
CS4617 Computer Architecture
Lecture 6: Virtual Memory

Dr J Vaughan

September 24, 2014

1/1

Memory management

I Memory is a resource that is essential for the execution of
instructions

I Execution model states that instructions are fetched from
memory in the fetch phase instruction cycle

I Some instruction operands are also fetched from memory

2/1

Single contiguous allocation

I One process in memory

I Code, data, stack

I Some wasted memory because process does not fit exactly in
available memory

I If process code & data too large for memory, use overlays and
swapping

3/1

Multiprogramming

I One process spends time in blocked state

I Processor time wasted until process returns to ready state

I Solution: increase number of processes in ready state to raise
probability of finding a ready process when current process
enters blocked state

I Memory must be shared between a number of processes

4/1

Fixed partitioning

I Divide memory into a fixed number of regions called partitions

I Degree of multiprogramming = number of partitions

I Some memory wasted in each partition

I Probability that a process will not fit completely in a partition
is increased

I Protection becomes an issue

I Base and Limit registers

5/1

Variable partitioning

I Degree of multiprogramming is variable

I Holes increase as processes are created and terminate

I Memory becomes fragmented

I Solution to fragmentation is hole coalescing and compaction

I Compaction requires dynamic relocation

I Allocation is still contiguous

6/1

Paging

I Plug-and-play approach to solving the fitting problem

I Memory divided into fixed-length page frames

I Process code and data divided into pages of same length as a
page frame

I Pages plug into page frames

I Memory address developed by a running process is divided
into two fields, page number and word number

I Process address = Page Number |Word Number

7/1

Example: Paging

I 32-bit address

I Bits 31..12 = 20-bit Page number, p

I Bits 11..0 = 12-bit Word number, w

I Word number is an offset or displacement within a page

I In this example, pages are 4KB long and there are 1M pages

I Common page lengths are 1K, 2K, 4K

I Process must have all its pages in memory in order to execute

I Degree of multiprogramming is limited by number of available
page frames

8/1

Paging (continued)

I Allocation is non-contiguous

I Page 0 can reside in Frame 7, Page 1 in Frame 4, Page 2 in
Frame 6

I Address translation mechanism must be provided to convert
Page Number to Frame Number

I This is the Page Table (PT)

I Processes are translated to run in memory beginning at
location 0

I Page Table provides dynamic relocation

I Static relocation still needed to deal with static linking

9/1

Demand paging

I Paging alone cannot cope with processes larger than available
number of page frames

I Principle of Locality applies

I On any one execution of a program, process will not need all
its pages

I In any time interval of execution, process will only reference a
subset of its pages within a relatively narrow address range

I The subset of referenced pages changes intermittently

I Therefore, process does not need to load all its pages in order
to make progress with execution

10/1

Virtual Memory

I All pages of a process exist on secondary storage (disk)

I Pages that are needed for execution are copied into main
memory

I Therefore, process address range is not limited by physical
main memory

I Executing process generates a Virtual address

I Translation mechanism produces a Physical address

I Tracks whether page is in primary or secondary storage

I Page is loaded into main memory on demand

11/1

Working Set

I Set of pages needed by a process in a time interval = Working
Set

I Working set changes in address values and size from time to
time

I Process can progress its execution if its working set is in
memory

I If working set is not in memory, due to degree of
multiprogramming being too large, thrashing can occur

12/1

Controlling the degree of multiprogramming

I Degree of multiprogramming needs to be controlled:
admission scheduling

I Working set concept is good, but difficult to implement in
practice

I When process requests a page that is not in main memory, an
interrupt called a page fault occurs

I Page fault rate is low when processes are making progress

I Page fault rate increases rapidly as thrashing is imminent

I Control degree of multiprogramming based on page fault rate

13/1

Fields in a page table entry (PTE)

I Page number p

I Frame number f

I Reference bit

I Dirty bit

I Secondary storage address

14/1

Replacement

I When a page is loaded, it is placed in a free page frame and
the page table is updated

I If no page frame is free, a resident page must be replaced

I The best page to replace is that one which will not be
referenced for the longest time in the future

15/1

Replacement in practice

I Locality permits the inference that recent past history is a
good indicator of near future performance

I So the best page to replace is the one that is Least Recently
Used (LRU)

I Frequency of reference in the current time interval is easier to
track, so Least Frequently Used (LFU) is a good
approximation to LRU

I The Reference Bit in the PTE is used in implementing a
variety of page replacement algorithms that approximate LFU

I If a page has been written to since being loaded, the Dirty Bit
in its PTE is set and it must be copied to secondary storage
before being replaced

16/1

The Page Table

I Returning to the example where |p| = 20 bits and |w | = 12
bits

I p is an index into the PT

I Size of PT = 1M entries

I Each PT entry comprises frame number, judgement bits and
secondary storage address

I Assume |PTE | = 32 bits

I PT must be paged: it occupies
220 × 22/212 = 210 = 1024 = 1K pages

17/1

Paging

Figure: Paging

18/1

Paging

Figure: Paging

19/1

Paging

2

the programs header at load time. Hence, programs will have a well defined address
space that can occupy a range of addresses in the first 2 GB of virtual memory. This
location can change every time the process is launched. The challenge facing memory
managers is to map this address space on disk to locations in real memory. Given that
only the active regions of programs (i.e. the routines/modules containing instructions
currently under execution) and associated data sets need to be resident in memory at any
one time, the memory manager must be able to map specific address ranges in virtual
memory to the real memory addresses where the instructions and data are actually stored.
(Remember, address ranges across a 4 GB virtual memory range are mapped unto a real
memory address range that can be 256, 512 or 1024 MB.) Intel processors provide
support for this by allowing operating systems to implement segmentation and/or paging
strategies. Windows 2000 and Linux use what is know as a demand-paged strategy based
on 4 KB units of transfer called pages. This is now discussed in detail.

Dividing memory into pages facilitates the division of programs and data sets into
discrete addressable regions or units that can be transferred from virtual memory to real
memory and vice versa. The address of the first byte in a page is used to locate individual
pages in both virtual and real memory. Influenced as they were by Intel’s hardware
support for paging, the designers of Windows and Linux decided that 4 KB sized pages
were optimal. In 32-bit systems, the 4 GB virtual memory space is divided into of 1
million 4 KB pages (1,000,000 x 4,000 = 4GB). Each individual page is addressable
using the upper (most significant) 20 bits of a 32-bit virtual address (bits 12-31: note that
2^20 = 1 million possible combinations of 20 1’s and 0’s). The remaining 12 bits (0-11)
of the 32-bit address are used to locate individual byte addresses in a page (i.e. 2^12 =
4,048 or 4KB of addresses). The following figure illustrates this.

Figure: Paging

20/1

Paging

4

In order to manage RAM and map pages in virtual memory to RAM so that the CPU can
access them, the memory manager divides RAM into 4KB Page Frames. Each page
frame will have an address in the range of 00000000 hex to FFFFF000 h. FFFFF000 is
the address of the last page in virtual memory (the 32-bit linear address space): individual
byte addresses in this page will range from FFFFF000 to FFFFFFFF. Examples of page
addresses are 00AB2000 h, 00FFF000 h, 0001B000 h, and so on. The important thing to
note in examining these addresses is that the 12 least significant bits are all 0s (i.e.
00FFF000 h equals 0000 0000 1111 1111 0000 0000 0000). Accordingly, as the first
address in each page is give by the 20 most significant bits.

Back to the Page Directory. When a process is created and run, Windows 2000 examines
the header information in the binary image to obtain important data on the program. One
critical piece of information is the size of the program in bytes; this influences the
amount of virtual memory allocated to the process. Also important are the size of the data
objects, files or related routines that the process will use to fulfil its role. The process’s
address space will be expanded to include these ‘objects.’ However, the in certain
instances the virtual memory manager may simply ‘reserve’ virtual memory addresses
and ‘commit’ them when the objects (files, data structures, or program code) are actually
loaded. When the size of a process’s address space is calculated the memory manager can
then create the Page Directory and associated Page Tables. While each process will have
just one Page Directory, it may have up to 1024 Page Tables.

The Page Directory is first created in RAM and the 32-bit address of the first byte in the
page (in the form XXXXX000) is deposited in the CPU’s CR3 (Page Directory) register.

Figure: Paging

21/1

Paging

5

This will be used to locate the Page Directory in RAM during 32-bit virtual to real
memory address translation. A Page Directory will have1024 entries of 4 bytes each (32-
bits, 4 bytes x 1024 = 4096 bytes, 4KB). Remember, the maximum number of
combinations of 10 bits is 1024 (2^10 = 1024). The 10 most significant bits (22-31) of
the virtual or linear address can take values from 0000000000 to 1111111111 (000-3FF
h). These are added to the 32-bit value in the CR3 register (e.g. 000F2000 (CR3) + AF0
(bits 22-31) = 000F2AF0) to give the byte address of the Page Directory Entry (PDE).
Each of PDE will hold the 20 bit address of a Page Table and 12 associated status and
control bits. The number of Page Directory Entries (PDE) and the number of
corresponding Page Tables depends on the size of the process and associated objects.

As indicated, the 20 bit value in a PDE is used to locate the Page Frame Number of a
Page Table in RAM. That is, the first byte address of the Page Table. Each Page Table is
4KB in size and contains 1024, 32-bit entries (i.e., records). 512 of these entries reference
Page Frames in RAM that map onto the process’s own address space, while the other 512
are used to map the system address space (i.e. the upper 2GB of virtual memory used by
the operating system and its objects) to physical pages. As with PDEs, PTE entries are
32-bits in length. 20 bits of each PTE contains the Page Frame Number/address in RAM
of the 4KB page which a process or object is physically located. The remaining 12 bits
are used for indicating the status of pages. Hence, using a two-level data structure, the
virtual memory manager is now able to locate individual 4 KB pages in RAM. To address
an individual byte within the 4096 bytes in a page, the memory manager transfers the 20
bit Page Frame address to the CPU and appends the 12 bit offset (bits 0-11) of the virtual
address in the program counter to that value to give the 32-bit real memory address of the
referenced byte of memory.

Figure: Paging

22/1

