Uncertain Reasoning for Dynamic Constraint
Problems

Ken Brown and David Fowler
Department of Computing Science, University of Aberdeen, UK

Standard constraint-based techniques and tools provide little support for dy-
namic problems. Many real-world problems are dynamic, and change after we
have begun executing solutions. For example, scheduling maintenance and re-
pair operations, assigning deliveries to individual vehicles, or assigning incoming
planes to arrival gates are all ”on-line” problems - initial decisions must be made
before the problem is completely specified, and new tasks keep arriving as the
solution is being executed. Such problems may be tackled in three ways: (i) rely
on a quick respecification and generation of a new solution when the change
occurs; (ii) maintain extra information during the solution process to make the
repair process easier; or (iii) take possible future changes into account when gen-
erating the initial solutions. There are three main criteria for judging different
methods: efficiency, optimality and robustness. Efficient methods allow new so-
lutions to be generated promptly after the changes occur - clearly, we need to
find a new solution before it is too late to execute it. Optimal methods generate
the best possible solution at each stage. Robust methods generate solutions that
will require minimal modification when the change occurs. Robust solutions will
tend to reduce the work to be carried out at each change, but may also increase
user satisfaction - for example, a workforce may prefer to know a day’s tasks
in advance, rather than have their schedules disrupted every time a new job is
required. These three criteria generally conflict, and so some compromises must
be made.

Our research is concerned with dynamic resource allocation problems, where
new tasks arrive as the solutions are being executed. We assume that we have
knowledge of what these new tasks may be, in the form of a probabilistic tree
of arrivals. We model this as the addition of variables to the problem. We are
investigating methods of extending the CSP formalism to include such models
of future changes, and extending the search methods to reason about likely
changes. We aim to produce contingent solutions, specifying decisions for all
likely developments of the problem. Further, our early decisions should be robust,
in that they will lead to high quality final solutions regardless of how the problem
develops. The main principle we are trying to implement is very simple: if we
expect to be given important tasks, then leave enough resources free to be able to
complete them.

Each node in our tree represents the possible arrival of a variable. Each of
the possible paths through the tree from root to leaf thus specifies a possible
sequence of arrivals. The same variable can appear in multiple nodes in the tree
(but not twice in any one path). We aim to assign values to each node in the tree
so that no constraint is violated over a path. A variable can be given different



values if it appears in different paths. Such an assignment is a contingent plan
specifying what to do when each variable arrives. If it is not possible to construct
such an assignment, then we search for sub-optimal solutions. We allow some
variables to be rejected, and we associate a utility with each variable, which we
gain if we assign it a value. If a variable is not assigned a value in a path, then we
ignore any constraints on that variable in that path. Our aim is now to maximise
the expected utility of the assignments, while satisfying the active constraints.
Thus our solutions are robust - the initial decisions take into account all the
likely future developments, and the decision that maximises utility over all of
them is chosen. So far, we have defined the formalism, and developed a forward
checking branch-and-bound algorithm, which finds the optimal solution [1]. We
have shown that the corresponding formal decision problem is NP-complete [2].
We have also developed an incomplete algorithm, which sacrifices the guarantee
of optimality to find good solutions quickly, by ignoring sub-trees with a low
maximum expected utility [1] and extendeded it to an anytime algorithm [2].
The probabilistic tree looks like a finite-horizon Markov Decision Problem. We
have shown that our complete method produces a solution faster than generating
and solving the corresponding MDP [3].

Our system is not yet a practical tool, however. The most obvious deficiency
is that we have only dealt with arrival sequences, and not arrival times. Uncer-
tainty in the arrival times could be converted automatically into a tree, where
each level is a time step. This will require temporal constraints, and temporal
domains - the domain for a variable will then be dependent on its arrival time.
Temporal reasoning will allow us to improve our anytime algorithms, and will
also allow us to improve the robustness, by expressing constraints on the use
of resources at particular times - for example, we would like to be able to state
that any job to be carried out will be fixed 4 hours before the work starts. We
are considering representations other than trees, to allow more sophisticated de-
scriptions of future events. We are also investigating using directed cyclic graphs
instead of trees, allowing arbitrarily long or even infinite horizons. These graphs
will have the same relationship to general MDPs as our trees have to finite
horizon MDPs. Finally, we would like to incorporate more of the known CSP
techniques, including enhanced consistency maintenance during search, and more
general techniques for soft constraints, optimisation and uncertainty handling.

References

1. Fowler, D. W. and Brown, K. N. ”Branching constraint satisfaction problems for
solutions robust under likely changes”, Proc CP2000, 500-504, 2000.

2. Fowler, D. W. Branching Constraint Satisfaction Problems, PhD thesis in prepa-
ration, Department of Computing Science, University of Aberdeen, 2001.

3. Fowler, D. W. and Brown, K. N. ”Branching constraint satisfaction problems and
Markov Decision Problems compared” Proc CP-AI-OR 2001, Wye College, UK,
pp81-96, 2001.



