CS4617 Computer Architecture

Lecture 7a: Instruction Set Architectures (continued)

Dr J Vaughan

October 6, 2014

1/21

Architectural expectations

2/21

General-purpose registers, load/store architecture

Addressing modes: displacement (address offset 12-16 bits),
immediate (size 8-16 bits), register indirect

Data sizes and types: 8, 16, 32, 64-bit integers; 64-bit IEEE
754 floating-point numbers

Simple instructions: load, store, add, subtract, move
register-register, shift

Branches and jumps: compare equal, compare not equal,
compare less, branch (PC-relative address at least 8 bits
long), jump, call, return

Instruction encoding fixed if performance more important,
variable to minimize code size

Minimal instruction set at least 16 GPRs, all addressing
modes should apply to all data transfer instructions

MIPS objectives

v

Simple load-store instruction set

v

Design for pipelining efficiency

v

Fixed instruction set encoding

v

Efficiency as a compiler target

3/21

MIPS64 registers

» 32 x 64-bit GPRs (integer registers)
> Integer registers: RO, R1, ..., R31
» 32 x floating-point registers (FPRs)

» FPRs FO, F1, ..., F31 hold 32 single-precision (32-bit) values
or 32 double-precision (64-bit) values

» When FPR holds single-precision number, the other half of
the FPR is unused

4/21

MIPS64 register operations

» Single and double-precision FP operations

> Instructions that operate on 2 single-precision numbers in a
single 64-bit FPR

» Value of RO is always zero
» Instructions that move between FPR and GPR

» Some special registers can be transferred to and from the
GPRs. Example: FP status register

5/21

MIPS64 Data types

6/21

8-bit bytes

16-bit half words

32-bit words

64-bit double words for integer data
32-bit FP single precision

64-bit FP double precision

MIPS64 operations operate on 64-bit integers, 32-bit FP and
64-bit FP numbers

Bytes, half words and words in 64-bit GPRs either have leading
zeros or sign extension to fill out the 64 GPR bits. Once
loaded, they are processed with 64-bit integer operations.

MIPS addressing modes

v

Immediate, 16-bit field
Displacement, 16-bit field
Register indirect achieved by putting 0 in displacement field

v

v

v

Absolute 16-bit achieved by using RO as the base register

7/21

Memory addressing

8/21

Memory is byte addressable, 64-bit address
All memory accesses must be aligned
Mode bit allows selection of Big Endian or Little Endian

Load-store architecture means memory-register transfers are
through loads or stores

Memory accesses involving GPRs can be to a byte, half word,
word or double word

FPRs may be loaded/stored with single-precision or
double-precision numbers

MIPS64 Instruction Format

v

2 addressing modes can be encoded in the opcode

v

6-bit primary opcode
32-bit instruction

v

v

16-bit fields for displacement, immediate constants or
PC-relative branch addresses

9/21

Instruction types

» |-type: Opcode (6) / Rs (5) / Rt (5) / immediate (16)

» R-type: Opcode (6) / Rs (5) / Rt (5) / Rd (5) / shamt (5) /
funct (6)

» J-type: Opcode (6) / Offset added to PC (26)

10/21

MIPS Operations

» Four classes

v

Load and stores

ALU operations
Branches and jumps
Floating-point operations

vV vy

11/21

Notes on MIPS operations

v

Any GPR or FPR may be loaded or stored
Loading RO has no effect

v

v

Single-precision FP numbers use half a FP register

» Conversions between single and double precision must be done
explicitly

The FP format is IEEE 754

v

12/21

Metalanguage 1

» C-like RTL with left arrow (<—) used for assignment
» Mem is main memory
> Regs denotes registers

» Mem [Regs[R1]] denotes “the contents of the memory
location whose address is given by the contents of register R1"

> A subscript is appended to + to clarify the length of the data
being transferred

» Thus <, means “transfer an n-bit quantity”

13/21

Metalanguage 2

14/21

X,y < z means that z is transferred to x and y

A subscript is used to show the selection of a bit from a field.
Bits are labelled from the MSB starting with 0. The subscript
can be a single digit (Regs[R4]o give the sign bit of R4) or a
subrange (Regs[R3]s6.63 gives the LS byte of R3)

The variable Mem , an array that signifies main memory, is
indexed by a byte address and may transfer any number of
bytes

A superscript is used to replicate a field (0% is a field of zeros
of length 48 bits)

The symbol #+ is used to concatenate two fields and may
appear on either side of a data transfer

Example

v

R8 and R10 are 64-bit registers
Regs[R10]32.63 <32 (Mem[Regs[R8]]o)?*## Mem[Regs[R8]]

“the byte at the memory location with address given by the
contents of register R8 is sign-extended to form a 32-bit
quantity that is stored into the lower half of register R10.”

v

v

v

The upper half of R10 is unchanged.

15/21

ALU instructions

16/21

All ALU instructions are register-register

Immediate forms of ALU instructions use a 16-bit
sign-extended immediate

LUI (load upper immediate) loads bits 32-47 of a register and
sets the rest of the register to 0

LUI allows a 32-bit constant to be built in two instructions or
a data transfer using any constant 32-bit address one extra
instruction.

RO can be used to implement load constant or move register
to register

LI: DADDIU R1, RO, #79 means R1 «+ 74
MOV: DADDU R1, RO, R7 means R1 + R7

MIPS control flow

17/21

Compare instructions compare two registers to see if the first
is less than the second

TRUE : destination register < 1
FALSE : destination register < 0

Compare instructions set a register, so are called set-equal,
set-not-equal, etc.

Compare instructions have immediate forms

Jump instructions

» Two ways to specify the destination address
» A link may be made or not

» Two jumps use a 26-bit offset shifted left by 2 bits and
replace the lower 28 bits of the PC (of the next sequential
instruction after the jump) to give the destination address

» Two jump instructions specify a register that contains the
destination address

» Jump and link is used for procedure calls, placing the return
address in R31

18/21

Branches

19/21

v

All branches are conditional

The branch condition may test the source register for zero or
nonzero.

The source register may contain a data value or the result of a
compare

Can test if register contents are negative
Can test for equality between registers

Branch target address specified by 16-bit offset that is shifted
left by two places and added to the PC

To help with pipelining, many architectures have instructions
that convert a simple branch into an arithmetic instruction

MIPs uses conditional move on zero or not zero

MIPS ALU instructions

Example Instruction Inst. Name Meaning
DADDU R1,R2,R3 Add unsigned Regs[R1] <+ Regs[R2] +
Regs[R3]
DADDIU R1,R2,#3 Add immediate Regs[R1] < Regs[R2] + 3
unsigned
LUI R1,#42 Load upper im- Regs[R1] —
mediate 0324442444010
DSLL R1,R2,#5 Shift left logical Regs[R1] <— Regs[R2] << 5
SLT R1,R2,R3 Set less than if (Regs[R2] < Regs[R3])
Regs[R1] «+ 1

else Regs[R1] < 0

Table: MIPS arithmetic & logical instructions

20/21

MIPS control flow instructions

Example Instr Name Meaning
Instr
J name Jump PC36.63 < name

JAL name Jump and link Regs[R31] «<— PC + 8;
PC36.63 < name;
((PC + 4) — 2%27) < name
< ((PC +4)+2%)

Table: Typical MIPS control flow instructions

21/21

	Instruction Set Architectures(continued)

