
CS4617 Computer Architecture
Lecture 7a: Instruction Set Architectures (continued)

Dr J Vaughan

October 6, 2014

1/21



Architectural expectations

I General-purpose registers, load/store architecture

I Addressing modes: displacement (address offset 12-16 bits),
immediate (size 8-16 bits), register indirect
Data sizes and types: 8, 16, 32, 64-bit integers; 64-bit IEEE
754 floating-point numbers

I Simple instructions: load, store, add, subtract, move
register-register, shift

I Branches and jumps: compare equal, compare not equal,
compare less, branch (PC-relative address at least 8 bits
long), jump, call, return

I Instruction encoding fixed if performance more important,
variable to minimize code size

I Minimal instruction set at least 16 GPRs, all addressing
modes should apply to all data transfer instructions

2/21



MIPS objectives

I Simple load-store instruction set

I Design for pipelining efficiency

I Fixed instruction set encoding

I Efficiency as a compiler target

3/21



MIPS64 registers

I 32 × 64-bit GPRs (integer registers)

I Integer registers: R0, R1, ..., R31

I 32 × floating-point registers (FPRs)

I FPRs F0, F1, ..., F31 hold 32 single-precision (32-bit) values
or 32 double-precision (64-bit) values

I When FPR holds single-precision number, the other half of
the FPR is unused

4/21



MIPS64 register operations

I Single and double-precision FP operations

I Instructions that operate on 2 single-precision numbers in a
single 64-bit FPR

I Value of R0 is always zero

I Instructions that move between FPR and GPR

I Some special registers can be transferred to and from the
GPRs. Example: FP status register

5/21



MIPS64 Data types

I 8-bit bytes

I 16-bit half words

I 32-bit words

I 64-bit double words for integer data

I 32-bit FP single precision

I 64-bit FP double precision

I MIPS64 operations operate on 64-bit integers, 32-bit FP and
64-bit FP numbers

I Bytes, half words and words in 64-bit GPRs either have leading
zeros or sign extension to fill out the 64 GPR bits. Once
loaded, they are processed with 64-bit integer operations.

6/21



MIPS addressing modes

I Immediate, 16-bit field

I Displacement, 16-bit field

I Register indirect achieved by putting 0 in displacement field

I Absolute 16-bit achieved by using R0 as the base register

7/21



Memory addressing

I Memory is byte addressable, 64-bit address

I All memory accesses must be aligned

I Mode bit allows selection of Big Endian or Little Endian

I Load-store architecture means memory-register transfers are
through loads or stores

I Memory accesses involving GPRs can be to a byte, half word,
word or double word

I FPRs may be loaded/stored with single-precision or
double-precision numbers

8/21



MIPS64 Instruction Format

I 2 addressing modes can be encoded in the opcode

I 6-bit primary opcode

I 32-bit instruction

I 16-bit fields for displacement, immediate constants or
PC-relative branch addresses

9/21



Instruction types

I I-type: Opcode (6) / Rs (5) / Rt (5) / immediate (16)

I R-type: Opcode (6) / Rs (5) / Rt (5) / Rd (5) / shamt (5) /
funct (6)

I J-type: Opcode (6) / Offset added to PC (26)

10/21



MIPS Operations

I Four classes
I Load and stores
I ALU operations
I Branches and jumps
I Floating-point operations

11/21



Notes on MIPS operations

I Any GPR or FPR may be loaded or stored

I Loading R0 has no effect

I Single-precision FP numbers use half a FP register

I Conversions between single and double precision must be done
explicitly

I The FP format is IEEE 754

12/21



Metalanguage 1

I C-like RTL with left arrow (←) used for assignment

I Mem is main memory

I Regs denotes registers

I Mem [Regs[R1]] denotes “the contents of the memory
location whose address is given by the contents of register R1”

I A subscript is appended to ← to clarify the length of the data
being transferred

I Thus ←n means “transfer an n-bit quantity”

13/21



Metalanguage 2

I x , y ← z means that z is transferred to x and y

I A subscript is used to show the selection of a bit from a field.
Bits are labelled from the MSB starting with 0. The subscript
can be a single digit (Regs[R4]0 give the sign bit of R4) or a
subrange (Regs[R3]56..63 gives the LS byte of R3)

I The variable Mem , an array that signifies main memory, is
indexed by a byte address and may transfer any number of
bytes

I A superscript is used to replicate a field (048 is a field of zeros
of length 48 bits)

I The symbol ## is used to concatenate two fields and may
appear on either side of a data transfer

14/21



Example

I R8 and R10 are 64-bit registers

I Regs[R10]32..63 ←32 (Mem[Regs[R8]]0)24##Mem[Regs[R8]]

I “the byte at the memory location with address given by the
contents of register R8 is sign-extended to form a 32-bit
quantity that is stored into the lower half of register R10.”

I The upper half of R10 is unchanged.

15/21



ALU instructions

I All ALU instructions are register-register

I Immediate forms of ALU instructions use a 16-bit
sign-extended immediate

I LUI (load upper immediate) loads bits 32-47 of a register and
sets the rest of the register to 0

I LUI allows a 32-bit constant to be built in two instructions or
a data transfer using any constant 32-bit address one extra
instruction.

I R0 can be used to implement load constant or move register
to register

I LI: DADDIU R1, R0, #79 means R1← 74

I MOV: DADDU R1, R0, R7 means R1← R7

16/21



MIPS control flow

I Compare instructions compare two registers to see if the first
is less than the second

I TRUE : destination register ← 1

I FALSE : destination register ← 0

I Compare instructions set a register, so are called set-equal,
set-not-equal, etc.

I Compare instructions have immediate forms

17/21



Jump instructions

I Two ways to specify the destination address

I A link may be made or not

I Two jumps use a 26-bit offset shifted left by 2 bits and
replace the lower 28 bits of the PC (of the next sequential
instruction after the jump) to give the destination address

I Two jump instructions specify a register that contains the
destination address

I Jump and link is used for procedure calls, placing the return
address in R31

18/21



Branches

I All branches are conditional

I The branch condition may test the source register for zero or
nonzero.

I The source register may contain a data value or the result of a
compare

I Can test if register contents are negative

I Can test for equality between registers

I Branch target address specified by 16-bit offset that is shifted
left by two places and added to the PC

I To help with pipelining, many architectures have instructions
that convert a simple branch into an arithmetic instruction

I MIPs uses conditional move on zero or not zero

19/21



MIPS ALU instructions

Example Instruction Inst. Name Meaning

DADDU R1,R2,R3 Add unsigned Regs[R1] ← Regs[R2] +
Regs[R3]

DADDIU R1,R2,#3 Add immediate
unsigned

Regs[R1]← Regs[R2] + 3

LUI R1,#42 Load upper im-
mediate

Regs[R1] ←
032##42##016

DSLL R1,R2,#5 Shift left logical Regs[R1]← Regs[R2] << 5

SLT R1,R2,R3 Set less than if (Regs[R2] < Regs[R3])
Regs[R1]← 1
else Regs[R1]← 0

Table: MIPS arithmetic & logical instructions

20/21



MIPS control flow instructions

Example
Instr

Instr Name Meaning

J name Jump PC36..63 ← name

JAL name Jump and link Regs[R31]← PC + 8;
PC36..63 ← name;
((PC + 4)− 227) ≤ name
< ((PC + 4) + 227)

Table: Typical MIPS control flow instructions

21/21


	Instruction Set Architectures(continued)

