Stochastic Constraint Programming

Toby Walsh
Department of Computer Science
University of York
York YO10 5DD
England
tw@cs.york.ac.uk

Abstract

To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and present a complete forward checking algorithm. Finally, we discuss a number of extensions of stochastic constraint programming to relax various assumptions like the independence between stochastic variables, and compare stochastic constraint programming with other approaches for decision making under uncertainty like Markov decision problems and influence diagrams.

1 Introduction

Many real world decision problems contain uncertainty. Data about events in the past may not be known exactly due to errors in measuring or difficulties in sampling, whilst data about events in the future may simply not be known with certainty. For example, when scheduling power stations, we need to cope with uncertainty in future energy demands. As a second example, nurse rostering in an accident and emergency department requires us to anticipate variability in workload. As a final example, when constructing a balanced bond portfolio, we must deal with uncertainty in the future price of bonds. To deal with such situations, we propose an extension of constraint programming called *stochastic constraint programming* in which we distinguish between decision variables, which we are free to set, and stochastic (or observed) variables, which follow some probability distribution.

2 Stochastic constraint programs

We define a number of models of stochastic constraint programming of increasing complexity. In an one stage stochastic constraint satisfaction problem (stochastic CSP), the decision variables are set before the stochastic variables are given values. This can model situations in which we must act now and observe later. For example, we may have to decide now which nurses to have on duty and only later discover the actual workload. We can easily invert the instantiation order if the application demands, with the stochastic variables given values before the decision variables are set.

Constraints are defined (as in traditional constraint satisfaction) by relations of allowed tuples of values. Constraints can, however, be implemented with specialized and efficient algorithms for consistency checking. The stochastic variables independently take values with probabilities given by a fixed probability distribution. We discuss later how to relax these assumptions, and how this model compares with frameworks like mixed constraint satisfaction. A one stage stochastic CSP is satisfiable iff there exists values for the decision variables so that, given random values for the stochastic variables, the probabilistic satisfaction of constraints are satisfied equals or exceeds some threshold θ . The probabilistic satisfaction of constraints allows us to ignore worlds (values for the stochastic variables) which are too rare to require consideration. Note that the definition reduces to that of a traditional constraint satisfaction problem if we have no stochastic variables and $\theta = 1$.

In a two stage stochastic CSP, there are two sets of decision variables, V_{d1} and V_{d2} , and two sets of stochastic variables, V_{s1} and V_{s2} . The aim is to find values for the variables in V_{d1} , so that given random values for V_{s1} , we can find values for V_{d2} , so that given random values for V_{s2} , the probability that all the constraints are satisfied equals or exceeds θ . Note that the values chosen for the second set of decision variables V_{d2} are conditioned on both the values chosen for the first set of decision variables V_{d1} and on the random values given to the first set of stochastic variables V_{s1} . This can model situations in which items are produced and can be consumed or put in stock for later consumption. Future production then depends both on previous production (earlier decision variables) and on previous demand (earlier stochastic variables). A m stage stochastic CSP is defined in an analogous way to one and two stage stochastic CSPs.

A stochastic constraint optimization problem (stochastic COP) is a stochastic CSP plus a cost function defined over the decision and stochastic variables. The aim is to find a solution that satisfies the stochastic CSP which minimizes (or, if desired, maximizes) the expected value of the cost function.

3 Production planning example

The following m stage stochastic constraint program models a simple m quarter production planning problem. In each quarter, there is a equal chance that we will sell anywhere between 100 and 105 copies of a book. To keep customers happy, we want to satisfy demand in all m quarters with 80% probability. At the start of each quarter, we must decide how many books to print for that quarter. This problem can be

modeled by a m stage stochastic CSP. There are m decision variables, x_i representing production in each of the ith quarter. There are also m stochastic variables, y_i representing demand in the ith quarter. These takes values between 100 and 105 with equal probability. There is a constraint to ensure first quarter production meets first quarter demand:

$$x_1 > y_1$$

There is also a constraint to ensure second quarter production meets second quarter demand either plus any unsatisfied demand from the first quarter or less any stock carried forward from the first quarter:

$$x_2 \ge y_2 + (y_1 - x_1)$$

And there is a constraint to ensure jth quarter production ($j \ge 2$) meets jth quarter demand either plus any unsatisfied demand from earlier quarters or less any stock carried forward from earlier quarters:

$$x_j \ge y_j + \sum_{i=1}^{j-1} (y_i - x_i)$$

We must satisfy these m constraints with a threshold probability $\theta=0.8$. This stochastic CSP has a number of solutions including $x_i=105$ for each i (i.e. always produce as many books as the maximum demand). However, this solution will tend to produce books surplus to demand which is undesirable.

Suppose storing surplus book costs \$1 per quarter. We can define a m stage stochastic COP based on this stochastic CSP in which we additionally miminize the expected cost of storing surplus books. As the number of surplus books in the jth quarter is $\min(\sum_{i=1}^{j} x_i - y_i, 0)$, we have a cost function over all quarters of:

$$\sum_{j=1}^{m} \min(\sum_{i=1}^{j} x_i - y_i, 0)$$

Note that a solution to a stochastic CSP or COP defines how to set later decision variables given the values for earlier stochastic and decision variables.

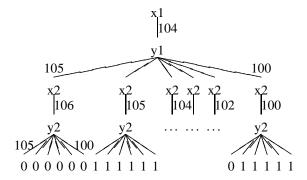
4 Semantics

A stochastic constraint satisfaction problem is a 6-tuple $\langle V, S, D, P, C, \theta \rangle$ where V is a list of variables, S is the subset of V which are stochastic varibles, D is a mapping from V to domains, P is a mapping from S to probability distributions for the domains, C is a set of constraints over V, and θ is a threshold probability in the interval [0,1]. Constraints are defined (as in traditional constraint satisfaction) by a set of variables and a relation giving the allowed tuples of values for these variables. Variables are set in the order in which they appear in V. Thus, in an one stage stochastic CSP, V contains first the decision variables and then the stochastic variables. In a two stage stochastic CSP,

V contains the first set of decision variables, the first set of stochastic variables, then the second set of decision variables, and finally the second set of stochastic variables.

A policy is a tree with nodes labelled with variables, starting with the first variable in V labelling the root, and ending with the last variable in V labelling the nodes directly above the leaves. Nodes labelled with decision variables have a single child. whilst nodes labelled with stochastic variables have one child for every possible value. Edges in the tree are labelled with values assigned to the variable labelling the node above. Leaf nodes are labelled with 1 if the assignment of values to variables along the path to the root satisfies all the constraints, and 0 otherwise. Each leaf node corresponds to a possible world and has an associated probability; if s_i is the ith stochastic variable on a path to the root, d_i is the value given to s_i on this path, (i.e. the label of the following edge), and $prob(s_i = d_i)$ is the probability that $s_i = d_i$, then the probability of this world is simply $\prod_i prob(s_i = d_i)$. We define the **satisfaction** of a policy as the sum of the leaf values weighted by their probabilities. A policy satisfies the constraints iff its satisfaction is at least θ . A stochastic CSP is **satisfiable** iff there is a policy which satisfies the constraints. When $S = \{\}$ and $\theta = 1$, this reduces to the traditional definition of constraint satisfaction. The optimal satisfaction of a stochastic CSP is the maximum satisfaction of all policies. For a stochastic COP, the expected value of a policy is the sum of the objective valuations of each leaf node weighted by their probabilities. A policy is **optimal** if it satisfies the constraints and maximizes (or, if desired, minimizes) the expected value.

Consider again the production planning problem and a two-quarter policy that sets $x_1 = 104$ and if $y_1 > 100$ then $x_2 = y_1 + 1$ else $y_1 = 100$ and $x_2 = 100$. We can represent this policy by the following (partial) tree:



By definition, each of the leaf nodes in this tree is equally probable. There are 6^2 leaf nodes, of which only 7 are labelled 0. Hence, this policy's satisfaction is (36 - 7)/36, and the policy satisfies the constraints as this just exceeds $\theta = 0.8$.

5 Complexity

Constraint satisfaction is NP-complete in general. Not surprisingly, stochastic constraint satisfaction moves us up the complexity hierarchy. It may therefore be useful

for modelling problems like reasoning under uncertainty which lie in these higher complexity classes. We show how a number of satisfiability problems in these higher complexity classes reduce to stochastic constraint satisfaction. In each case, the reduction is very immediate. Note that each reduction can be restricted to stochastic CSPs on binary constraints using a hidden variable encoding to map non-binary constraints to binary constraints. The hidden variables are added to the last stage of the stochastic CSP.

PP, or probabilistic polynomial time is characterized by the PP-complete problem, MAJSAT which decides if at least half the assignments to a set of Boolean variables satisfy a clausal formula. This can be reduced to a one stage stochastic CSP in which there are no decision variables, the stochastic variables are Boolean, the constraints are the clauses, the two truth values for the stochastic variables are equally likely and the threshold probability $\theta=0.5$. A number of other reasoning problems like plan evaluation in probabilistic domains are PP-complete.

 NP^{PP} is the class of problems that can be solved by non-deterministic guessing a solution in polynomial time (NP) and then verifying this in probabilistic polynomial time (PP). Given a clausal formula, E-MAJSAT is the problem of deciding if there exists an assignment for a set of Boolean variables so that, given randomized choices of values for the other variables, the formula is satisfiable with probability at least equal to some threshold θ [LGM98]. This can be reduced very immediately to an one stage stochastic CSP. A number of other reasoning problems like finding optimal size-bounded plans in uncertain domains are NP^{PP} -complete.

PSPACE is the class of problems that can be solved in polynomial space. Note that NP \subseteq PP \subseteq NP^{PP} \subseteq PSPACE. SSAT, or stochastic satisfiability is an example of a PSPACE-complete problem. In SSAT, we have a clausal formula with m alternating decision and stochastic variables, and must decide if the formula is satisfiable with probability at least equal to some threshold θ . This can be immediately reduced to a m stage stochastic CSP. A number of other reasoning problems like propositional STRIPS planning are PSPACE-complete.

6 A complete algorithm

We present a forward checking procedure (FC) for solving stochastic constraint satisfaction problems. We assume that variables are instantiated in order. However, if decision variables occur together, they can be instantiated in any order. A branching heuristic like fail first may therefore be used to order decision variables which occur together. On meeting a decision variable, we try each value in its domain in turn and return the maximum answer to all the subproblems. On meeting a stochastic variable, we try each value in turn, and return the sum of the all answers to the subproblems weighted by the probabilities of their occurrence. As in the Davis-Putnam like algorithm for stochastic satisfiability [LMP00], upper and lower bounds, θ_h and θ_l are used to prune search. By setting $\theta_l = \theta_h = \theta$, we can determine if the optimal satisfaction is at least θ . Alternatively, by setting $\theta_l = 0$ and $\theta_h = 1$, we can determine the optimal satisfaction. On instantiating a decision or stochastic variable, we check forwards and prunes values from the domains of future decision and stochastic variables which break

constraints. Checking forwards fails if a stochastic or decision variable has a domain wipeout (dwo), or if a stochastic variable has so many values removed that we cannot hope to satisfy the constraints.

7 Extensions

We have assumed that stochastic variables are independent. There are problems which may require us to relax this restriction. For example, a stochastic variable representing electricity demand may depend on a stochastic variable representing temperature. It may therefore be useful to combine stochastic programming with techniques like Bayes networks which allow for conditional dependencies to be efficiently and effectively represented. An alternative solution is to replace the dependent stochastic variables by a single stochastic variable whose domain is the product space of the dependent variables. This is only feasible when there are a small number of dependent variables with small domains.

We have also assumed that the probability distribution of stochastic variables is fixed, and does not depend on earlier decision variables. Again, there are problems which may require us to relax this restriction. For example, the decision variable representing price may influence a stochastic variable representing demand. A solution may again be to combine stochastic programming with techniques like Bayes networks. We have also assumed that the probability distribution is known in advance. It would be interesting to explore methods for estimating it based on observation.

Finally, we have assumed that all variable domains are finite. There are problems which may require us to relax this restriction. For example, in scheduling power stations, we may use 0/1 decision variables to model whether a power station runs or not, but have continuous (observed) variables to model future electricity demands. A continuous probability density function could be associated with these variables. Similarly, a continuous decision variable could be useful to model the power output. Interval reasoning techniques could be extended to deal with such variables.

8 Related work in decision making under uncertainty

Stochastic constraint programs are closely related to Markov decision problems (MDPs). An MDP model consists of a set of states, a set of actions, a state transition function which gives the probability of moving between two states as a result of a given action, and a reward function. A solution to an MDP is a policy, which specifies the best action to take in each possible state. MDPs have been very influential in AI of late for dealing with situations involving reasoning under uncertainty [Put94]. Stochastic constraint programming could be used to model problems which lack the Markov property that the next state and reward depend only on the previous state and action taken. Stochastic constraint optimization could also be used to model more complex reward functions than the (discounted) sum of individual rewards. On the other hand, MDPs can, at least in theory, be solved efficiently using linear programming [LDK95] and can have infinite state spaces.

```
procedure FC(i,\theta_l,\theta_h)
   if i > n then return 1
   \theta := 0
   for each d_i \in D(x_i)
      if prune(i, j) = 0 then
          if \operatorname{check}(x_i \to d_i, \theta_l) then
             if x_i \in S then
                 p := \operatorname{prob}(x_i \to d_j)
                 q_i := q_i - p
                \theta := \theta + p \times FC(i+1, \frac{\theta_l - \theta - q_i}{p}, \frac{\theta_h - \theta}{p})
                 restore(i)
                 if \theta + q_i < \theta_l then return \theta
                 if \theta > \theta_h then return \theta
                 \theta := \max(\theta, FC(i + 1, \max(\theta, \theta_l), \theta_h))
                 restore(i)
                 if \theta > \theta_h then return \theta
          else restore(i)
   return \theta
procedure check(x_i \rightarrow d_i, \theta_l)
   for k = i + 1 to n
      dwo := true
      for d_l \in D(x_k)
          if prune(k, l) = 0 then
             if inconsistent(x_i \to d_i, x_k \to d_l) then
                 prune(k, l) := i
                if x_k \in S then
                    q_k := q_k - \operatorname{prob}(x_k \to d_l)
                    if q_k < \theta_l then return false
             else dwo := false
      if dwo then return false
   return true
procedure restore(i)
   for j = i + 1 to n
      for d_k \in D(x_i)
          if prune(j, k) = i then
             prune(j,k) = 0
             if x_j \in S then q_j := q_j + \operatorname{prob}(x_j \to d_k)
```

Figure 1: The forward checking (FC) algorithm for stochastic CSPs. The algorithm is called with the search depth, i and with upper and lower bounds, θ_h and θ_l . If the maximum satisfaction of all policies lies between these bounds, FC returns the exact maximum satisfaction. If the maximum satisfaction of all policies is θ_h or more, FC returns a value greater than or equal to θ_h . If the minimum satisfaction of all policies is θ_l or less, FC returns a value less than or equal to θ_l . S is the set of stochastic variables. The array q_i is an upper bound on the probability that the stochastic variable x_i satisfies the constraints and is initially set to 1, whilst prune(i, d) is the depth at which the value d is pruned from x_i and is initially set to 0 which indicates that the value is not yet pruned.

Stochastic constraint programs are also closely related to influence diagrams. Influence diagrams are Bayesian networks in which the chance nodes are augmented with decision and utility nodes [OS90]. The usual aim is to maximize the sum of the expected utilities. Chance nodes in an influence diagram correspond to stochastic variables in a stochastic constraint program, whilst decision nodes correspond to decision variables. The utility nodes correspond to the cost function in a stochastic constraint optimization problem. It would therefore be relatively straightforward to map stochastic constraint programs into influence diagrams. However, reasoning about stochastic constraint programs is likely to be easier than about influence diagrams. First, the probabilistic aspect of a stochastic constraint program is very simple and very decomposable as there are only unary marginal probabilities. Second, the dependencies between decision variables and stochastic variables are represented by declarative constraints. We can therefore borrow from traditional constraint satisfaction and optimization powerful algorithmic techniques like branch and bound, constraint propagation and nogood recording. As a result, if a problem can be modelled within the more restricted format of a stochastic constraint program, we may be able to reason about it efficiently.

9 Related work in constraints

Stochastic constraint programming is inspired by both stochastic integer programming and stochastic satisfiability [LMP00]. It shares the advantages that constraint programming has over integer programming (e.g. non-linear constraints, and constraint propagation). It also shares the advantages that constraint programming has over satisfiability (e.g. global and arithmetic constraints, and more compact models).

Mixed constraint satisfaction [FLS96] is closely related to one stage stochastic constraint satisfaction. In a mixed CSP, the decision variables are set after the stochastic variables are given random values. In addition, the random values are chosen uniformly. In the case of full observability, the aim is to find conditional values for the decision variables in a mixed CSP so that we satisfy all possible worlds. In the case of no observability, the aim is to find values for the decision variables in a mixed CSP so that we satisfy as many possible worlds. An earlier constraint satisfaction model for decision making under uncertainty [FLMCS95] also included a probability distribution over the space of possible worlds.

Constraint satisfaction has been extended to include probabilistic preferences on the values assigned to variables [SLK99]. Associated with the values for each variable is a probability distribution. A "best" solution to the constraint satisfaction problem is then found. This may be the maximum probability solution (which satisfies the constraints and is most probable), or the maximum expected overlap solution (which is most like the true solution). The latter can be viewed as the solution which has the maximum expected overlap with one generated at random using the probability distribution. The maximum expected overlap solution could be found by solving a suitable one stage stochastic constraint optimization problem.

Branching constraint satisfaction [FB00] models problems in which there is uncertainty in the number of variables. For example, we can model a nurse rostering problem by assigning shifts to nurses. Branching constraint satisfaction then allows us to deal

with the uncertainty in which nurses are available for duty. We can represent such problems with a stochastic CSP with a stochastic 0/1 variable for each nurse representing their availability.

A number of extensions of the traditional constraint satisfaction problem model constraints that are uncertain, probabilistic or not necessarily satisfied. For example, in partial constraint satisfaction we maximize the number of constraints satisfied [FW92]. As a second example, in probabilistic constraint satisfaction each constraint has a certain probability independent of all other probabilities of being part of the problem [FL93]. As a third example, both valued and semi-ring based constraint satisfaction [BFM+96] generalizes probabilistic constraint satisfaction as well as a number of other frameworks. In semi-ring based constraint satisfaction, a value is associated with each tuple in a constraint, whilst in valued constraint satisfaction, a value is associated with each constraint. However, none of these extensions deal with variables that may have uncertain or probabilistic values. Indeed, stochastic constraint programming can easily be combined with most of these techniques. For example, we can define stochastic partial constraint satisfaction in which we maximize the number of satisfied constraints, or stochastic probabilistic constraint satisfaction in which each constraint has an associated probability of being in the problem.

10 Conclusions

We have proposed stochastic constraint programming, an extension of constraint programming to deal with both decision variables (which we can set) and stochastic variables (which follow some probability distribution). This framework is designed to take advantage of the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. It can be used to model a wide variety of decision problems involving uncertainty and probability. We have given a semantics for stochastic constraint programs based upon policies. These determine how decision variables are set depending on earlier decision and stochastic variables. We have also given a complete forward checking algorithm. Finally, we have discussed a number of extensions of stochastic constraint programming to relax assumptions like the independence between stochastic variables, and compared stochastic constraint programming with other approaches for decision making under uncertainty like Markov decision problems and influence diagrams.

Acknowledgements

The author is an EPSRC advanced research fellow. He thanks the other members of the APES research group (http://apes.cs.strath.ac.uk/), especially Ian Gent for his helpful discussions.

References

- [BFM⁺96] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semi-ring based CSPs and valued CSPs: Basic properties and comparison. In M. Jample, E. Freuder, and M. Maher, editors, *Over-Constrained Systems*, pages 111–150. Springer-Verlag, 1996.
- [FB00] D. Fowler and K. Brown. Branching constraint satisfaction problems for solutions robust under likely changes. In *Proc. of 6th Int. Conf. on Principles and Practices of Constraint Programming*. Springer-Verlag, 2000.
- [FL93] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a probabilistic approach. In *Proc. of ECSQARU*. Springer-Verlag, 1993.
- [FLMCS95] H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. A constraint satisfaction framework for decision under uncertainty. In *Proc. of the 11th Int. Conf. on Uncertainty in Artificial Intelligence*, 1995.
- [FLS96] H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: a framework for decision problems under in complete information. In *Proc. of the 13th Nat. Conf. on Artificial Intelligence*. 1996.
- [FW92] E. Freuder and R. Wallace. Partial constraint satisfaction. *Artificial Intelligence*, 58:21–70, 1992.
- [LDK95] M.L. Littman, T.L. Dean, and L.P. Kaelbling. On the complexity of solving Markov decision problems. In *Proc. of the 8th Annual Confe. on Uncertainty in Artificial Ingtelligence*, 1995.
- [LGM98] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational complexity of probabilistic plan existence and evaluation. *Journal of Artificial Intelligence Research*, 9:1–36, 1998.
- [LMP00] M.L. Littman, S.M. Majercik, and T. Pitassi. Stochastic Boolean satisfiability. *Journal of Automated Reasoning*, 2000.
- [OS90] R.M. Oliver and J.Q. Smith. *Influence Diagrams, Belief Nets and Decision Analysis*. John Wiley and Sons, 1990.
- [Put94] M.L. Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley and Sons, 1994.
- [SLK99] N. Shazeer, M. Littman, and G. Keim. Constraint satisfaction with probabilistic preferences on variable values. In *Proc. of the 16th Nat. Conf. on Artificial Intelligence*. 1999.