CS4617 Computer Architecture
Lecture 6: Virtual Memory

Dr J Vaughan

September 24, 2014

Memory management

» Memory is a resource that is essential for the execution of
instructions

» Execution model states that instructions are fetched from
memory in the fetch phase instruction cycle

» Some instruction operands are also fetched from memory

Single contiguous allocation

» One process in memory
» Code, data, stack

» Some wasted memory because process does not fit exactly in
available memory

> If process code & data too large for memory, use overlays and
swapping

Multiprogramming

» One process spends time in blocked state
» Processor time wasted until process returns to ready state

» Solution: increase number of processes in ready state to raise
probability of finding a ready process when current process
enters blocked state

» Memory must be shared between a number of processes

Fixed partitioning

» Divide memory into a fixed number of regions called partitions
» Degree of multiprogramming = number of partitions
» Some memory wasted in each partition

» Probability that a process will not fit completely in a partition
is increased

» Protection becomes an issue

» Base and Limit registers

Variable partitioning

v

Degree of multiprogramming is variable

v

Holes increase as processes are created and terminate

v

Memory becomes fragmented

v

Solution to fragmentation is hole coalescing and compaction

v

Compaction requires dynamic relocation

v

Allocation is still contiguous

Paging

v

Plug-and-play approach to solving the fitting problem
Memory divided into fixed-length page frames

Process code and data divided into pages of same length as a
page frame

Pages plug into page frames

Memory address developed by a running process is divided
into two fields, page number and word number

Process address = Page Number|Word Number

Example: Paging

> 32-bit address

» Bits 31..12 = 20-bit Page number, p

» Bits 11..0 = 12-bit Word number, w

» Word number is an offset or displacement within a page

> In this example, pages are 4KB long and there are 1M pages
» Common page lengths are 1K, 2K, 4K

» Process must have all its pages in memory in order to execute

> Degree of multiprogramming is limited by number of available
page frames

Paging (continued)

Allocation is non-contiguous

Page 0 can reside in Frame 7, Page 1 in Frame 4, Page 2 in
Frame 6

Address translation mechanism must be provided to convert
Page Number to Frame Number

This is the Page Table (PT)

Processes are translated to run in memory beginning at
location 0

Page Table provides dynamic relocation

Static relocation still needed to deal with static linking

Demand paging

10/1

Paging alone cannot cope with processes larger than available
number of page frames

Principle of Locality applies

On any one execution of a program, process will not need all
its pages

In any time interval of execution, process will only reference a
subset of its pages within a relatively narrow address range
The subset of referenced pages changes intermittently

Therefore, process does not need to load all its pages in order
to make progress with execution

Virtual Memory

11/1

All pages of a process exist on secondary storage (disk)

Pages that are needed for execution are copied into main
memory

Therefore, process address range is not limited by physical
main memory

Executing process generates a Virtual address
Translation mechanism produces a Physical address
Tracks whether page is in primary or secondary storage
Page is loaded into main memory on demand

Working Set

12/1

Set of pages needed by a process in a time interval = Working
Set

Working set changes in address values and size from time to
time

Process can progress its execution if its working set is in
memory

If working set is not in memory, due to degree of
multiprogramming being too large, thrashing can occur

Controlling the degree of multiprogramming

» Degree of multiprogramming needs to be controlled:
admission scheduling

» Working set concept is good, but difficult to implement in
practice

» When process requests a page that is not in main memory, an
interrupt called a page fault occurs

» Page fault rate is low when processes are making progress
» Page fault rate increases rapidly as thrashing is imminent

» Control degree of multiprogramming based on page fault rate

13/1

Fields in a page table entry (PTE)

v

Page number p

Frame number f

v

Reference bit
Dirty bit

Secondary storage address

v

v

v

14/1

15/1

Replacement

» When a page is loaded, it is placed in a free page frame and
the page table is updated

> If no page frame is free, a resident page must be replaced

> The best page to replace is that one which will not be
referenced for the longest time in the future

Replacement in practice

16/1

Locality permits the inference that recent past history is a
good indicator of near future performance

So the best page to replace is the one that is Least Recently
Used (LRU)

Frequency of reference in the current time interval is easier to
track, so Least Frequently Used (LFU) is a good
approximation to LRU

The Reference Bit in the PTE is used in implementing a
variety of page replacement algorithms that approximate LFU

If a page has been written to since being loaded, the Dirty Bit
in its PTE is set and it must be copied to secondary storage
before being replaced

The Page Table

17/1

Returning to the example where |p| = 20 bits and |w| = 12
bits

p is an index into the PT

Size of PT = 1M entries

Each PT entry comprises frame number, judgement bits and
secondary storage address
Assume |PTE| = 32 bits

PT must be paged: it occupies
220 % 22 /212 = 210 — 1024 = 1K pages

Paging

0 Frame
f#-1

Virtual Address

Frame Io ffset

offse f# ~

Referenced
word

Page Table

Physical Address

Main mnemory

Figure: Paging

18/1

Paging

04K
4K—8K
8K-1ZK
12K-16K
16K-20K
20K-24K
24K—-28K
28K—-32K
32K-36K
36K—40K

Virtual
Addresses

19/1

B

2
|

s

—

Frame O

¥

o | » |

Frame 1

¥

Page
Table

Frame 2

04K

AK—-8K

8k-1ZK

Physical

Memory Addresses

Paging

20/1

Virtual Address

Program

Register

Page Table

[Frame#

Page
Frame

Paging

LY

Main Memory

Figure: Paging

21/1

Paging

Page Diroctory Register

Figure: Paging

Paging

] Secondary
Virtual Address Main Memory Memory
Page # | O)
Translation
Lookaside Buffer
o
d
» TLB hit ——
3
4
Load
Page Table page
TLB miss R
Absent
Page fault

Figure: Paging

22/1

