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Abstract

To model combinatorial decision problems involving uncertainty and proba-
bility, we introduce stochastic constraint programming. Stochastic constraint pro-
grams contain both decision variables (which we can set) and stochastic variables
(which follow a probability distribution). They combine together the best fea-
tures of traditional constraint satisfaction, stochastic integer programming, and
stochastic satisfiability. We give a semantics for stochastic constraint programs,
and present a complete forward checking algorithm. Finally, we discuss a number
of extensions of stochastic constraint programming to relax various assumptions
like the independence between stochastic variables, and compare stochastic con-
straint programming with other approaches for decision making under uncertainty
like Markov decision problems and influence diagrams.

1 Introduction

Many real world decision problems contain uncertainty. Data about events in the past
may not be known exactly due to errors in measuring or difficulties in sampling, whilst
data about events in the future may simply not be known with certainty. For example,
when scheduling power stations, we need to cope with uncertainty in future energy de-
mands. As a second example, nurse rostering in an accident and emergency department
requires us to anticipate variability in workload. As a final example, when construct-
ing a balanced bond portfolio, we must deal with uncertainty in the future price of
bonds. To deal with such situations, we propose an extension of constraint program-
ming called stochastic constraint programming in which we distinguish between deci-
sion variables, which we are free to set, and stochastic (or observed) variables, which
follow some probability distribution.



2 Stochastic constraint programs

We define a number of models of stochastic constraint programming of increasing com-
plexity. In an one stage stochastic constraint satisfaction problem (stochastic CSP), the
decision variables are set before the stochastic variables are given values. This can
model situations in which we must act now and observe later. For example, we may
have to decide now which nurses to have on duty and only later discover the actual
workload. We can easily invert the instantiation order if the application demands, with
the stochastic variables given values before the decision variables are set.

Constraints are defined (as in traditional constraint satisfaction) by relations of al-
lowed tuples of values. Constraints can, however, be implemented with specialized and
efficient algorithms for consistency checking. The stochastic variables independently
take values with probabilities given by a fixed probability distribution. We discuss
later how to relax these assumptions, and how this model compares with frameworks
like mixed constraint satisfaction. A one stage stochastic CSP is satisfiable iff there
exists values for the decision variables so that, given random values for the stochastic
variables, the probability that all the constraints are satisfied equals or exceeds some
threshold 6. The probabilistic satisfaction of constraints allows us to ignore worlds
(values for the stochastic variables) which are too rare to require consideration. Note
that the definition reduces to that of a traditional constraint satisfaction problem if we
have no stochastic variables and 8 = 1.

In a two stage stochastic CSP, there are two sets of decision variables, V4; and Vs,
and two sets of stochastic variables, V;; and V2. The aim is to find values for the
variables in V1, so that given random values for Vy;, we can find values for Vs, so
that given random values for Vs, the probability that all the constraints are satisfied
equals or exceeds 6. Note that the values chosen for the second set of decision variables
Va2 are conditioned on both the values chosen for the first set of decision variables Vj;
and on the random values given to the first set of stochastic variables V;. This can
model situations in which items are produced and can be consumed or put in stock
for later consumption. Future production then depends both on previous production
(earlier decision variables) and on previous demand (earlier stochastic variables). A m
stage stochastic CSP is defined in an analogous way to one and two stage stochastic
CSPs.

A stochastic constraint optimization problem (stochastic COP) is a stochastic CSP
plus a cost function defined over the decision and stochastic variables. The aim is
to find a solution that satisfies the stochastic CSP which minimizes (or, if desired,
maximizes) the expected value of the cost function.

3 Production planning example

The following m stage stochastic constraint program models a simple m quarter pro-
duction planning problem. In each quarter, there is a equal chance that we will sell
anywhere between 100 and 105 copies of a book. To keep customers happy, we want
to satisfy demand in all m quarters with 80% probability. At the start of each quar-
ter, we must decide how many books to print for that quarter. This problem can be



modeled by a m stage stochastic CSP. There are m decision variables, x; representing
production in each of the ith quarter. There are also m stochastic variables, y; repre-
senting demand in the ith quarter. These takes values between 100 and 105 with equal
probability. There is a constraint to ensure first quarter production meets first quarter
demand:

T1 20

There is also a constraint to ensure second quarter production meets second quarter
demand either plus any unsatisfied demand from the first quarter or less any stock
carried forward from the first quarter:

x2 > y2 + (Y1 — 21)

And there is a constraint to ensure jth quarter production (j > 2) meets jth quarter de-
mand either plus any unsatisfied demand from earlier quarters or less any stock carried
forward from earlier quarters:

7j—1
zj > y;+ Z(yi — ;)
i=1

We must satisfy these m constraints with a threshold probability 8 = 0.8. This stochas-
tic CSP has a number of solutions including x; = 105 for each 4 (i.e. always produce
as many books as the maximum demand). However, this solution will tend to produce
books surplus to demand which is undesirable.

Suppose storing surplus book costs $1 per quarter. We can define a m stage stochas-
tic COP based on this stochastic CSP in which we additionally miminize the expected
cost of storing surplus books. As the number of surplus books in the jth quarter is
min(}"7_, z; — y;,0), we have a cost function over all quarters of:

m J
> min(Y "z —y;,0)
j=1 i=1

Note that a solution to a stochastic CSP or COP defines how to set later decision vari-
ables given the values for earlier stochastic and decision variables.

4 Semantics

A stochastic constraint satisfaction problem is a 6-tuple (V, S, D, P, C,0) where V is
a list of variables, S is the subset of V' which are stochastic varibles, D is a mapping
from V' to domains, P is a mapping from S to probability distributions for the domains,
C' is a set of constraints over V, and @ is a threshold probability in the interval [0, 1].
Constraints are defined (as in traditional constraint satisfaction) by a set of variables and
arelation giving the allowed tuples of values for these variables. Variables are set in the
order in which they appear in V. Thus, in an one stage stochastic CSP, V' contains first
the decision variables and then the stochastic variables. In a two stage stochastic CSP,



V' contains the first set of decision variables, the first set of stochastic variables, then
the second set of decision variables, and finally the second set of stochastic variables.

A policy is a tree with nodes labelled with variables, starting with the first variable
in V' labelling the root, and ending with the last variable in V' labelling the nodes
directly above the leaves. Nodes labelled with decision variables have a single child,
whilst nodes labelled with stochastic variables have one child for every possible value.
Edges in the tree are labelled with values assigned to the variable labelling the node
above. Leaf nodes are labelled with 1 if the assignment of values to variables along the
path to the root satisfies all the constraints, and O otherwise. Each leaf node corresponds
to a possible world and has an associated probability; if s; is the ith stochastic variable
on a path to the root, d; is the value given to s; on this path, (i.e. the label of the
following edge), and prob(s; = d;) is the probability that s; = d;, then the probability
of this world is simply [], prob(s; = d;). We define the satisfaction of a policy as the
sum of the leaf values weighted by their probabilities. A policy satisfies the constraints
iff its satisfaction is at least §. A stochastic CSP is satisfiable iff there is a policy
which satisfies the constraints. When S = {} and 8 = 1, this reduces to the traditional
definition of constraint satisfaction. The optimal satisfaction of a stochastic CSP is
the maximum satisfaction of all policies. For a stochastic COP, the expected value
of a policy is the sum of the objective valuations of each leaf node weighted by their
probabilities. A policy is optimal if it satisfies the constraints and maximizes (or, if
desired, minimizes) the expected value.

Consider again the production planning problem and a two-quarter policy that sets
21 = 104 and if y; > 100 then x5 = y1 + 1 else y; = 100 and z» = 100. We can
represent this policy by the following (partial) tree:
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By definition, each of the leaf nodes in this tree is equally probable. There are 62
leaf nodes, of which only 7 are labelled 0. Hence, this policy’s satisfaction is (36 —
7)/36, and the policy satisfies the constraints as this just exceeds § = 0.8.

5 Complexity

Constraint satisfaction is NP-complete in general. Not surprisingly, stochastic con-
straint satisfaction moves us up the complexity hierarchy. It may therefore be useful



for modelling problems like reasoning under uncertainty which lie in these higher com-
plexity classes. We show how a number of satisfiability problems in these higher com-
plexity classes reduce to stochastic constraint satisfaction. In each case, the reduction
is very immediate. Note that each reduction can be restricted to stochastic CSPs on
binary constraints using a hidden variable encoding to map non-binary constraints to
binary constraints. The hidden variables are added to the last stage of the stochastic
CSP.

PP, or probabilistic polynomial time is characterized by the PP-complete problem,
MaAJsAT which decides if at least half the assignments to a set of Boolean variables
satisfy a clausal formula. This can be reduced to a one stage stochastic CSP in which
there are no decision variables, the stochastic variables are Boolean, the constraints
are the clauses, the two truth values for the stochastic variables are equally likely and
the threshold probability § = 0.5. A number of other reasoning problems like plan
evaluation in probabilistic domains are PP-complete.

NPPP s the class of problems that can be solved by non-deterministic guessing
a solution in polynomial time (NP) and then verifying this in probabilistic polynomial
time (PP). Given a clausal formula, E-MAJSAT is the problem of deciding if there exists
an assignment for a set of Boolean variables so that, given randomized choices of values
for the other variables, the formula is satisfiable with probability at least equal to some
threshold # [LGM98]. This can be reduced very immediately to an one stage stochastic
CSP. A number of other reasoning problems like finding optimal size-bounded plans in
uncertain domains are NPFF-complete.

PSPACE is the class of problems that can be solved in polynomial space. Note that
NP C PP C NPPP C PsPACE. SSAT, or stochastic satisfiability is an example of a
Pspace-complete problem. In SsAT, we have a clausal formula with m alternating
decision and stochastic variables, and must decide if the formula is satisfiable with
probability at least equal to some threshold 6. This can be immediately reduced to a m
stage stochastic CSP. A number of other reasoning problems like propositional STRIPS
planning are PSPACE-complete.

6 A completealgorithm

We present a forward checking procedure (FC) for solving stochastic constraint sat-
isfaction problems. We assume that variables are instantiated in order. However, if
decision variables occur together, they can be instantiated in any order. A branching
heuristic like fail first may therefore be used to order decision variables which occur
together. On meeting a decision variable, we try each value in its domain in turn and
return the maximum answer to all the subproblems. On meeting a stochastic variable,
we try each value in turn, and return the sum of the all answers to the subproblems
weighted by the probabilities of their occurrence. As in the Davis-Putnam like algo-
rithm for stochastic satisfiability [LMPOO], upper and lower bounds, 8, and 6; are used
to prune search. By setting 8; = 8, = 6, we can determine if the optimal satisfaction
is at least 6. Alternatively, by setting 8; = 0 and 6, = 1, we can determine the optimal
satisfaction. On instantiating a decision or stochastic variable, we check forwards and
prunes values from the domains of future decision and stochastic variables which break



constraints. Checking forwards fails if a stochastic or decision variable has a domain
wipeout (dwo), or if a stochastic variable has so many values removed that we cannot
hope to satisfy the constraints.

7 Extensions

We have assumed that stochastic variables are independent. There are problems which
may require us to relax this restriction. For example, a stochastic variable representing
electricity demand may depend on a stochastic variable representing temperature. It
may therefore be useful to combine stochastic programming with techniques like Bayes
networks which allow for conditional dependencies to be efficiently and effectively
represented. An alternative solution is to replace the dependent stochastic variables
by a single stochastic variable whose domain is the product space of the dependent
variables. This is only feasible when there are a small number of dependent variables
with small domains.

We have also assumed that the probability distribution of stochastic variables is
fixed, and does not depend on earlier decision variables. Again, there are problems
which may require us to relax this restriction. For example, the decision variable repre-
senting price may influence a stochastic variable representing demand. A solution may
again be to combine stochastic programming with techniques like Bayes networks. We
have also assumed that the probability distribution is known in advance. It would be
interesting to explore methods for estimating it based on observation.

Finally, we have assumed that all variable domains are finite. There are problems
which may require us to relax this restriction. For example, in scheduling power sta-
tions, we may use 0/1 decision variables to model whether a power station runs or
not, but have continuous (observed) variables to model future electricity demands. A
continuous probability density function could be associated with these variables. Simi-
larly, a continuous decision variable could be useful to model the power output. Interval
reasoning techniques could be extended to deal with such variables.

8 Related work in decision making under uncertainty

Stochastic constraint programs are closely related to Markov decision problems (MDPs).
An MDP model consists of a set of states, a set of actions, a state transition function
which gives the probability of moving between two states as a result of a given action,
and a reward function. A solution to an MDP is a policy, which specifies the best action
to take in each possible state. MDPs have been very influential in Al of late for dealing
with situations involving reasoning under uncertainty [Put94]. Stochastic constraint
programming could be used to model problems which lack the Markov property that
the next state and reward depend only on the previous state and action taken. Stochas-
tic constraint optimization could also be used to model more complex reward functions
than the (discounted) sum of individual rewards. On the other hand, MDPs can, at
least in theory, be solved efficiently using linear programming [LDK95] and can have
infinite state spaces.



procedure FC(i,6;,01,)
ifi > n then return 1
0:=0
for each d; € D(z;)
if prune(i,j) = 0 then
if check(z; — d;,6;) then
if z; € S then
p = prob(z; — d;)
9 ‘=4 — P
6 := 0+ px FC(i + 1,274 fuzb)
restore(z)
if 0 + ¢; < 6, thenreturn @
if @ > 6, then return 6

else
0 := max(,FC(i + 1,max(0, 6;),601))
restore(z)

if 6 > 6, then return 8
else restore(z)
return 6

procedure check(z; — d;,0;)
fork=i+1ton
dwo := true
for d; € D(xy)
if prune(k,l) = 0 then
if inconsistent(z; — d;,xr — d;) then
prune(k,l) =1
if z, € S then
Qk = qr— prob(zy — d)
if ¢, < 6; then return false
else dwo := false
if dwo then return false
return true

procedure restore(i)
forj=i+1ton
for dy, € D(.’L'])
if prune(j, k) =i then
prune(j, k) =0
if z; €8 then q; == q;+ prob(xj — dy)

Figure 1: The forward checking (FC) algorithm for stochastic CSPs. The algorithm
is called with the search depth, ¢ and with upper and lower bounds, 6, and 6;. If the
maximum satisfaction of all policies lies between these bounds, FC returns the exact
maximum satisfaction. If the maximum satisfaction of all policies is 6 or more, FC
returns a value greater than or equal to . If the minimum satisfaction of all policies
is 6, or less, FC returns a value less than or equal to §;. S is the set of stochastic
variables. The array g; is an upper bound ofi the probability that the stochastic variable
x; satisfies the constraints and is initially set to 1, whilst prune(i, d) is the depth at
which the value d is pruned from z; and is initially set to 0 which indicates that the

value is not yet pruned.



Stochastic constraint programs are also closely related to influence diagrams. In-
fluence diagrams are Bayesian networks in which the chance nodes are augmented
with decision and utility nodes [OS90]. The usual aim is to maximize the sum of the
expected utilities. Chance nodes in an influence diagram correspond to stochastic vari-
ables in a stochastic constraint program, whilst decision nodes correspond to decision
variables. The utility nodes correspond to the cost function in a stochastic constraint
optimization problem. It would therefore be relatively straightforward to map stochas-
tic constraint programs into influence diagrams. However, reasoning about stochastic
constraint programs is likely to be easier than about influence diagrams. First, the prob-
abilistic aspect of a stochastic constraint program is very simple and very decompos-
able as there are only unary marginal probabilities. Second, the dependencies between
decision variables and stochastic variables are represented by declarative constraints.
We can therefore borrow from traditional constraint satisfaction and optimization pow-
erful algorithmic techniques like branch and bound, constraint propagation and nogood
recording. As a result, if a problem can be modelled within the more restricted format
of a stochastic constraint program, we may be able to reason about it efficiently.

9 Redated work in constraints

Stochastic constraint programming is inspired by both stochastic integer programming
and stochastic satisfiability [LMPOQ]. It shares the advantages that constraint program-
ming has over integer programming (e.g. non-linear constraints, and constraint propa-
gation). It also shares the advantages that constraint programming has over satisfiability
(e.g. global and arithmetic constraints, and more compact models).

Mixed constraint satisfaction [FLS96] is closely related to one stage stochastic con-
straint satisfaction. In a mixed CSP, the decision variables are set after the stochastic
variables are given random values. In addition, the random values are chosen uni-
formly. In the case of full observability, the aim is to find conditional values for the
decision variables in a mixed CSP so that we satisfy all possible worlds. In the case of
no observability, the aim is to find values for the decision variables in a mixed CSP so
that we satisfy as many possible worlds. An earlier constraint satisfaction model for
decision making under uncertainty [FLMCS95] also included a probability distribution
over the space of possible worlds.

Constraint satisfaction has been extended to include probabilistic preferences on the
values assigned to variables [SLK99]. Associated with the values for each variable is a
probability distribution. A “best” solution to the constraint satisfaction problem is then
found. This may be the maximum probability solution (which satisfies the constraints
and is most probable), or the maximum expected overlap solution (which is most like
the true solution). The latter can be viewed as the solution which has the maximum
expected overlap with one generated at random using the probability distribution. The
maximum expected overlap solution could be found by solving a suitable one stage
stochastic constraint optimization problem.

Branching constraint satisfaction [FB00] models problems in which there is uncer-
tainty in the number of variables. For example, we can model a nurse rostering problem
by assigning shifts to nurses. Branching constraint satisfaction then allows us to deal



with the uncertainty in which nurses are available for duty. We can represent such prob-
lems with a stochastic CSP with a stochastic 0/1 variable for each nurse representing
their availability.

A number of extensions of the traditional constraint satisfaction problem model
constraints that are uncertain, probabilistic or not necessarily satisfied. For exam-
ple, in partial constraint satisfaction we maximize the number of constraints satisfied
[FW92]. As a second example, in probabilistic constraint satisfaction each constraint
has a certain probability independent of all other probabilities of being part of the
problem [FL93]. As a third example, both valued and semi-ring based constraint satis-
faction [BFM*96] generalizes probabilistic constraint satisfaction as well as a number
of other frameworks. In semi-ring based constraint satisfaction, a value is associated
with each tuple in a constraint, whilst in valued constraint satisfaction, a value is asso-
ciated with each constraint. However, none of these extensions deal with variables that
may have uncertain or probabilistic values. Indeed, stochastic constraint programming
can easily be combined with most of these techniques. For example, we can define
stochastic partial constraint satisfaction in which we maximize the number of satisfied
constraints, or stochastic probabilistic constraint satisfaction in which each constraint
has an associated probability of being in the problem.

10 Conclusions

We have proposed stochastic constraint programming, an extension of constraint pro-
gramming to deal with both decision variables (which we can set) and stochastic vari-
ables (which follow some probability distribution). This framework is designed to take
advantage of the best features of traditional constraint satisfaction, stochastic integer
programming, and stochastic satisfiability. It can be used to model a wide variety of
decision problems involving uncertainty and probability. We have given a semantics
for stochastic constraint programs based upon policies. These determine how decision
variables are set depending on earlier decision and stochastic variables. We have also
given a complete forward checking algorithm. Finally, we have discussed a number of
extensions of stochastic constraint programming to relax assumptions like the indepen-
dence between stochastic variables, and compared stochastic constraint programming
with other approaches for decision making under uncertainty like Markov decision
problems and influence diagrams.
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