
CS4617 Computer Architecture
Lecture 8: Pipelining

Reference: Appendix C, Hennessy & Patterson
Reference: Hamacher et al.

Dr J Vaughan

October 6, 2014

1/12



Preliminaries

I Processor cycle = time to move instr 1 step down the pipeline

I Usually 1 clock cycle

I Goal: balance length of pipeline stages

I Perfect balance
=⇒ Time per instruction= Time per instruction unpipelined

number of stages

I =⇒ increase instructions/sec = throughput
Also decrease average number of clock cycles per instruction
(CPI)

I Pipelining is not visible to the programmer

2/12



MIPS-64: 64-bit version of MIPS

I DADD: 64-bit version of ADD

I LD: 64-bit version of load

I 32 registers

I Reg0 = 0

3/12



MIPS-64 Operations (1)

I ALU ops: regdest ← regsource op regsource
DADD, DSUB, AND, OR

I Immediate: mnemonic suffix I

I Signed/unsigned arithmetic

I Unsigned operations do not generate overflow exceptions
=⇒ same for 32-bit and 64-bit
→ DADDU, DSUBU, DADDIU

4/12



MIPS-64 Operations (2)

I Load/store regsource (base reg) + immediate offset (16 bits)

I EA = (base reg) + sign extended offset

I Load =⇒ dest reg
LD: load 64-bit register contents

I Store =⇒ source reg
SD: store 64-bit register contents

5/12



MIPS-64 Operations (3)

I Conditional branches/jumps:
consider only equality in these examples

I MIPS:
Compare pair of registers
Compare register to zero

I Branch destination: sign-extend offset and add to current PC

6/12



MIPS without pipelining

I 5 clock cycles at most

I Load/store word

I Branch

I Integer ALU ops

1. IF
I IR ← (m < (PC ) >)
I PC ← (PC ) + 4

7/12



MIPS without pipelining (continued)

2 ID
I Decode, read regs from reg file
I Test regs for equality as they are read, for a possible branch

sign-extend the offset field in case it is needed
I Compute possible branch target address by adding the

sign-extended offset to the incremented PC
I Possible to implement branch aggressively at the end of this

stage by storing the branch target address into the PC if the
condition test is true

I Decoding in parallel with reading regs is possible because reg
specifiers are at a fixed location in a RISC architecture: fixed-field
decoding

I Sign-extend immediate is also possible during decoding for the
same reason

8/12



MIPS without pipelining (continued)

3 EX (execution/effective address cycle)
I Depends on instruction type
I Mem ref: ALU adds base and offset → ea
I Reg-Reg ALU: ALU performs specified operation on Rs and Rt
I Reg-Immed ALU: ALU performs specified operation on Rs and

sign-extended immediate value
I Load-store architecture =⇒ ea and execution cycles can be

combined because no instruction needs to calculate data address
at same time as performing an operation on data

9/12



MIPS without pipelining (continued)

4 MEM
I Use ea calculated in (3)
I Load: ← (M < ea >)
I Store: Reg → M < ea >

10/12



MIPS without pipelining (continued)

5 WB
I Reg-Reg ALU or load:

Reg file ← result from memory or ALU
I Branch needs 2 cycles
I Store needs 4 cycles
I All other instructions need 5 cycles
I If branch frequency 12%, store frequency 10%, overall CPI is 4.54

11/12



5-stage pipeline

Clock cycle

Instr No 1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

i+4 IF ID EX MEM WB

Table: Figure C.1: Simple RISC pipeline

12/12


	Pipelining

