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Abstract. It is well known that the Quantified Satisfiability problem (QSAT) is PSPACE-complete. It follows
that the problem of deciding the language of 0/1 Quantified Integer Programs (QIPs) i.e., testing whether
a linear system of inequalities has a quantified lattice point is PSPACE-complete. One aspect of research is
to focus on designing polynomial time procedures for interesting special cases. In this paper, we show that
if the constraint matrix defining a 0/1 QIP is totally unimodular (TUM), then the QIP can be decided in
polynomial time .

1 Introduction

Quantified decision problems are useful in modeling situations, wherein a policy (action) can depend upon the
effect of imposed stimuli. A typical such situation is a 2— person game. Consider a board game comprised of an
initial configuration and two players A and B each having a finite set of moves. A can win the game if the decision
problem: Given the initial configuration, does A have a first move (policy), such that for all possible first moves
of B (imposed stimulus), A has a second move, such that for all possible second moves of B,... , A eventually
wins? can be answered affirmatively. The board configuration can be represented as as a boolean expression or a
constraint matrix; the effort involved in representing the board configuration typically determines the tractability
of the decision problem.

Definition 1. Let {z1,22,...,z,} be a set of n boolean variables. A disjunction of literals (a literal is either x;
or its complement ;) is called a clause, represented by C;. A satisfiability problem of the form:
Q1$1Q2$2 ces Qnmn C (1)

where each Q; is either a 3 orV and C = Cy ACs... A Cp, is called a Quantified Satisfiability (QSAT) problem.

QSAT has been shown to be PSPACE-complete, even when there are at most 3 literals per clause (Q3SAT)
[Pap94], although polynomial time algorithms exist for the case in which there are at most two literals per clause
[APT79,Gav93].

Definition 2. Let z1,22,...2, be a set of n 0/1 variables. An integer program of the form
Q121 € {0,1}Qaz5 € {0,1},...Qnzy € {0,1}A.X < b? (2)

where each Q; is either 3 or V is called a 0/1 Quantified Integer Program (QIP).

The PSPACE-completeness of QIPs follows directly from the PSPACE-completeness of QSAT; in fact the reduc-
tion from QSAT to QIP is identical to the one from SAT to 0/1 Integer Programming. The matrix A is called
the constraint matriz of the QIP. Without loss of generality, we assume that the quantifiers are strictly alternat-

ing, 1 = 3; further we denote the existentially quantified variables using z;,i = 1,2,...,n and the universally
quantified variables using y;,4 = 1,2,...,n. Thus we can write an arbitrary 0/1 QIP as :
3z, € {0,1}Vy1 € {0,1}3zs € {0,1}Vys € {0,1} ... 3z, € {0,1}Vy, € {0,1}A.[R ¥|T < b? (3)

for suitably chosen X,¥, A, B, n



Definition 3. A TQIP is a QIP in which the constraint matriz is totally unimodular.
Definition 4. A linear program of the form
3z, € [0,1]Vy; € [0,1]325 € [0,1]Vys € [0,1]...3z, € [0,1]Vy, € [0,1]A.[® F]T < b? (4)
is called a 0/1 Quantified Linear Program (QLP).
Definition 5. A TQLP is a QLP in which the constraint matriz is totally unimodular.

The complexity of QLPs (0/1 or otherwise) is not known [Joh], although the class of TQLPs can be decided in
polynomial time [SubOla] (See §A).

2 Algorithms and Complexity

Lemma 1.

L :3z; € {0,1}Vy; € {0,1}...3z, € {0,1}Vy, € {0,1}A.[R F]T <b
& Rz € {0,1}Vy; €[0,1]...3z, € [0,1]Vy, € [0,1]A.[R 7F|T<b (5)

Proof: R =L is trivial. We focus on L = R. Pick some vector y' € {0,1}"; let x' = [z}, 2h,...,20]T =
[co, f1(y1), f2(U1,98), - oy fnm1 (Ul Yh, - - s yh_1)] be such that A.[);’ );7]T <b (where the f; are the Skolem func-
tions capturing the dependence of x; on yi,y5,...,yi_y and co is a constant in [0,1]). Likewise, pick a second
vector y! € {0,1}™ and let x/ = [z 2, .., 2T = fooa(y, v, .yt _))], such that A.[x_;’ y7’]T <b. Now
consider the parametric point

v = Ay + a1- )\).y_7’, 0 < A < 1. We shall show that the parametric point X' = \.xX' + 1- )\).x_;’, 0<A<1is
such that A.[x" y™|T < b. Observe that A.[x" y™]T = AAx' + (1= A).x" Ay + (1-=A).y" T = AX Ay]T-
A1 -Nx" (1-X2)y1T = XAX y]T+ (1 - N.A[x" y"T <Ab+(1—\).b<b, since 0 <X <1. Thus

the feasible solution space of a Quantified Linear Program is convexr and the lemma is proven. O

Lemma 2.

L: 3z, € {0,1}Vy, € {0,1}...3z, € {0,1}Vy, € {0,1}A.[R F]T <

b
& R:3z €0,1]Vy € {0,1}...3z, € [0,1]Vy, € {0,1}A.[X F]T <b

(6)
Proof: Consider any vector’y = {0,1}". Substituting this vector in System (8) results in a standard integer program

of the form X = {0,1}"G.X < &, where G is totally unimodular. Consequently. this system has a solution if and
only if the system 3X = [0,1]" G.X < d is feasible and Lemma (2) follows. O

Theorem 1. TQIPs can be relazed to TQLPs, while preserving the integrality of the solution space and hence
can be decided in polynomial time.

Proof: Use Lemma (1) to relax the universally quantified variables and Lemma (2) to relax the existentially
quantified variables to get a TQLP; then use Algorithm (A.1) in Appendiz §A to decide the TQLP in polynomial
time. O

3 Conclusion

The technique used in this paper is different from the one used in [Sub01b] to provide a polyhedral projection
procedure to decide Quantified 2—SAT problems.



A Deciding Quantified Linear Programs

In this section, we outline the strategy used in [Sub0Ola] to solve QLPs. The principal idea underlying Algorithm

(A.1) is the elimination of the quantified variables while preserving the solution space. Elimination of a univer-

sally quantified variable leaves the number of constraints unchanged, whereas the elimination of an existentially

quantified variable using a strategy such as Fourier-Motzkin elimination could lead to a quadratic increase in the

number of constraints (see [Sch87]); consequently Algorithm (A.1) could take exponential time in the worst case.

In the case of TQLPs though, it runs in time O(n®.logn), where n represents the number of variables in the QLP.
Fast convergence in TQLPs is guaranteed by the following lemma,

Lemma 3. Given a totally unimodular matriz A of dimensions m x n, for a fized n, m = O(n?), if each row is
unique.

Proof: The above lemma was proved for a superset of totally unimodular matrices viz. totally balanced matrices
in [Ans80,AF84]. It therefore follows that Lemma (3) is true. O

The import of Lemma (3) is that a totally unimodular constraint matrix cannot have more than O(n?) non-
redundant constraints. The elimination of an existentially quantified variable through Fourier-Motzkin elimination
could potentially result in O(n*) constraints. Eliminating the redundant constraints is a sort operation, that can
be implemented in time O(n5.logn) time 1.

Function QLP-DECIDE (A, f;, Q)

1: {The array Q stores the quantifiers i.e. Q[i] = Q;}
2: for (i=ndowntol) do

3: if (Q[¢§]=3) then

4: ELIM-UNIV-VARIABLE(y;)

5: if (CHECK-INCONSISTENCY()) then
6: return ( false )

7 end if

8: PRUNE-CONSTRAINTS()

9: else

10: ELIM-EXIST-VARIABLE(z;)

11: if (CHECK-INCONSISTENCY()) then
12: return ( false )

13: end if

14:  end if

15: end for

16: System is feasible
17: return

Algorithm A.1: A Quantifier Elimination Algorithm for deciding Query E

Function ELIM-UNIV-VARIABLE (A, b, )

1: Substitute z; = 0 in each constraint that can be written in the form z; > ()
2: Substitute z; = 1 in each constraint that can be written in the form z; < ()

Algorithm A.2: Eliminating Universally Quantified variable z; € [0, 1]

The procedure ELIM-EXIST-VARIABLE is implemented through the polyhedral projection algorithm known as
the Fourier-Motzkin elimination procedure [Sch87] as discussed above.

1 O(n") row vectors can be sorted in time n’.log n*; each comparison takes O(n) time.
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