CS4617 Computer Architecture

Lecture 7: Instruction Set Architectures

Dr J Vaughan

October 1, 2014

1/27

ISA Classification

» Stack architecture: operands on top of stack
» Accumulator architecture: 1 operand in ACC, implicitly

» General-purpose register architectures: Explicit operands in
register or memory

2/27

Register computers: 2 main classes

> Register-memory architecture: Access memory as part of any
instruction

» Load-store architecture: Access memory only with load and
store

» Other: Extended accumulator/special-purpose register: use
additional registers in special ways

3/27

Advantages of general-purpose register (GPR) computers

> Registers are faster than memory
> Registers are more efficient for a compiler to use

> Registers allow expression evaluation in any order

4/27

2 design decisions for GPR architectures

1. Does ALU instruction have 2 or 3 operands?

2. How many ALU operands may be memory addresses?

5/27

Expectations for a new ISA design

» General-purpose registers

» Load-store version of GPR

6/27

Memory Addressing

» Endiannness

» Little endian: Low-order bytes placed in lower addresses
» Big endian: Low-order bytes placed in higher addresses

> Alignment
» Access to object of s bytes is aligned if A mod s =0

7/27

Addressing Modes

> Register

» Immediate

» Displacement

> Register indirect

> Indexed

» Direct (also known as Absolute)
» Memory Indirect

» Autoincrement

» Autodecrement

» Scaled

8/27

Expectations for ISA addressing modes

1. Displacement, immediate and register indirect are used in 75%
to 95% of instructions

2. Size of displacement field at least 12 to 16 bits
3. Size of immediate field at least 8 to 16 bits

9/27

Operand Types

> Type gives size

Character 8 bits

Half word 16 bits

Word 32 bits

Single-precision floating point word 32 bits

v

v

v

v

v

Double-precision floating point word 64 bits

10/27

Operand Representation

v

Integer: Two's complement binary
Character: 8-bit ASCII, 16-bit Unicode
Floating-point: IEEE 754

Decimal numbers: Packed/unpacked BCD

v

v

v

11/27

Operations at ISA level

> Arithmetic and logical

» Data transfer

» Control

» System: SVC, memory management
» Floating point

» Decimal

» String: Move, compare, search

» Graphics: Pixel and vortex operations, compress/decompress

12/27

Top ten 80x86 instructions

13/27

Instruction Usage frequency
Load 22%
Conditional branch 20%
Compare 16%
Store 12%
Add 8%
And 6%
Sub 5%
Move reg-reg 4%
Call 1%
Return 1%
Total 96%

Table: Branch condition testing

Control Flow Instructions

Instruction type Usage frequency
Conditional branches 75%

Jumps 6%

Procedure calls 19%

Procedure returns

Table: Control flow instruction frequency in integer benchmarks

14/27

Control flow addressing modes

v

Most frequent branches in integer programs are to targets
that can be encoded in 4 to 8 bits.

Displacement to be added to PC

v

v

PC-relative branches/jumps

Advantage
» Code runs independently of load address
> Less work for linker

v

15/27

Returns and indirect jumps

v

PC-relative cannot be used for returns/indirect jumps

v

Must be able to specify destination address dynamically so
that it can change at run time

Possibility: name register containing target address

v

Possibility: allow any addressing mode for jump target
specification

v

16/27

Uses of register indirect jumps

17/27

Case/switch statements
Virtual functions/methods in OO languages

Function pointers that allow functions to be passed as
parameters

Dynamically shared libraries, loaded and linked at runtime

In these four cases, the target address is not known at compile
time

Branch condition testing

Method Examples How tested
Condition Code 80x86, ARM, Test special flag
Power PC bits
Condition register Alpha, MIPS
Compare and branch PA-RISC, VAX Compare is part of
the branch

Table: Branch condition testing

18/27

Comparisons

» Many comparisons are simple tests

» A large number of comparisons are with zero

Comparison Usage frequency
Not equal 2%

Equal 18%

Greater than or equal 11%

Greater than 0%

Less than or equal 33%

Less than 35%

Table: Comparison frequency in integer benchmarks

19/27

Procedure invocation

> Return address saving conventions

» Caller saves registers
> Callee saves registers

> Caller save must be used if procedures can access global
variables

» Most compilers enforce this

20/27

Control flow instruction summary

» Expect PC-relative branch displacement of at least 8 bits

» Expect register indirect and PC-relative addressing for jump
instructions to support returns and other features

21/27

Checkpoint in architectural requirements at ISA level

22/27

Load-store architecture

Addressing modes: displacement, immediate, register indirect
Data: 8-, 16-, 32-, 64-bit integers, 32-, 64-bit floating point
Simple operations

PC-relative conditional branches

Jump

Link instruction for procedure call

Register indirect jumps for procedure return

Instruction set encoding

» Opcode field
» Address specifier field

» More bits used to encode addressing modes/register fields
than to specify opcode

23/27

Competing forces in ISA encoding

24/27

Wish to have as many registers/addressing modes as possible

Field size influences instruction length and average
programme size

Instructions should be encoded into lengths that are easily
handled in pipelines

Instruction length a multiple of bytes rather than arbitrary bit
length

Instruction encoding variations

> Variable length

Example: Intel 80x86, Vax
» Fixed length

Example: Alpha, ARM, MIPS, PowerPC, SPARC, SuperH
» Hybrid

Example: IBM 360/370, MIPS16, Thumb

25/27

Embedded RISC

v

Smaller code size important in embedded systems
32-bit fixed format not suitable
Reduced-length RISC instructions: Thumb (ARM), MIPS16

IBM compresses standard instructions and decompresses on
field/cache miss

Hitachi uses fixed 16-bit format RISC, SuperH

v

v

v

v

26/27

Instruction set properties to aid compiler writing

» Regularity

» The three primary parts of an instruction set (operations, data
types, addressing modes) should be orthogonal

» Aspects of an architecture are said to be orthogonal if they
are independent

» Operations and addressing modes are orthogonal if, for every
operation to which one addressing mode can be applied, all
addressing modes are applicable

» Provide primitives, not solutions

> Special features that match a language construct or kernel
function are often unusable

» Provide instructions that fix the quantities known at compile
time as constants

27/27

	Instruction Set Architectures

