1/20

CS4617 Computer Architecture

Lecture 8a: Pipelining (continued)
Reference: Appendix C, Hennessy & Patterson
Reference: Hamacher et al.

Dr J Vaughan

October 8, 2014

5-stage pipeline

Clock cycle
Instr No 1 2 3 4 5 6 7 8 9
i IF 1D EX MEM WB
i+1 IF ID EX MEM wB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM wB
i+4 IF ID EX MEM WB

Table: Figure C.1: Simple RISC pipeline

2/20

Simple RISC Pipeline

> A new instruction is started on each clock cycle

» Must not attempt 2 different ops with same data path
resource on same clock cycle

» e.g., ALU cannot compute ea and subtract at same time

3/20

Pipeline as a series of data paths

Time (in clock cycles)

cc1 cc2 cc3 cca . ©Cs5 . CCB | CC7 cce cca
el

-
s

Program execution order (in instructions)

Figure C.2 The pipeline can be thought of as a series of data paths shifted in time. This shows the overlap among the parts of
the data path, with clock cycle 5 (CC 5) showing the steady-state situation. Because the register file is used as a source in the ID
stage and as a destination in the WB stage, it appears twice. We show that it is read in one part of the stage and written in another
by using a solid line, on the right or left, respectively, and a dashed line on the other side. The abbreviation IM is used for
instruction memory, DM for data memory, and CC for clock cycle.

Copyright © 2011, Elsevier Inc. All rights reserved
4/20

Pipeline as a series of data paths

There are three reasons for few conflicts: refer to Fig. C2

1. Separate instruction/data memories
= No conflict on IF and data memory access
Note: if pipelined processor has same clock as unpipelined
processor, memory system must deliver 5 times the bandwidth.
2. Reg file used for reading in ID and writing in WB
To handle reads and writes to same reg, perform write in first
half of clock cycle and read in second half
3. PC not shown in Fig C2
IF stage: increment and store PC in every clock cycle
ID stage: adder must calculate branch target
Branch does not change PC until ID stage

5/20

Simple pipeline practicalities

» Pipeline registers between adjacent stages so that at the end
of a clock cycle all results from a stage are stored for use by
the following stage on the next clock cycle

» omitted from figs often but must be present

» can also be used to carry data between non-adjacent stages
e.g., Reg value for store is read during ID but not used until
MEM — passes through 2 pipeline regs
Result of an ALU op is computed in EX but not stored until
WB — passes through 2 pipeline regs

» Name pipeline regs by connecting stages:
IF/ID, ID/EX, EX/MEM, MEM/WB

» See Fig C.3

6/20

Pipeline registers between stages

7/20

Time (in clock cy:

CC1 cCc2 cca3

Figure C.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the registers prevent
interference between two different instructions in adjacent stages in the pipeline. The registers also play the critical role of carrying
data for a glven instruction from one stage to the other. The edge-triggered property of registers—that is, that the values change

ly on a clock edge—is critical. Otherwise, the data from one instruction could interfere with the execution of another!

Copyright (© 2011, Elsevier Inc. All rights reserved

Pipeline basic issues

8/20

>

Exec time of individual instructions slightly increased due to
pipeline overhead

Imbalance among pipe stages decreases performance because
clock can run no faster than slowest pipe stage

Overhead is due to pipeline register delay and clock skew
Pipeline register delay = setup time + propagation delay

Setup time = time that register input must be stable before
the clock signal that triggers a write occurs

Pipeline registers add setup time and propagation delay to the
clock cycle

Clock skew = max delay between the time the clock arrives at
any 2 registers

Once clock cycle is as small as clock skew + latch overhead,

no further pipelining is useful as there is no time left in the
cycle for useful work

Example: pipelining

» Unpipelined processor

1ns clock cycle

4 cycles ALU op, branches

5 cycles mem op

40% ALU op, 20% branch, 40% mem op

» Due to clock skew and setup, pipelining adds 0.2 ns to clock

vV vy vVvyy

» What is speedup?

9/20

Example: pipelining (continued)

> Unpipelined processor
» Avg instr exec time = clock cycle x avg CPI
= 1ns [(40% + 20%) 4 + 40% (5)]
= 4.4ns
» Pipelined
» Clock runs at speed of slowest stage and overhead =1 + 0.2
=12ns
» Speedup =
__ 4.4ns

~ 1.2ns
=37

» By Amdahl’'s Law, overhead limits speed up

Avg instr exec time unpipelined
Avg instr exec time pipelined

10/20

Hazards

» Structural: resource conflicts
» Data: data dependencies

» Control: arise from instructions that change the PC
(branches/jumps)

Hazard = stall pipeline

» All instrs later than stalled instr are also stalled

» All instrs earlier than stalled instr are NOT stalled
— These must continue in order to clear the hazard

> No new instrs fetched during stall

11/20

Performance

Avg instr time unpipelined
Avg instr time pipelined

v

Speed up from pipelining =
_ CPlypxclockcycleyp

~ CPlyxclock cycley,

_ CPly Clock cycleyp .
= TPy X Clock cycle, (Ignore cycle time overhead of

pipelining)
CPl, = Ideal CPI 4 pipelined stall clock cycles per instr
= 1 4 pipelined stall clock cycles per instr

v

v

Ignore cycle time overhead of pipelining
CPI

— _ up
Sp eedup "~ 1+4Pipeline stall cycles per instr

v

If all instrs take same number of cycles
= number of pipeline stages (also called depth of pipeline)
Then CPl,, = Pipeline depth

Pipeline depth
1+Pipeline stall cycles per instr

v

= Speedup =

12/20

Structural hazards

» Pipelining = overlapped instr execution
= Pipeline functional units
duplicate resources
— allow all possible combinations of instrs in the pipeline

» If 3 instr combination that cannot be allowed due to resource
conflict, this causes a structural hazard

> Examples

1. Functional unit not fully pipelined = instr sequence using
unpipelined unit cannot advance at 1 per clock cycle

2. Resource duplication not enough to allow all combinations of
instrs in the pipeline to execute, e.g,. not enough register file
write ports

3. Single memory for instr and data
— Data ref conflicts with IF for later instr
- Fig C4
— Stall pipeline for 1 clock cycle when data memory access
occurs = pipeline bubble (bubble)

13/20

Memory conflict for processor with 1-port memory

Time (in clock cycles)

cce cc7 CcCs

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Figure C.4 A processor with only one memory port will generate a conflict whenever a memory reference occurs. In this
example the load instruction uses the memory for a data access at the same time instruction 3 wants to fetch an instruction from
memory.

Copyright (© 2011, Elsevier Inc. All rights reserved
14/20

Structural hazard stall

Clock cycle
Instruction 1 2 3 4 5 6 7 8 9 10
Load IF 1D EX MEM WB
i+1 IF ID EX MEM WB
i+2 IF ID EX MEM wWB
i+3 Stall IF ID EX MEM WB
i+4 IF ID EX MEM wWB
i+5 IF 1D EX MEM
i+6 IF ID EX

Table: Figure C.5: A pipeline stalled for a structural hazard — a load with
one memory port

15/20

Example: Cost of load structural hazard
Assume

>

>

>

>

Data refs 40%
C'Dlpipelined =1
Clockratepjpelined = 1.05 X clockrateynpipelined

Is processor faster with or without structural hazard?

Answer

>
>

>

16/20

Avg instr time = CPI x clock cycle time
Avg instr time for ideal processor = clock cycle time;gea)

Avg instr time for structural hazard processor = CPI x clock
cycle time = (1 + 0.4 x 1) x clock Cycl"_?og’me ideal
= 1.3 x clock cycle timejgea;

= Processor without structural hazard is 1.3 times faster
= Either split the cache or use instr buffers

Designer might allow structural hazards in order to reduce
cost of unit

Data Hazards

17/20

Data hazards occur when a pipeline changes the order of
read/write accesses to operands so that the order is different
to that of an unpipelined processor

Example code

» DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

In Figure C6, DADD writes the value of R1 in the WB stage,
but DSUB reads the value during ID

AND is also affected: Write (R1) does not finish until the end
of clock cycle 5

If AND reads registers in clock cycle 4, it will get wrong result

XOR and OR operate correctly

Data hazard following DADD

Time (in clock cycles)

cc1 ccz cc3

DADD R1, R2, R3

DSUB R4, R1, RS

Program execution order (in instructions)

AND R6, R1, R7

OR R8, RI, R9

XOR R10, R1, RI1

Figure C.6 The use of the result of the DADD instruction in the next three instructions causes a hazard, since the register is
not written until after those instructions read it.

Copyright (© 2011, Elsevier Inc. All rights reserved

18/20

Forwarding

» The result is not needed by DSUB until after DADD produces
it

1. The ALU result from the EX/MEM and MEM/WB pipeline
registers is always fed back to the ALU inputs

2. If previous ALU op writes a result that is the source for the
current ALU op, the forwarded result becomes the ALU input
rather than the value read from the register file

» |f DSUB stalls, DADD completes and bypass is not activated

This also happens if there is an interrupt between DADD and
DSUB

» From Figure C6, results may be needed not just from the
immediately previous instruction but also possibly from an
instruction that started 2 cycles earlier

» Figure C7 shows the example with the bypass in place

19/20

Forwarding to deal with data hazard

Time (in clock cycles)

CC1 cc2 cc4

DSUB R4, RI, RS

AND RE, R1, R7 E R

OR R8, R1, RO

Program execution order (in instructions)

Lo
3

XOR R10, R1, RL1

Figure C.7 A set of instructions that depends on the DADD result uses forwarding paths to avoid the data hazard. The inputs
for the DSUB and AND instructions forward from the pipeline registers to the first ALU input. The OR receives its result by
forwarding through the register file, which is easily accomplished by reading the registers in the second half of the cycle and
writing in the first half, as the dashed lines on the registers indicate. Notice that the forwarded result can go to either ALU input; in
fact, both ALU inputs could use forwarded inputs from either the same pipeline register or from different pipeline registers. This
would occur, for example, if the AND instruction was AND R6,R1,R4.

Copyright (© 2011, Elsevier Inc. All rights reserved

20/20

	Pipelining (continued)

