1/12

CS4617 Computer Architecture

Lecture 8: Pipelining
Reference: Appendix C, Hennessy & Patterson
Reference: Hamacher et al.

Dr J Vaughan

October 6, 2014



Preliminaries

v

Processor cycle = time to move instr 1 step down the pipeline

v

Usually 1 clock cycle

v

Goal: balance length of pipeline stages

Perfect balance
—> Time per instruction=

v

Time per instruction unpipelined
number of stages

» = increase instructions/sec = throughput
Also decrease average number of clock cycles per instruction
(CPI)

Pipelining is not visible to the programmer

v

2/12



MIPS-64: 64-bit version of MIPS

DADD: 64-bit version of ADD
LD: 64-bit version of load

32 registers

Reg0 =0

v

v

v

v

3/12



MIPS-64 Operations (1)

4/12

ALU OpS: régdest < I€8source OP r'€8source
DADD, DSUB, AND, OR

Immediate: mnemonic suffix |
Signed/unsigned arithmetic

Unsigned operations do not generate overflow exceptions
=—> same for 32-bit and 64-bit
— DADDU, DSUBU, DADDIU



MIPS-64 Operations (2)

v

Load/store regsource (base reg) + immediate offset (16 bits)

v

EA = (base reg) + sign extended offset

v

Load = dest reg
LD: load 64-bit register contents

v

Store = source reg
SD: store 64-bit register contents

5/12



MIPS-64 Operations (3)

» Conditional branches/jumps:
consider only equality in these examples

» MIPS:
Compare pair of registers
Compare register to zero

» Branch destination: sign-extend offset and add to current PC

6/12



MIPS without pipelining

v

5 clock cycles at most

v

Load/store word
Branch
Integer ALU ops

v

v

1. IF
» IR+ (m < (PC) >)
» PC«+ (PC)+4

7/12



MIPS without pipelining (continued)

8/12

» Decode, read regs from reg file
» Test regs for equality as they are read, for a possible branch

sign-extend the offset field in case it is needed

Compute possible branch target address by adding the
sign-extended offset to the incremented PC

Possible to implement branch aggressively at the end of this
stage by storing the branch target address into the PC if the
condition test is true

Decoding in parallel with reading regs is possible because reg
specifiers are at a fixed location in a RISC architecture: fixed-field
decoding

Sign-extend immediate is also possible during decoding for the
same reason



MIPS without pipelining (continued)

9/12

3 EX (execution/effective address cycle)

vV vy vYyy

Depends on instruction type

Mem ref: ALU adds base and offset — ea

Reg-Reg ALU: ALU performs specified operation on Rs and Rt
Reg-Immed ALU: ALU performs specified operation on Rs and
sign-extended immediate value

Load-store architecture = ea and execution cycles can be
combined because no instruction needs to calculate data address
at same time as performing an operation on data



MIPS without pipelining (continued)

4 MEM

> Use ea calculated in (3)
» Load: « (M < ea>)
» Store: Reg > M < ea >

10/12



MIPS without pipelining (continued)

5 WB

> Reg-Reg ALU or load:

Reg file < result from memory or ALU

Branch needs 2 cycles

Store needs 4 cycles

All other instructions need 5 cycles

If branch frequency 12%, store frequency 10%, overall CPl is 4.54

v v vYyy

11/12



5-stage pipeline

Clock cycle
Instr No 1 2 3 4 5 6 7 8 9
i IF 1D EX MEM WB
i+1 IF ID EX MEM wB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM wB
i+4 IF ID EX MEM WB

Table: Figure C.1: Simple RISC pipeline

12/12



	Pipelining

