
Dynamic Sequencing of Tasks in Simple
Temporal Networks with Uncertainty

Thierry Vidal Julien Bidot

LGP / ENIT
47, av d’Azereix - BP 1629

F-65016 Tarbes cedex, France
thierry@enit.fr

Abstract

Planning or scheduling systems that handle tasks with uncertain durations might
use an extension of the Simple Temporal Network with a distinction between con-
trollable and contingent variables and constraints. Temporal consistency is then re-
defined in terms of Dynamic Controllability, which means the ability to decide the
precise timing of tasks only at execution time, depending on observations made,
and still satisfying all no constraints. This property has been recently proven to be
checkable in polynomial time through a simple path consistency -like algorithm.
In this paper, we are interested in using such a model in scheduling applications,
in which tasks may compete for the same resource, and should thus be sequenced.
Such constraints make the problem NP-hard, and cannot be directly expressed in
a STN. In the presence of uncertainty, one might also wish to postpone task se-
quencing until execution time. This paper provides the characterization of such a
Dynamic Sequencing ability. Then we propose an incomplete checking method
still relying on the STNU for the sake of temporal reasoning efficiency, adding
further filtering techniques to account for sequencing constraints.

1 Introduction

Simple Temporal Networks [9] have proved useful in planning and scheduling appli-
cations that involve quantitative time constraints (e.g. [8, 6]) because they allow fast
checking of temporal consistency. However this formalism does not adequately ad-
dress an important aspect of real execution domains: the time of occurrence of some
events may not be under the complete control of the execution agent. For example, on
a building site, a task might wait for a supply truck, which arrival time is dependent
on the traffic, while the task duration itself might depend on the wheather conditions.
In cases like this, the execution agent does not have freedom to select the precise time
delay between events. Instead, the value is selected by Nature independently of the
agent’s choices. This can lead to constraint violations during execution even if the

1

Simple Temporal Network appeared consistent at plan generation time.
The problem of constraint satisfaction for STN with Uncertainty was addressed

formally in [13]. In this setting, the question of temporal feasibility goes beyond mere
consistency to encompass issues of “controllability.” Essentially, a network is control-
lable if there is a strategy for executing the timepoints under the agent’s control that
satisfies all requirements, including those involving the uncontrolled timepoints. Three
primary levels of controllabilityhave been identified. InStrong Controllability, there
is a static control strategy that is guaranteed to work in all situations. InWeak Con-
trollability , for all situations there is a “clairvoyant” strategy that works if all uncertain
durations are known when the network is executed. The most interesting controllability
property from a practical point of view isDynamic Controllability, where it is assumed
that each uncertain duration becomes known (is observed) just after it has finished, and
it requires that an execution strategy depend only on the past outcomes.

Algorithms have been presented for checking these properties : Strong Controlla-
bility has been shown to be tractable, while Weak Controllability is co-NP-complete [13,
5]. Recently [7] Dynamic controllability was proven to be also tractable, through the
application of a mere local consistency filtering algorithm. These results will be re-
viewed in section 2.

Actually the Dynamic Controllability (checked off line) means the ability to post-
pone effective timing of tasks until actually executing them on line, but resting assured
that no constraint will ever be violated, whatever the observations are. This can be
viewed as a least-committment approach adding flexibility to the planning and execu-
tion loop, still ensuring the plan safe execution.

In scheduling, two tasks may compete for the same resource. Then one must come
before the other, which is called a sequencing decision. For example, the same crane
might be needed for two unloading tasks that should be both executed within a given
time window. Usually, when executing a STN, such decisions have already been made
(and the added precedence link proven consistent), since a constraint such astaski
before or aftertaskj cannot be expressed through simple binary constraints between
time-points, as it will be developped in section 3. Nevertheless, in domains with tempo-
ral uncertainties, it might be the case that one sequencing choice is compulsory to make
the network Dynamically Controllable in some situations, while the reverse choice is
needed in other situations, none being valid in all situations. This calls for Dynamic
Sequencing strategies, which means postponing such decisions till execution time. We
would then rather be able to check off line that this might be done on line without
constraint violations. Such a new property will be called DS-ability (for Dynamic Se-
quencing ability) and will be characterized in section 4 together with Strong and Weak
counterparts. Then in section 5 we will propose a filtering algorithm which is incom-
plete but might help proving the DS-ability of STNU. We will conclude with a few
words on future extensions of this work.

2 Background on STN, STNU and Controllability

A Simple Temporal Network (STN) is a graph in which the edges are labelled with
upper and lower numerical bounds. The nodes in the graph representtimepoints, while

2

the edges correspond to constraints on the durations between the events. Formally, an
STN may be described as a 4-tuple< N;E; l; u > whereN is a set of nodes,E is a set
of edges, andl : E ! IR[f�1g andu : E ! IR[f+1g are functions mapping the
edges into extended Real Numbers, that are the lower and upper bounds of the interval
of possible durations. Each STN is associated with adistance graph[9] derived from
the upper and lower bound constraints. An STN is consistent if and only if the distance
graph does not contain a negative cycle, which can be determined by a local shortest
path propagation algorithm. To avoid confusion with edges in the distance graph, we
will refer to edges in the STN aslinks.

A Simple Temporal Network With Uncertainty (STNU) is similar to a STN except
the links are divided into two classes,contingent linksandrequirement links. Contin-
gent links may be thought of as representing causal processes of uncertain duration;
their finish timepoints, calledcontingenttimepoints, are controlled by Nature, subject
to the limits imposed by the bounds on the contingent links. All other timepoints, called
executabletimepoints, are controlled by the agent, who has to satisfy the bounds on the
requirement links. We assume the durations of contingent links vary independently.

Thus, an STNU is a 5-tuple� = < N;E; l; u; C >, whereN;E; l; u are as in an
STN, andC is the subset of the contingent links. We require0 < l(e) < u(e) <1 for
each contingent linke.

An STNU may be regarded as a family of STNs : aprojection[13] of � is an STN
derived from� where each requirement link is replaced by an identical STN link, and
each contingent linke is replaced by an STN link with equal upper and lower bounds
[b; b] for someb such thatl(e) � b � u(e).

Given a fixed STNU< N;E; l; u; C >, a scheduleT is a mappingT : N ! IR
whereT (x) (sometimes writtenTx) is called thetime of time-point x. A schedule is
consistentif it satisfies all the link constraints. From a schedule, we can determine the
durations of all contingent links that finish prior to a timepointx. (This may be viewed
as a partial mapping fromC to IR.) We call this thepartial executionof T with respect
to x, denoted byT�x.

Then anexecution strategyS is a mappingS : P ! T whereP is the set of
projections andT is the set of schedules. An execution strategyS is viable if S(p) is
consistent for each projectionp.

We are now ready to recall the various types of controllability [12, 7].
An STNU is Weakly Controllableif there is a viable execution strategy. This is

equivalent to saying that every projection is consistent.
An STNU is Strongly Controllableif there is a viable execution strategyS such

that
[S(p1)]x = [S(p2)]x

for each executable timepointx and each projectionsp1 andp2. Thus, a Strong ex-
ecution strategy assigns a fixed time to each executable timepoint irrespective of the
outcomes of the contingent links.

An STNU isDynamically Controllableif there is a viable execution strategyS such
that

[S(p1)]�x = [S(p2)]�x) [S(p1)]x = [S(p2)]x

3

for each executable timepointx and each projectionsp1 andp2. Thus, a Dynamic
execution strategy assigns a time to each executable timepoint that may depend on the
outcomes of contingent links in the past, but not on those in the future (or present).
This corresponds to requiring that only information available from observation may be
used in determining the schedule.

It is easy to see from the definitions that Strong Controllability implies Dynamic
Controllability, which in turn implies Weak Controllability. Strong Controllability is
known to be tractable and Weak Controllability is known to be co-NP-complete [13, 5].
Dynamic Controllability was expected to be hard to check, primarily because of a time
asymmetry where a control decision may depend on the past but not on the future, but
a recent work [7] demonstrated that this was actually a tractable problem.

We designed a local path consistency -like process, that is an algorithm analysing
every triangle of links, restricting the bounds on a link according to the two other links
in the triangle. Which required to distinguish between several cases according to the
type of the links in the triangle (contingent or requirement). A first sound but incom-
plete algorithm was designed in such a way and called 3DC. Deepening the analysis
a bit, we discovered that in some cases new types of constraints were needed to meet
the dynamic execution strategy needs. Those were calledwait constraints : a wait
< C; t > on the link from time-pointA to time-pointB means“once A is released,
the agent must wait for the possible occurrence ofC at leastt time units before she
might releaseB” . This is often required to ensure the execution will be safe whatever
the precise time of occurrence of the (observed) eventC is. We proved that suchwait
constraints could be easily added to the STNU model andregressed, which is a back-
ward propagation process, still made locally through triangles, and thus still tractable.
The resulting enhanced algorithm is called 3DC+, is sound and complete with respect
to global Dynamic controllability checking, and provides the minimal network (i.e. in
which all inconsistent values have been removed). All details on 3DC and 3DC+ are
out of the scope of this paper and can be found in [7].

3 Task Sequencing in Scheduling

3.1 Scheduling with resource and time constraints

Scheduling [10] is the problem of assigning resources and setting start times to a set
of given tasks. The constraints to be satisfied are both in terms of resource (type of re-
source demanded by each task) and time (partial order of tasks corresponding to a given
process to be carried out). For example, the well-known Job-Shop Scheduling problem
[2, 3] addresses jobs, i.e. sequences of tasks (e.g. turning, drilling, etc) complying with
a given routing, that need to be carried out simultaneously in a manufacturing process.
Resources are machines that are dedicated to certain tasks but might only process one
task at a time (i.e. their capacity equals to one). Those are calleddisjunctiveresources,
since two tasks competing on the same resource will have to besequenced. We will
call any such pair acritical pair of disjunctive tasks, and we will use lettersi andj to
refer to them,i� [resp.i+] being the start [resp. end] time-point of taski, and similarly
for j. The disjunctive constraint is hence of typei before or afterj.

4

If each task might choose among alternative resources, then the system will actually
have to carry out three steps : (1)allocatea resource to each task, (2)sequencethe sets
of tasks requiring the same resource, and (3)scheduleeach task by setting its start time.

Of course, more complex types of resource might be considered, such as cumulative
or reservoir constraints [4], but we will not address them in this paper. Moreover, we
will as a first step only tackle the sequencing problem, which means we will consider
that resources are already allocated to the tasks.

Scheduling is not only addressed in the manufacturing community as a stand-alone
process. It also appears as a sub-process of planning : once the tasks to reach a given
goal have been selected, resource allocation, task sequencing and precise timing must
also be conducted (see [10] for a comprehensive survey).

3.2 Sequencing rules and temporal constraint networks

As said before, a number of planning and scheduling systems [10, 8, 6] rely on temporal
constraint networks. One may choose between the general TCN framework where
disjunctions of intervals of duration are allowed but in which propagation techniques
are either exponential or incomplete [9], and the less expressive STN formalism, that
provides polynomial time complete temporal consistency checking. The latter choice
is ours, especially as extending to STNU preserves this tractability result.

Anyway TCN and STN are binary constraint models. Therefore none of them might
express a sequencing constrainti before or afterj, which indeed amounts to the 4-ary
constraint between time-pointsi+ � j� or j+ � i�.

This is a well-known result in qualitative time reasoning, time-point algebra [14]
being less expressive but more efficient than interval algebra [1] : the latter indeed
makes it possible to directly express the constraintbefore or afteras a binary constraint
between two interval variables. Not only are interval algebra NP-complete with respect
to temporal consistency checking, but they also make it difficult to represent durations
and dates of instantaneous events.

As far as time-point models are considered, one has two possibilities. First, one
may rely on extended models allowing non-binary constraints between time-points, in
the shape of disjuntions of binary link constraints, namely the Disjunctive Temporal
Problems (DTP) [11]. But that means applying intractable general solving methods.

The second choice is to reason over two distinct stages, first tackling the sequencing
problem, enforcing for each pair of disjunctive tasks one of the two sequences, then
checking temporal consistency in the resulting TCN [resp. STN]. This is what is done
in [2] where sequencing decisions are looked for in a search tree, checking consistency
at each step in the partially sequenced STN-like model (extended to account for fuzzy
durations), backtracking in case of failure. This process will of course be exponential
in the worst case, but the complexity is confined to the pairs of disjunctive tasks.

A similar process is suggested in [3], in which the three steps, allocation, sequenc-
ing and scheduling are addressed, and the duration of a task depends on the allocated
resource but is reduced to a single value. We will calldi;k the fixed duration for task
i when assigned to resourcek. Domains of time-pointsx are represented as intervals
of possible values[l(x); u(x)], and duration of tasks as disjunctions of single-value in-
tervals, hence the resulting temporal model amounts to a kind of general TCN. Instead

5

of searching through a tree, filtering techniques are applied to the sequencing problem,
thanks to a set of rules inspired by the Operations Research community. These are
alternated with incomplete temporal propagations in the TCN-like model. For instance
theForbidden Sequence (FS)rule checks if one of the two choices is inconsistent with
the domains of the time-points : ifi andj compete for the resourcek, this gives

if u(j+)� l(i�) < di;k + dj;k thenNOT (i before j)

Then the choicej beforei is compulsory, the linkj+ � i� is added and propagated
in the TCN. Such propagations might in turn remove possible duration values, which
means removing possible allocation choices.

More elaborated rules exist (see [3] for details), for instance to check that a task
cannot be inserted in a set of disjunctive tasks, but they induce computations of higher
complexity, therefore we decided to ignore them in this paper. On the contrary, we
will manage to adapt the FS rule to our context, namely in the context of STNU, disre-
garding for now the allocation problem but using all the information directly available
in the minimal STNU obtained after applying 3DC or 3DC+. But before describing
our technique, we first present a formal analysis of the so-calledSequencing-ability
properties in a STNU.

4 Sequencing-abilities in STN with Uncertainty

Just like controllability, sequencing-ability is a property of a temporal plan. Intuitively,
it is the possibility or not to sequence any pair of tasks competing on the same resource.
Which means one needs to model both the STNU and the sets of disjunctive tasks.

Sequencing-ability is highly connected to controllability : the possibility to se-
quence means that the execution strategy is still viable when it also considers sequenc-
ing constraints. But this might be viewed in two distinct ways.

The first one is to add the sequencing constraints in the temporal model. Then these
constraints must be satisfied as any other one. A viable strategyS will be as before a
mappingS : P ! T from the set of projections to the set of schedules, and it will be
viable if S(p) is consistent for each projectionp. Consistency means here the satisfi-
ability of both usual temporal constraints and sequencing ones. Then the three levels
of controllability can be defined as before. The first problem is that, as said before, se-
quencing constraints cannot be directly expressed in a STN. Which means one should
analyse controllability in an extended model, namely a DTP distinguishing between re-
quirement and contingent links, in other words a DTPU (Disjunctive Temporal Problem
with Uncertainty). One would hence lose the effectiveness of controllability checking
in STN. The second problem is that all constraints are considered in the same way,
and hence the same level of controllability is enforced. We would rather let the user
of the system tune such levels independently : for instance enforcing static sequencing
(made off line, before execution), but dynamically scheduling the tasks, should remain
possible. Therefore, we chose to keep relying on the STN formalism, considering three
levels of sequencing-ability that are additional demands on the execution strategyS,
such as the three levels of controllability are.

6

First we need to define the critical pairs, in which each task may be either a require-
ment or a contingent link. AnallocationA is a mappingA : E ! K whereE is the
set of links andK the set of disjunctive resources. A virtual resource callednone is
the default result, meaning this link does not correspond to any task needing a resource.
Then the functioncritical takes as input two linksi andj and returnsTrue if and
only if A(i) = A(j) 6= none .

Now we can define the three levels of sequencing-ability :

� Weak Sequencing-ability(or WS-abilityfor short) of an STNU is met if and only
if, for all pairs(i; j) such thatcritical (i; j), for all projectionp,

[S(p)]i+ < [S(p)]j� or [S(p)]j+ < [S(p)]i�

� Strong Sequencing-ability(or SS-abilityfor short) of an STNU is met if and only
if it is WS-able and if, for all pairs(i; j) such thatcritical (i; j), for all pairs
of projections(p1; p2),

[S(p1)]i+ < [S(p1)]j�) [S(p2)]i+ < [S(p2)]j�

which means the chosen sequence is the same in all situations.

� Dynamic Sequencing-ability(or DS-ability for short) of an STNU is met if and
only if it is WS-able and if, for all pairs(i; j) such thatcritical (i; j), for all
pairs of projections(p1; p2),

[S(p1)]�ij = [S(p2)]�ij

) ([S(p1)]i+ < [S(p1)]j�) [S(p2)]i+ < [S(p2)]j�)

where[S(p)]�ij is the partial execution of[S(p)] with respect to both the start
times ofi andj, which means the sequencing may depend on the outcomes of
contingent links in the past, but not on those in the future (or present).

Here again it is easy to see that SS-ability implies DS-ability which in turn implies
WS-ability. Then one might consider all possible combinations of controllability and
sequencing-ability demands. First if the STNU must be Strongly controllable, then all
start times of tasks will be set statically, which means if there is a sequencing, it will
necessarily be the same in all situations. In other words, only SS-ability is meaningful,
and actually all three levels of sequencing-ability are equivalent : WS-ability checking
is enough to ensure SS-ability.

Conversely, if the STNU is asked to be merely Weakly controllable, then the three
levels of sequencing-ability might theoretically apply. But from a practical point of
view, Weak controllability is useful in situations in which the whole situation is known
just before the execution begins [13]. Then, WS-ability is enough, and there is no
reason to try to enforce an upper level.

The most interesting case is when one wants a Dynamically controllable STNU.
First, SS-ability might be relevant. This is actually what we have considered until now,

7

that is astaticsequencing processed off line, which is unique, followed by a dynamic
scheduling processed on line.

Then, one would guess that as above, since the execution strategic is dynamic, the
sequencing choices will necessarily be dynamic, and therefore WS-ability and DS-
ability are equivalent, the former being sufficient to enforce the latter. But things are a
little more subtle, as we are going to show. Let us try to prove itad absurdum. Suppose
the STNU is Dynamically controllable and WS-able, and suppose the DS-ability is not
met, i.e. there existi; j; p1; p2, with at least one ofi andj being a contingent link, such
that

[S(p1)]�ij = [S(p2)]�ij ; [S(p1)]i+ < [S(p1)]j� ; [S(p2)]i+ > [S(p2)]j�

In other words sequencing choices are different inp1 andp2. If ever the durations of
i andj are the same inp1 andp2, thenp1 andp2 are equal up to and includingi and
j, while the decisions taken for timingi andj differ, which contradicts the Dynamic
controllability assumption. So the only possibility is that the durations ofi andj are
distinct inp1 andp2, and this difference is the reason whyi was sequenced beforej in
one case andj beforei in the other one. But this can be overome very easily.

Locally, the sequencing decision should be taken (dynamically) before one starts
eitheri or j. Therefore, if at leasti or j is a contingent link, in a dynamic execution
strategy such a decision should be made irrespective of the effective durations ofi

and/orj. This is a local DS-ability property :

� Local DS-ability is enforced in a STNU if and only if, for any critical pair(i; j),
at least one of the two sequencing choices is possible for all possible durations
of the contingent linksi and/orj

Then the following property holds : DS-ability is enforced in a STNU if and only
if both WS-ability and local DS-ability are enforced.

In the next sextion we will give an algorithm for checking local DS-ability in poly-
nomial time, which is actually an adaptation of the Forbidden Sequence rule to the
STNU context.

5 A Filtering Technique for local DS-ability checking

To enforce local DS-ability, it is enough to build a filtering algorithm that will check
any critical pair in the STNU, which means check 4-uples of time-points. This is why
we will call such an algorithm 4DS1.

i andj are the involved links corresponding to the tasks. Since the 3DC and 3DC+
algorithms for checking Dynamic controllability compute the minimal network, all
other links in this local network of 4 time-points are present with corresponding lower
and upper bounds. We might hence consider all the following intervals of durations :
[l(i); u(i)] and[l(j); u(j)] of course, but also[l(i�j�); u(i�j�)], [l(i�j+); u(i�j+)],
[l(i+j�); u(i+j�)] and[l(i+j+); u(i+j+)]. Obviouslyl(i+j�)<0 andu(i+j�)>0 :

1Please note nevertheless that not all 4-uples of variables are checked, so this algorithm is more restricted
than a general scope 4-consistency filtering technique.

8

if not, then one would already havei andj sequenced, hence they would not form a
critical pair. The same arises forl(i�j+) andu(i�j+). We will not consider these
links in the remainder, but onlyi�j� andi+j+.

We will also denoted(i) [resp. d(j)] as the duration ofi [resp. j] to consider
according to the type of link :d(i) = l(i) when i is a requirement link (one will
consider best cases) andd(i) = u(i) when i is a contingent link (one will consider
worst cases). Then the following rules hold.

� If l(i�j�) > 0 and/or l(i+j+) > 0 then j can never be executed beforei :
i+ � j� is added and propagated. The converse case is whenu(i�j�) < 0
and/oru(i+j+)<0.

� Else, ifu(i�j�)<d(i) and/oru(i+j+)<d(j) then in case of contingent links
that means there is at least one situation in whichj cannot be executed beforei :
i+ � j� is added and propagated. The converse case is when�l(i�j�)<d(j)
and/or�l(i+j+)<d(i).

� In all remaining cases, both sequencing choices area priori still possible in all
situations, hence nothing is done.

One can see this process is very similar to the FS rule, but it needs to take into
account the type of links : in case of requirement links, the sequencing is forbidden
if as usual it is strictly not possible because not enough slask is available between the
tasks, while in case of contingent links, it is forbidden if it is not possible in at least one
situation. Moreover, our rules extend the FS rule in that the minimal network provide
more information in terms of delays between end points ofi and j, which is more
precise than just the domains of these time-points.

Then, the system will behave as in [3], alternating temporal propagation and local
DS-ability checking. Of course, if both sequencing choices are forbidden, the algo-
rithm returns a global inconsistency. If a sequencing must be enforced, that becomes a
static sequencing, which will of course be propagated through 3DC or 3DC+, but will
also reduce the number of dynamic sequencing choices that are left to be made on line.

6 Conclusion and Future Work

Following previous work on dynamic properties of temporal networks in the presence
of uncertainties on duration constraints, this paper has given a thorough characteri-
zation of the DS-ability, which ensures that dynamic sequencing will also be made
possible during execution without any constraint violation.

The proposed 4DS algorithm checks this property locally, for any pair of disjuntive
tasks. It is a sound but incomplete process that ideally complements 3DC+ to deal with
both dynamic sequencing and dynamic scheduling abilities. It will help filtering out
inconsistent sequencing choices, but will also facilitate a global DS-ability checking
process that still needs to be designed. We have proven that it now merely remains to
prove WS-ability, which is going to be the next step of our research work.

A number of extensions of 4DC are possible. For instance, we have not taken into
account thewait constraints that are added by 3DC+. They imply a few more rules that

9

can be easily incorporated in the process. Another line of research is to compare our
approach to more systematic ones like for instance using DTPU, that is DTP extended
to account for Uncertainty, as in STNU. Last but not least, the work done suggests the
possibility to enlarge the idea to get the whole picture, resource allocation being also
made on line in a dynamic fashion. It seems that the allocation rules given in [3] might
very well be adapted to the STNU framework.

References
[1] J. Allen. Maintaining knowledge about temporal intervals.Communications of the ACM,

26(11):509–521, 1983.

[2] D. Dubois, H. Fargier, and H. Prade. The use of fuzzy constraints in job-shop scheduling.
In IJCAI-93 Workshop on Knowledge-Based Planning, Scheduling and Control, Chambéry
(France), 1993.

[3] M-J. Huguet and P. Lopez. An integrated constraint-based model for task scheduling and
resource assignment. InCP-AI-OR’99, 1st Int’l Workshop on Integration of AI and OR
techniques in Constraint Programming for Combinatorial Optimization Problems, Ferrara
(Italy), 1999.

[4] P. Laborie. New algorithms for propagating resource constraints in ai planning and schedul-
ing. In Working notes of the IJCAI’01 workshop on Planning with Resources, Seattle
(USA), 2001.

[5] P. Morris and N. Muscettola. Managing temporal uncertainty through waypoint controlla-
bility. In T. Dean, editor,Proceedings of the 16th International Joint Conference on A.I.
(IJCAI-99), pages 1253–1258, Stockholm (Sweden), 1999. Morgan Kaufmann.

[6] P. Morris, N. Muscettola, and I. Tsamardinos. Reformulating temporal plans for efficient
execution. InProceedings of the International Conference on Principles of Knowledge
Representation and Reasoning (KR-98), Trento (Italy), 1998.

[7] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal uncertainty.
In (soumisà) International Joint Conference on A.I. (IJCAI-01), Seattle (WA, USA), 2001.

[8] P.Laborie and M. Ghallab. Planning with sharable constraints. InProceedings of the 14th
International Joint Conference on A.I. (IJCAI-95), Montreal (Canada), 1995.

[9] E. Schwalb and R Dechter. Processing disjunctions in temporal constraint networks.Arti-
ficial Intelligence, 93:29–61, 1997.

[10] D.E. Smith, J. Frank, and A.K. J´onsson. Bridging the gap between planning and scheduling.
Knowledge Engineering Review, 15(1), 2000.

[11] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of temporal
constraints.Artificial Intelligence, 120:81–117, 2000.

[12] T. Vidal. Controllability characterization and checking in contingent temporal constraint
networks. InProceedings of the 7th International Conference on Principles of Knowledge
Representation and Reasoning (KR2000), Breckenridge (Co, USA), 2000. Morgan Kauf-
mann, San Francisco, CA.

[13] T. Vidal and H. Fargier. Handling contingency in temporal constraint networks: from con-
sistency to controllabilities.Journal of Experimental & Theoretical Artificial Intelligence,
11:23–45, 1999.

[14] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms: a revised report.
In Readings in Qualitative Reasoning about Physical Systems. Morgan Kaufman, 1989.

10

