
CS4617 Computer Architecture
Lecture 9: Pipelining

Reference: Appendix C, Hennessy & Patterson

Dr J Vaughan

13 October 2014

1/39



5-stage pipeline

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

i+4 IF ID EX MEM WB

Table: Figure C.1: Simple RISC pipeline

2/39



Forwarding

I Forwarding can be generalised to pass a result directly to the
FU that requires it

I A result is forwarded from the pipeline register at the output
of one unity to the input of another, rather than from the
result of a unit to the input of the same unit

I Example
I DADD R1, R2, R3
I LD R4, 0(R1)
I SD R4, 12(R1)

I To prevent a stall in this sequence, need to forward the values
of ALU output and memory unit output from the pipeline
registers to the ALU and data memory inputs

I Figure C8 shows all the forwarding paths for this example.

3/39



Forwarding of operand required by stores during MEM

Copyright © 2011, Elsevier Inc. All rights Reserved. 7

Figure C.8 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the memory 
output to the memory input to be stored. In addition, the ALU output is forwarded to the ALU input for the address calculation of 
both the load and the store (this is no different than forwarding to another ALU operation). If the store depended on an immediately 
preceding ALU operation (not shown above), the result would need to be forwarded to prevent a stall.

Copyright c© 2011, Elsevier Inc. All rights reserved

4/39



Data Hazards requiring stalls

I Not all data hazards can be handled by bypassing
I Example

I LD R1, 0(R2)
I DSUB R4, R1, R5
I AND R6, R1, R7
I OR R8, R1, R9

I See Figure C9

5/39



A data hazard that cannot be handled by bypassing

Copyright © 2011, Elsevier Inc. All rights Reserved. 8

Figure C.9 The load instruction can bypass its results to the AND and OR instructions, but not to the DSUB, since that 
would mean forwarding the result in “negative time.”

Copyright c© 2011, Elsevier Inc. All rights reserved

6/39



Data Hazards requiring stalls (continued)
I LD does not have the data until the end of clock cycle 4 (its

MEM cycle)
I DSUB needs to have the data by the beginning of clock cycle

4 =⇒ the data hazard from the result of a load instruction
cannot be completely eliminated with simple hardware

I The result can be forwarded immediately to the ALU for use in
the AND operation that begins 2 clock cycles after the load.

I The OR instruction receives the value through the register file
I DSUB receives the forwarded result 1 clock cycle too late
I Hardware called a pipeline interlock must be added to detect

a hazard and stall the pipeline until it is cleared.
I CPI for the stalled instruction increases by the length of the

stall (1 clock cycle in this case)
I Figure C10 shows the pipeline before and after the stall
I Forwarding to AND goes through the register file because the

stall causes instructions starting with DSUB to move 1 cycle
later

7/39



Data Hazards requiring stalls (continued)

Clock cycle

Instr No 1 2 3 4 5 6 7 8

LD R1, 0(R2) IF ID EX MEM WB

DSUB R4, R1, R5 IF ID EX MEM WB

AND R6, R1, R7 IF ID EX MEM WB

OR R8, R1, R9 IF ID EX MEM WB

Table: Figure C10(a): The MEM cycle of the load produces a value that
is needed in the EX cycle of the DSUB, which occurs at the same time

8/39



Data Hazards requiring stalls (continued)

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

LD R1, 0(R2) IF ID EX MEM WB

DSUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

Table: Figure C10(b): Resolution of the problem with a stall

9/39



Branch Hazards

I When a branch is executed, it may change PC to PC+4 or
something different

I If Ii is a taken branch, PC is not normally changed until the
end of ID, after completion of address calculation and
comparison

I Figure C11 shows that the simplest way to deal with branches
is to redo instruction fetch after the branch, having detected
the branch during ID

I The first IF is not useful and amounts to a stall

I If the branch is untaken, repetition of the IF is not necessary
since the correct instruction has been fetched

I One stall cycle for every branch gives a performance loss of
10% to 30% so techniques to deal with this are needed

10/39



Branch causing 1-cycle stall

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

Branch
instruction

IF ID EX MEM WB

Branch suc-
cessor

IF IF ID EX MEM WB

Branch suc-
cessor + 1

IF ID EX MEM WB

Branch suc-
cessor + 2

IF ID EX MEM WB

Table: Figure C11: A branch causes a 1-cycle stall in the 5-stage pipeline

11/39



Reducing Pipeline Branch Penalties

I 4 compile time schemes

I The actions for a branch are static: fixed for each branch
during the entire execution

1. Freeze or flush the pipeline: the simplest scheme
I Hold or delete any instructions after the branch until the

branch destination is known
I This is the solution shown in Figure C11
I The branch penalty is fixed and cannot be reduced by software

12/39



Reducing Pipeline Branch Penalties

2 Treat every branch as not taken.
I Do not change processor state until branch outcome is definitely

known
I Complexity: when might state change? How to reverse a change?
I This is known as predicted-not-taken
I Continue to fetch instructions as if there were no branch
I Restart fetch at target address (and turn previously fetched

instruction into a NOP) if the branch is taken
I See Figure C12

13/39



Predicted-not-taken when the branch is untaken

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

Untaken
branch
instruction

IF ID EX MEM WB

Instruction
i+1

IF ID EX MEM WB

Instruction
i+2

IF ID EX MEM WB

Instruction
i+3

IF ID EX MEM WB

Instruction
i+4

IF ID EX MEM WB

Table: Figure C12(a) Predicted-not-taken when the branch is untaken

14/39



Predicted-not-taken when the branch is taken

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

Untaken
branch
instruction

IF ID EX MEM WB

Instruction
i+1

IF idle idle idle idle

Instruction
i+2

IF ID EX MEM WB

Instruction
i+3

IF ID EX MEM WB

Instruction
i+4

IF ID EX MEM WB

Table: Figure C12(b) Predicted-not-taken when the branch is taken

15/39



Reducing Pipeline Branch Penalties

3 Treat every branch as taken
I Fetch and execute from target address as soon as it has been

computed
I In this processor, the target address is not known earlier the

branch outcome, so there is no advantage in this scheme
I In processors where the target address is known before the branch

outcome, this may make sense
I The compiler can improve performance by matching code to the

hardwares use of predicted-taken or predicted-not-taken

16/39



Reducing Pipeline Branch Penalties

4 Delayed branch
I Execution cycle with a branch delay of 1
I Branch instruction

Sequential successor 1
Branch target if taken

I The sequential successor is in the branch delay slot
This is executed in either case

I Most processors have a 1-instruction branch delay
I See Figure C13

17/39



Delayed branch when branch is untaken

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

Untaken
branch
instruction

IF ID EX MEM WB

Branch delay
instruction
(i+1)

IF ID EX MEM WB

Instruction
i+2

IF ID EX MEM WB

Instruction
i+3

IF ID EX MEM WB

Instruction
i+4

IF ID EX MEM WB

Table: Figure C13(a) Behaviour of a delayed branch if branch is untaken

18/39



Delayed branch when branch is untaken

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

Untaken
branch
instruction

IF ID EX MEM WB

Branch delay
instruction
(i+1)

IF ID EX MEM WB

Branch tar-
get

IF ID EX MEM WB

Branch tar-
get + 1

IF ID EX MEM WB

Branch tar-
get + 2

IF ID EX MEM WB

Table: Figure C13(b) Delayed branch behaviour is the same if branch is
taken

19/39



Delayed branch (continued)

I Note that another branch should not be put in the delay slot

I The compiler inserts useful instructions in the delay slot

I See Figure C14 for optimisations

20/39



Forwarding of operand required by stores during MEM

Copyright © 2011, Elsevier Inc. All rights Reserved. 9

Figure C.14 Scheduling the branch delay slot. The top box in each pair shows the code before scheduling; the bottom box shows 
the scheduled code. In (a), the delay slot is scheduled with an independent instruction from before the branch. This is the best 
choice. Strategies (b) and (c) are used when (a) is not possible. In the code sequences for (b) and (c), the use of R1 in the branch 
condition prevents the DADD instruction (whose destination is R1) from being moved after the branch. In (b), the branch delay slot 
is scheduled from the target of the branch; usually the target instruction will need to be copied because it can be reached by another 
path. Strategy (b) is preferred when the branch is taken with high probability, such as a loop branch. Finally, the branch may be 
scheduled from the not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it must be OK to execute the 
moved instruction when the branch goes in the unexpected direction. By OK we mean that the work is wasted, but the program will 
still execute correctly. This is the case, for example, in (c) if R7 were an unused temporary register when the branch goes in the 
unexpected direction.

Copyright c© 2011, Elsevier Inc. All rights reserved

21/39



Limitations on delayed-branch scheduling

1. Restrictions on instructions that may be scheduled into delay
slots

2. Ability to predict at compile time whether a branch is taken or
not

22/39



Performance of branch schemes

I Assume ideal CPI = 1

I Pipeline speedup = Pipeline depth
1+Pipeline stall cycles from branches

I Pipeline stall cycles from branches =
Branch frequency × Branch penalty

I Pipeline speedup = Pipeline depth
1+Branch frequency×Branch penalty

I Example
In deeper pipelines (e.g., MIPS R4000) it takes at least 3
pipeline stages before the branch target address is known and
an additional cycle before the branch condition is evaluated,
assuming no stalls in the conditional comparison

23/39



Performance of branch schemes: Example

I Branch penalties for the 3 simplest prediction schemes are
shown in Figure C15

I Find the effective CPI arising from branches for this pipeline,
assuming the following frequencies

I Unconditional branch: 4%
Conditional branch, untaken: 6%
Conditional branch, taken : 10%

I CPI calculated by multiplying the relative frequencies by the
corresponding penalties: see Figure C16

I Note that the differences between schemes are increased with
longer delay

24/39



Branch penalties for prediction schemes

Branch scheme Penalty uncon-
ditional

Penalty untaken Penalty taken

Flush pipeline 2 3 3

Predicted taken 2 3 2

Predicted
untaken

2 0 3

Table: Figure C15: Branch penalties for prediction schemes

25/39



CPI penalties for three branch prediction schemes and a
deeper pipeline

Branch
scheme

Unconditional
branches

Untaken
conditional

Taken con-
ditional

All branches

Frequency of
event

4% 6% 10% 20%

Stall pipeline 0.08 0.18 0.3 0.56

Predicted
taken

0.08 0.18 0.2 0.46

Predicted
untaken

0.08 0.00 0.3 0.38

Table: Figure 16: CPI penalties for three branch prediction schemes and
a deeper pipeline

26/39



Reducing the cost of branches: Prediction

I Static prediction: uses information available at compile time

I Dynamic prediction: based on program behaviour

27/39



Static branch prediction

I Can improve compile-time prediction based on information
from earlier runs

I An individual branch is often biased towards taken or untaken

I Effectiveness of any branch prediction scheme depends on the
accuracy of the scheme and the frequency of conditional
branches (3% to 24% in SPEC)

I The mis-prediction rate for integer programs is higher and
these usually have a higher branch frequency

I This limits the usefulness of static branch prediction

28/39



Dynamic branch prediction

I Simple scheme: Branch-prediction buffer

I A small memory indexed by the lower part of the address of the branch
instruction

I 1 bit to indicate branch taken/not taken

I Simple buffer, no tags

I Reduces branch delay when it is longer than the time to compute the
possible target PC

I Do not know if prediction is correct because many branches have some
low-order address bits.

I Prediction is a hint assumed correct, fetching begins in predicted
direction. If hint is wrong, prediction bit is inverted and stored.

I 1-bit prediction: assume branch almost always taken

I If branch not taken, this is a misprediction, bit changed next time, branch
prediction = not taken, but branch is taken, a misprediction

I So incorrect prediction occurs twice on the less-taken path

I A 2-bit prediction scheme must miss twice before it is changed: see
Figure C18

29/39



Forwarding of operand required by stores during MEM

Copyright © 2011, Elsevier Inc. All rights Reserved. 11

Figure C.18 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that strongly favors taken or not 
taken—as many branches do—will be mispredicted less often than with a 1-bit predictor. The 2 bits are used to encode the four 
states in the system. The 2-bit scheme is actually a specialization of a more general scheme that has an n-bit saturating counter for 
each entry in the prediction buffer. With an n-bit counter, the counter can take on values between 0 and 2n – 1: When the counter is 
greater than or equal to one-half of its maximum value (2n – 1), the branch is predicted as taken; otherwise, it is predicted as 
untaken. Studies of n-bit predictors have shown that the 2-bit predictors do almost as well, thus most systems rely on 2-bit branch 
predictors rather than the more general n-bit predictors.

Copyright c© 2011, Elsevier Inc. All rights reserved

30/39



Simple implementation of unpipelined MIPS

I Integer subset of MIPS

I Load/store word

I Branch if equal to zero

I Integer ALU operations

I Less aggressive branch implementation initially

I MIPS instruction implemented in at most 5 clock cycles

31/39



Implementation of unpipelined MIPS

1 Instruction fetch cycle (IF)
I IF ← Mem[PC];

NPC ← PC+4;
I Operation: IR used to hold instruction that is needed on

subsequent clock cycles
NPC holds next sequential PC

32/39



Implementation of unpipelined MIPS

2 Instruction decode/register fetch cycle (ID)
I A ← Regs[Rs];

B ← Regs[Rt];
Imm ← sign-extended immediate field of IR

I Operation: Decode instruction and read registers Rs and Rt from
the register file. Put them in temporary registers (A,B) for use in
later clock cycles.
Sign-extend lower 16 bits of IR and put in temporary register Imm
Decoding in parallel with register read possible because of
fixed-field encoding in MIPS
Sign-extend of immediate is also possible at the same time due to
fixed-field encoding

33/39



Implementation of unpipelined MIPS

3 Execution/effective address cycle (EX)
ALU performs 1 of 4 functions, depending on MIPS instruction
type

I Memory reference
ALUOutput ← A + Imm;
Operation: effective address formed and put in register
ALUOutput

I Register-register ALU instruction ALUOutput ← A func B;
Operation: Binary function func performed on A, B and result
put in register ALUOutput

I Register-immediate ALU instruction ALUOutput ← A op Imm;

34/39



Implementation of unpipelined MIPS

3 Execution/effective address cycle (EX) (continued)

I Branch
ALUOutput ← NPC + (Imm << 2);
Cond ← (A == 0);
Operation: The sign-extended immediate value in Imm is
multiplied by 4 to give a word offset and then added to NPC to
give the branch target address
Register A is checked to see if branch is taken
Only one branch is being considered, BEQZ, so comparison is
with 0
Note BEQZ is a pseudo-instruction that translates to BEQ with
R0 as an operand
The load-store architecture of MIPS allows effective address and
execution cycles to be combined in a single clock cycle
Instructions not included are various jumps, similar to branches

35/39



Implementation of unpipelined MIPS

4 Memory access/branch completion cycle (MEM)

I ∀ instructions : PC ← NPC ;
I Memory reference

LMD ← Mem[ALUOutput] or Mem[ALUOutput] ← B;

I Operation: Access memory if needed. If instruction is a load, put
data from memory in LMD (load memory data) register. If
instruction is a store, write data from the B register into memory

I Branch
If (cond) PC ← ALUOutput

I Operation: If the instruction branches, use the target address in
ALUOutput

36/39



Implementation of unpipelined MIPS

5 Write-back cycle (WB)
I Register-register ALU instruction

Regs[Rd] ← ALUOutput;
I Register-immediate ALU instruction

Regs[Rt] ← ALUOutput;
I Load instruction

Regs[Rt] ← LMD;
I Operation: Write the result to the register file

If instruction is load, source = LMD, dest = Rt
If instruction is ALU, source = ALUOutput

Figure C21 shows the data path

37/39



MIPS data path implementation (unpipelined)

Copyright © 2011, Elsevier Inc. All rights Reserved. 14

Figure C.21 The implementation of the MIPS data path allows every instruction to be executed in 4 or 5 clock cycles. 
Although the PC is shown in the portion of the data path that is used in instruction fetch and the registers are shown in the portion of 
the data path that is used in instruction decode/register fetch, both of these functional units are read as well as written by an 
instruction. Although we show these functional units in the cycle corresponding to where they are read, the PC is written during the 
memory access clock cycle and the registers are written during the write-back clock cycle. In both cases, the writes in later pipe 
stages are indicated by the multiplexer output (in memory access or write-back), which carries a value back to the PC or registers. 
These backward-flowing signals introduce much of the complexity of pipelining, since they indicate the possibility of hazards.

Copyright c© 2011, Elsevier Inc. All rights reserved

38/39



Implementation of unpipelined MIPS

I At the end of each clock cycle, every value computed during that clock
cycle and needed on a later clock cycle (in this instruction or the next) is
written into a storage device

I The temporary registers hold values between clock cycles for 1 instruction

I Other storage elements hold values between successive instructions

I This multi-cycle implementation approximates early processor designs

I Microcode control could be used to give a more complex processor

I Hardware redundancies could be removed but are left here to give a base
for a pipelined implementation

I For example, there are 2 ALUs: one to increment the PC and
one for ea and ALU computation. Since they are not needed
on the same clock cycle, they could be merged by using extra
multiplexers.

I It is also possible in this unpipelined processor to store data
and instructions in the same memory.

39/39


