interval linear system
(ILS), as defined below. We follow the notation of Neumaier [16], except to use
bold font to denote an interval quantity.

Definition 3. Let V be a set of n variables over R, and C be a set of m linear
constraints (equalities or inequalities) for V in normal form. Let A € R™*™ be
the matriz of left-hand sides and b € R™ be the vector of right-hand sides. Let
R be the list of m relations (or constraint symbols), one for each constraint;
R; e {<,<,=,>,>}, Vi=1,...,m. Then an interval linear system induced by

C onV is a tuple (A, R,b), where A € IR™*™ is an interval matriz [A, A] with

A€ A, andb € IR™ is an interval vector [b,b] with b € b.

For example, the ILS given by

[_272] [172] [374]
A=([-2,-1 -1 | andb= |[-5,5]
6 [3:3] [4,15]
and R = (<,=,=)" has the solution set % (A,b), shown in Fig. 1, which is

given by therays 2X+Y = 3,6X+3Y = 15,2X-Y = —5and 12X+3Y = 8§, and

the points (X, V) € { (0,4), (1,4, (3,49), (3,0), (22, ~%),(2,0) }. Hence the

solution set is non-convex and the interval hull OX (A, b), the smallest hyperbox
enclosing the solution set, is unbounded.

The above formulation is very general. Following [13], we do not impose what
form the uncertainty set might take. Two common choices, from the field of ro-
bust computation, are intervals and ellipsoids. An interval (strictly, a closed
non-empty bounded interval) given by lower and upper bounds is the simplest
description of an uncertain value, and the properties and uses of interval compu-
tation are well-known. Ellipsoids, while more complicated than intervals, arise
naturally in problems in engineering [17].

We will make use of intervals for three reasons. First, they describe well
the uncertainty in the motivational LSCO problems of Sect. 1: uncoupled data
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Figure 1. Solution set

known only to be between lower and upper bounds. Second, libraries for interval
computation are available in CLP systems. Third, intervals give ease of intuition.

3 Case Study: Positive Orthant Interval Linear Systems

Linear constraints, and systems which can be readily linearised, are sufficient to
model many (although far from all) important real-world problems. A case in
point is that of network optimisation. The difficulty here is not in the constraints,
which largely form a linear flow model, but in the data, which is incomplete.
The uncertain model variables are non-negative reals which may be assumed
independent, thus motivating the sequel.

Definition 4. A positive orthant interval linear system is an interval linear
system in which the natural domain of each variable, dom(V),V € V, is non-
negative. Thus, the solution set lies within the positive orthant of R™.

An example is the system shown earlier in Fig. 1, if we impose X,Y > 0. Such
a system (A, R, b) is tractable, unlike the general case, because the solution set in
the positive orthant, denoted X' (A,b), = X' (A,b) N R} is convex. However,
to avoid an exponential growth in the number of faces of the closure to a single
constraint, we impose a restriction on equality constraints:

Vi=1,...,m, if R; = (=) and 0 € A, ,then

A A *
ﬁ(A,->0/\b,~>0)/\—|(A,-<0/\b,-<0) o)
where A; denotes the vector (Aiq,..., A1) of length n — 1.

The intuition behind the method is that each inequality gives rise to one
halfspace (a line, in 2D), and the points which correspond to feasible solutions of
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Figure 2. Overview of algorithm

all the constraints are those which lie within the intersection of these halfspaces.
This intersection is guaranteed (in the positive orthant) to be convex, and (%)
permits equalities to be rewritten as a pair of inequalities.

Our motivational problems have no uncertainty in the objective function,
and to simplify the presentation we postpone a discussion of optimisation under
uncertainty. However, observe that for an ILS with linear objective max )", ¢; X;
(without loss of generality), uncertainty in the objective is easily removed by
adding the additional constraint Zz ¢;X; > Z for an auxiliary variable Z and
optimising max Z. This reduces the problem to the main case.

We will transform the system (A, R,b) to its certainty closure, the system
(A", R',b'). Figure 2 gives the algorithm in outline.

Steps 1 and 2. We require linear constraints with interval uncertainty, obeying
(%). Each equality constraint can be replaced by a pair of inequalities, taking
care to choose the relational operators correctly.

Step 8. The transformation p is given by replacing the matrix A and vector b
by non-interval versions as follows.

Proposition 5. The certainty closure of a positive orthant interval linear sys-
tem L = (A, R,b) satisfying (%) is the numeric linear inequality system A'x < V',
where A" € R™*" x € R*, and b' € R™ are given by the following.

If0€ A, ,, then ((A');,0)) is

(4u4inb) i {<.<}eRs,
— (i Ain ) i (>, >} R,

while if 0 & Ajp, then ((A");,b}) is

(2

((A)h) i {<.<}ER: and Ay >0,
(ma’ﬁ) if {<,<}€R; and A; , <0,
(@b if (>, 2} R and Ain >0,
—(&,b_i) if {>,>}€R; and 4;,, <0.



Proof. Omitted.

Consider again the example of Sect. 2. From the initial system

[_272] [la 2] [354]
A=|([-2,-1 -1 | and b= | [-5,5]
6 [53] [4,15]
and R = (<, =, :)T, the transformation to the certainty closure yields
2-21-66)" T
1 e - r _
A_(1_11_3%) and b’ = (455 —415)

Hence the positive orthant interval hull is 05 (A,b), = ([0, 3],[0, 5])

By this means, from a constraint problem with interval uncertain data, we
obtain a certain constraint problem. By inference on the transformed problem
(that is, the certainty closure), sure domains can be found for the variables —
domains which include the values that arise under every data realisation — and
for an ILS, we give the inference explicitly.

Steps 4 and 5. The certainty closure of an ILS is a halfspace description of a
polytope. The action of the constraints on the variable domains is equivalent to
the projection of the convex hull of the polytope onto each axis [18]. Geomet-
rically, we seek bounds on the dual representation of the polytope, that is, the
bounds of its vertex form. In practice, we can use linear programming to find
the interval hull directly.

For each variable X;, j=1,...,n, solve two linear programs which differ only
in their objectives, min X; and max X, subject to the constraints given by the
certainty closure. With 2n applications of simplex we have tight, sure bounds:

Proposition 6. Let p(L) be the certainty closure of L defined above. The bounds
obtained on the domains D by the method given are the tightest certain bounds
possible, and can be computed in expected time O(mn?).

Proof. The transformation from L to p(L) can be done in O(2mn) operations,
and its correctness follows from Proposition 5. The constraints in p(L) are linear
and the solution space of their conjunction intersected with the positive orthant
is a convex polytope, possibly unbounded [19]. This polytope is the convex hull
Y (A,b), by construction, and projecting onto each normal e; immediately gives
the interval hull. The bounds so obtained are tight to the solution set since
the maximum and minimum possible value of each variable are found by the
simplex iterations. The projection can be done with 2n iterations, at expected
cost O(3mn?) each. O

This provides bounds for the natural domains of the variables. It may well
be that not every value in the product space of the variable domains is feasible;
other constraint inference techniques would be needed to determine this, since
no further tightening will be obtained by reasoning solely on their bounds.



The certainty closure for interval linear systems, and the hull inference de-
scribed above, have been implemented on the ECLIPS® CLP system [20] using
the interval computation library ic and the commercial LP solver XPRESS-MP.
For problems up to several hundred variables and constraints, even a straight-
forward implementation gives the bounds in a few seconds.

We are investigating the application of the certainty closure to the network
optimisation problem, and initial findings show promise. The current approach
of data correction to the uncertain LSCO has been complemented in:

— proving the correctness or otherwise of current results
— identifying deep inconsistencies, beyond data correction, in the raw data
— understanding the source of bottlenecks in the network

Thus insight is gained of the relationship between the network topology and
traffic flow, leading to robust quantitative results and improved global under-
standing.

4 Related Work

A problem with uncertain data is, in general, much harder than the same problem
with certain data, as we might expect. With a linear system, for instance, even
checking a possible enclosure for interval uncertain data is NP-hard [17], and all
methods for the general problem are exponential in the worst case.

Data uncertainty in linear programming has been addressed by Ben-Tal and
Nemirovski [13]. They define a ‘robust counterpart’ to an LP problem, and seek
the solution with the best objective that satisfies all realisations of the con-
straints. There are close parallels between the ideas of the robust counterpart
and of the certainty closure of a linear system. The uncertainty in the constraints
must be independent.

The most general method for ‘interval linear programming’ is that of Chin-
neck and Ramadan [21]. Applying a transformation, they find the best and worst
optimum for a linear system in which intervals may appear as coeflicients in the
constraints or the objective. Where equality constraints occur, they must resort
to an exponential enumeration of cases.

Various authors have proposed analytic solutions to restricted cases of the
ILS problem (see [16] among many others). The iterative methods that usually
result require the matrix A to be square and have certain properties, and the
solution set to be bounded.

A different approach, first suggested by Oettli [18] in an early paper, is to find
some characterisation of the solution set as a polytope, then apply the simplex
algorithm 2n times to find the extreme points with respect to each axis normal.
This is the method we use in Sect. 3; later authors have suggested extensions.

We should also note the contrast with methods developed for interval con-
straint logic programming (see, e.g., [22]). Here, domains of the variables are
treated as (usually real) intervals, and interval-based local consistency operators



applied. However, the tight solution set is not guaranteed and, further, inter-
val narrowing methods perform best in answering global questions arising from
non-linear constraint systems [22,23].

5 Perspectives and Future Directions

Work on data uncertainty in constraint programming is fairly new, despite the
reality of uncertainty in many real world situations. Existing CP models do not
address this aspect of the problem when a probabilistic framework is not appli-
cable. The aim of the certainty closure approach is to provide robust solutions to
uncertain data in ill-defined LSCO problems, and our first results are promising
in terms of robustness and efficiency.

The case study points us to three issues in integration with the paradigm.
First, the importance of incremental execution. Subsequent to the initial system,
we may receive updated or new information regarding the uncertain data, but
it is inefficient to recompute the entire inference on each occasion. For the case
of ILS, we can think in terms of the addition of a new halfspace equation, or
correspondingly a potential ‘slicing-off” of some part of the convex hull.

One of the strengths of CP is the ability to handle many types of constraints
(non-linear, scheduling, disjunctive, and so on), and problems involving hetero-
geneous constraints. The second area to explore in future work is to consider a
wider class of constraints in uncertain LSCO problems, and consider how the
certainty closure should be formulated.

The third area is optimisation. If the decision criterion is maximisation of a
function f : V — R, say, then solving the certainty closure as a constraint optimi-
sation problem (COP) gives a hard upper bound. The problem is more difficult
if f contains uncertainty; here the definition of p will need to be extended.

There has been little previous work on uncertain COPs. Sengupta et al.
[12] model vagueness and uncertainty in linear inequalities by using intervals,
and present an interpretation of the constraints based on the preference of the
decision maker. Chinneck and Ramadan [21] find the best and worst optimum
and the data values which lead to these. The best optimum supposes the most
favourable values of the data; the worst, like the certainty closure, the least
favourable. Again, rationality of the decision maker is assumed.
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