
CS4617 Computer Architecture
Lecture 7: Instruction Set Architectures

Dr J Vaughan

October 1, 2014

1/27



ISA Classification

I Stack architecture: operands on top of stack

I Accumulator architecture: 1 operand in ACC, implicitly

I General-purpose register architectures: Explicit operands in
register or memory

2/27



Register computers: 2 main classes

I Register-memory architecture: Access memory as part of any
instruction

I Load-store architecture: Access memory only with load and
store

I Other: Extended accumulator/special-purpose register: use
additional registers in special ways

3/27



Advantages of general-purpose register (GPR) computers

I Registers are faster than memory

I Registers are more efficient for a compiler to use

I Registers allow expression evaluation in any order

4/27



2 design decisions for GPR architectures

1. Does ALU instruction have 2 or 3 operands?

2. How many ALU operands may be memory addresses?

5/27



Expectations for a new ISA design

I General-purpose registers

I Load-store version of GPR

6/27



Memory Addressing

I Endiannness
I Little endian: Low-order bytes placed in lower addresses
I Big endian: Low-order bytes placed in higher addresses

I Alignment
I Access to object of s bytes is aligned if A mod s = 0

7/27



Addressing Modes

I Register

I Immediate

I Displacement

I Register indirect

I Indexed

I Direct (also known as Absolute)

I Memory Indirect

I Autoincrement

I Autodecrement

I Scaled

8/27



Expectations for ISA addressing modes

1. Displacement, immediate and register indirect are used in 75%
to 95% of instructions

2. Size of displacement field at least 12 to 16 bits

3. Size of immediate field at least 8 to 16 bits

9/27



Operand Types

I Type gives size

I Character 8 bits

I Half word 16 bits

I Word 32 bits

I Single-precision floating point word 32 bits

I Double-precision floating point word 64 bits

10/27



Operand Representation

I Integer: Two’s complement binary

I Character: 8-bit ASCII, 16-bit Unicode

I Floating-point: IEEE 754

I Decimal numbers: Packed/unpacked BCD

11/27



Operations at ISA level

I Arithmetic and logical

I Data transfer

I Control

I System: SVC, memory management

I Floating point

I Decimal

I String: Move, compare, search

I Graphics: Pixel and vortex operations, compress/decompress

12/27



Top ten 80x86 instructions

Instruction Usage frequency
Load 22%
Conditional branch 20%
Compare 16%
Store 12%
Add 8%
And 6%
Sub 5%
Move reg-reg 4%
Call 1%
Return 1%

Total 96%

Table: Branch condition testing

13/27



Control Flow Instructions

Instruction type Usage frequency
Conditional branches 75%
Jumps 6%
Procedure calls 19%
Procedure returns

Table: Control flow instruction frequency in integer benchmarks

14/27



Control flow addressing modes

I Most frequent branches in integer programs are to targets
that can be encoded in 4 to 8 bits.

I Displacement to be added to PC

I PC-relative branches/jumps
I Advantage

I Code runs independently of load address
I Less work for linker

15/27



Returns and indirect jumps

I PC-relative cannot be used for returns/indirect jumps

I Must be able to specify destination address dynamically so
that it can change at run time

I Possibility: name register containing target address

I Possibility: allow any addressing mode for jump target
specification

16/27



Uses of register indirect jumps

I Case/switch statements

I Virtual functions/methods in OO languages

I Function pointers that allow functions to be passed as
parameters

I Dynamically shared libraries, loaded and linked at runtime

I In these four cases, the target address is not known at compile
time

17/27



Branch condition testing

Method Examples How tested

Condition Code 80x86, ARM,
Power PC

Test special flag
bits

Condition register Alpha, MIPS

Compare and branch PA-RISC, VAX Compare is part of
the branch

Table: Branch condition testing

18/27



Comparisons

I Many comparisons are simple tests

I A large number of comparisons are with zero

Comparison Usage frequency
Not equal 2%
Equal 18%
Greater than or equal 11%
Greater than 0%
Less than or equal 33%
Less than 35%

Table: Comparison frequency in integer benchmarks

19/27



Procedure invocation

I Return address saving conventions
I Caller saves registers
I Callee saves registers

I Caller save must be used if procedures can access global
variables

I Most compilers enforce this

20/27



Control flow instruction summary

I Expect PC-relative branch displacement of at least 8 bits

I Expect register indirect and PC-relative addressing for jump
instructions to support returns and other features

21/27



Checkpoint in architectural requirements at ISA level

I Load-store architecture

I Addressing modes: displacement, immediate, register indirect

I Data: 8-, 16-, 32-, 64-bit integers, 32-, 64-bit floating point

I Simple operations

I PC-relative conditional branches

I Jump

I Link instruction for procedure call

I Register indirect jumps for procedure return

22/27



Instruction set encoding

I Opcode field

I Address specifier field

I More bits used to encode addressing modes/register fields
than to specify opcode

23/27



Competing forces in ISA encoding

I Wish to have as many registers/addressing modes as possible

I Field size influences instruction length and average
programme size

I Instructions should be encoded into lengths that are easily
handled in pipelines

I Instruction length a multiple of bytes rather than arbitrary bit
length

24/27



Instruction encoding variations

I Variable length
Example: Intel 80x86, Vax

I Fixed length
Example: Alpha, ARM, MIPS, PowerPC, SPARC, SuperH

I Hybrid
Example: IBM 360/370, MIPS16, Thumb

25/27



Embedded RISC

I Smaller code size important in embedded systems

I 32-bit fixed format not suitable

I Reduced-length RISC instructions: Thumb (ARM), MIPS16

I IBM compresses standard instructions and decompresses on
field/cache miss

I Hitachi uses fixed 16-bit format RISC, SuperH

26/27



Instruction set properties to aid compiler writing

I Regularity

I The three primary parts of an instruction set (operations, data
types, addressing modes) should be orthogonal

I Aspects of an architecture are said to be orthogonal if they
are independent

I Operations and addressing modes are orthogonal if, for every
operation to which one addressing mode can be applied, all
addressing modes are applicable

I Provide primitives, not solutions

I Special features that match a language construct or kernel
function are often unusable

I Provide instructions that fix the quantities known at compile
time as constants

27/27


	Instruction Set Architectures

