
CS4617 Computer Architecture
Lecture 5: Memory Hierarchy 3

Dr J Vaughan

September 22, 2014

1/37

Six basic cache optimisations

Average memory access time = Hit time +Miss rate×Miss penalty
Thus, cache optimisations can be divided into 3 categories

Reduce the miss rate Larger block size, larger cache size, higher
associativity

Reduce the miss penalty Multilevel caches, give reads priority over
writes

Reduce the time for a cache hit Avoid address translation when
indexing the cache

2/37

Reducing cache misses

All misses in single-processor systems can be categorised as:

Compulsory The first access to a block cannot be in cache

I Called a cold-start miss or first-reference miss

Capacity Misses due to cache not being large enough to
contain all blocks needed during execution of a
program

Conflict In set-associative or direct mapped organisations,
conflict misses occur when too many blocks are
mapped to the same set, leading to some blocks
being replaced and later retrieved

I Also called collision misses
I Hits in an associative cache that become misses

in an n-way set-associative cache are due to
more than n requests on some high-demand sets

3/37

Conflict miss categories

Conflict misses can be further classified in order to emphasise the
effect of decreasing associativity

Eight-way Conflict misses due to going from fully-associative (0
conflicts) to 8-way associative

Four-way Conflict misses due to going from 8-way to 4-way
associative

Two-way Conflict misses due to going from 4-way to 2-way
associative

One-way Conflict misses due to going from 2-way associative
to direct mapping

4/37

Conflict misses

I In theory, conflicts are the easiest problem to solve

I Fully associative organisation prevents all conflict misses

I However, this may slow the CPU clock rate, lead to lower
overall performance and is expensive in hardware
(Why is this?)

I Capacity has to be addressed by increasing cache size

I If upper-level memory is too small, time is wasted in moving
blocks to and fro between the two memory levels – thrashing

5/37

Comments on the 3-C model

I The 3-C model gives insight into average behaviour

I Changing cache size changes conflict misses as well as
capacity misses, since a larger cache spreads out references to
more blocks

I The 3-C model ignores replacement policy: it is difficult to
model and generally less significant

I In certain circumstances the replacement policy can lead to
anomalous behaviour such as poorer miss rates for larger
associativity
Relate to replacement in demand paging: Belady’s anomaly –
does not occur with stack algorithms

I Many techniques that reduce miss rates also increase hit time
or miss penalty

6/37

First Optimisation: larger block size to reduce miss rate

Q: How does larger block size reduce miss rate?
A: Locality =⇒ ↑number of ‘working set’ elements available in
cache

I There is a trade-off between block size and miss rate

I Larger blocks take advantage of spatial locality

I Larger blocks also reduce compulsory misses
Because for fixed cache size, #blocks↓ as block size↑

I But larger blocks increase the miss penalty

I The increase in miss penalty may outweigh the decrease in
miss rate

7/37

Example
I Memory system takes 80 clock cycles of overhead and then

delivers 16 bytes every 2 clock cycles.
I Referring to this table, which block size has the smallest

average memory access time for each cache size?

Cache sizes

Block size
(kB)

4K (%) 16K (%) 64K (%) 256K (%)

16 8.57 3.94 2.04 1.09

32 7.24 2.87 1.35 0.7

64 7.0 2.64 1.06 0.51

128 7.78 2.77 1.02 0.49

256 9.51 3.29 1.15 0.49

Table: Miss rate vs block size for different-sized caches (Fig B.11, H&P)
8/37

Example (continued)

Average memory access time = Hit time +Miss rate×Miss penalty

I Assume hit time is 1 clock cycle independent of block size

I Recall from problem statement: 80 clock cycles of overhead
and then 16 bytes every 2 clock cycles

I 16-byte block, 4KB cache

Average memory access time = 1+ .0857×82 = 8.027 clock cycles

I 256-byte block, 256KB cache

Average memory access time = 1+.0049×112 = 1.549 clock cycles

9/37

Example (continued)

Cache sizes

Block
size
(kB)

Miss
penalty
(clock
cycles)

4K (%) 16K
(%)

64K
(%)

256K
(%)

16 82 8.027 4.231 2.673 1.894

32 84 7.082 3.411 2.134 1.588

64 88 7.16 3.323 1.933 1.449

128 96 8.469 3.659 1.979 1.47

256 112 11.651 4.685 2.288 1.549

Table: Mean memory access time vs block size for different-sized caches
(Fig B.12, H&P 5e)

10/37

Optimization 2: Larger caches to reduce miss rate

↑Cache size =⇒ ↑Prob(referenced word in cache) =⇒ ↓Miss rate

I Possible longer hit time

1. As cache size ↑, time to search cache for a given address ↑
2. As cache size ↑, it may be necessary to place cache off-chip

I Possible higher cost and power

I Popular in off-chip caches

11/37

Optimization 3: Higher associativity to reduce miss rate

I 8-way set associative is as effective in reducing misses as fully
associative

I 2:1 cache rule of thumb
I A direct mapped cache of size N has about the same miss rate

as a 2-way set-associative cache of size N/2

I Increasing block size decreases miss rate (∵ locality) and
increases miss penalty (∵ ↑time to transfer larger block)

I Increasing associativity may increase hit time
(∵ H/W for parallel search increases in complexity)

I Fast processor clock cycle encourages simple cache designs

12/37

Example

I Assume that higher associativity would increase clock cycle
time:

I Clock cycle time2−way = 1.36× Clock cycle time1−way

I Clock cycle time4−way = 1.44× Clock cycle time1−way

I Clock cycle time8−way = 1.52× Clock cycle time1−way

I Assume hit time = 1 clock cycle

I Assume miss penalty for direct mapped cache = 25 clock
cycles to a L2 cache that never misses

I Assume miss penalty need not be rounded to an integral
number of clock cycles

13/37

Example (continued)

Under the assumptions just stated:

For which cache sizes are the following statements regarding
average memory access time (AMAT) true?

I AMAT8−way < AMAT4−way

I AMAT4−way < AMAT2−way

I AMAT2−way < AMAT1−way

14/37

Answer

I Average memory access time8−way

= Hit time8−way + Miss rate8−way ×Miss penalty8−way

= 1.52 + Miss rate8−way × 25 clock cycles

I Average memory access time4−way

= 1.44 + Miss rate4−way × 25 clock cycles

I Average memory access time2−way

= 1.36 + Miss rate2−way × 25 clock cycles

I Average memory access time1−way

= 1.00 + Miss rate1−way × 25 clock cycles

15/37

Answer (continued)

Using miss rates from Figure B.8, Hennessy & Patterson:

I Average memory access time1−way = 1.00 + 0.098×25 = 3.44
for a 4KB direct-mapped cache

I Average memory access time8−way = 1.52 + 0.006×25 = 1.66
for a 512KB 8-way set-associative cache

Note from the table in Hennessy & Patterson Figure B.13 that,
beginning with 16KB, the greater hit time of larger associativity
outweighs the time saved due to reduction in misses

16/37

Associativity example: table from H & P Figure B.13

Associativity

Block size
(kB)

1-way 2-way 4-way 8-way

4 3.44 3.25 3.22 3.28

8 2.69 2.58 2.55 2.62

16 2.23 2.4 2.46 2.53

32 2.06 2.3 2.37 2.45

64 1.92 2.14 2.18 2.25

128 1.52 1.84 1.92 2.0

256 1.32 1.66 1.74 1.82

512 1.2 1.55 1.59 1.66

Table: Memory access times for k-way associativities. Boldface signifies
that higher associativity increases mean memory access time

17/37

Optimization 4: Multilevel caches to reduce miss penalty

I Technology has improved processor speed at a faster rate than
DRAM

I Relative cost of miss penalties increases over time
I Two options:

I Make cache faster?
I Make cache larger?
I Do both by adding another level of cache

I L1 cache fast enough to match processor clock cycle time

I L2 cache large enough to intercept many accesses that would
go to main memory otherwise

18/37

Memory access time

I Average memory access time =
HittimeL1 + Miss rateL1 ×Miss penaltyL1

I Miss penaltyL1 = Hit timeL2 + Miss rateL2 ×Miss penaltyL2
I Average memory access time = Hit timeL1 + Miss rateL1 ×

(Hit timeL2 + Miss rateL2 ×Miss penaltyL2)

where Miss rateL2 is measured in relation to requests that have
already missed in L1 cache

19/37

Definitions

I Local miss rate = Number of cache misses
Total accesses to this cache

For example
Miss rateL1 = # L1 cache misses

accesses from CPU

Miss rateL2 = # L2 cache misses
accesses from L1 to L2

I Global miss rate =
Number of misses in a cache

Total number of memory accesses from the processor

For example
At L1, global miss rate = Miss rateL1
At L2, global miss rate =Miss rateL1 ×Miss rateL2
L1 cache misses = # accesses from L1 to L2

=⇒ Miss rateL1 ×Miss rateL2 = # L2 cache misses
accesses from CPU

I The local miss rate is large for L2 cache because the L1 cache
has dealt with the most local references

I Global miss rate may be more useful in multilevel caches

20/37

Memory stalls

Average memory stall time per instruction
= Misses per instructionL1 × Hit timeL2
+Misses per instructionL2 ×Miss penaltyL2

21/37

Example: memory stalls

I 1000 memory references, 40 L1 misses, 20 L2 misses

I What are the miss rates?

I Assume L2 miss penalty is 200 clock cycles

I Hit timeL2 = 10 clock cycles

I Hit timeL1 = 1 clock cycle

I 1.5 memory references per instruction

I Ignore writes

I What is average memory access time?

I What is average stall cycles per instruction?

22/37

Answer: memory stalls

I Miss rateL1 = 40/1000 = 4%

I Miss rateL2 = 20/40 = 50%

I Global miss rateL2 = 20/1000 = 2%

Average memory access time = 1 + 4%× (10 + 50%× 200)
= 1 + 4%× 110
= 5.4 clock cycles

23/37

Answer: memory stalls (continued)
1000 memory references, 1.5 references per instruction
=⇒ 667 instructions

Misses × 1.5 = Misses per 1000 instructions
40× 1.5 = 60 L1 misses per 1000 instructions
20× 1.5 = 30 L2 misses per 1000 instructions
Average memory stalls per instruction
= Misses per instructionL1 × Hit timeL2
+Misses per instructionL2 ×Miss penaltyL2
= (60/1000)× 10 + (30/1000)× 200
= 6.6 clock cycles
assuming misses are distributed uniformly between instructions and
data
Subtracting Hit timeL1 from average memory access time and
multiplying by the average number of memory references per
instruction gives the same memory stall result:
(5.4− 1.0)× 1.5 = 4.4× 1.5 = 6.6 clock cycles
All these formulae are for combined reads and writes, assuming a
write-back L1 cache

24/37

Effect of write-through cache

I A write-through L1 cache sends all writes to L2, not just the
misses

I Miss rates and relative execution time change with the size of
L2 cache

1. Global cache miss rate is similar to L2 miss rate, provided that
|L2 cache| >> |L1 cache|

2. Local cache miss rate is not a good measure of L2 caches.
Miss rateL2 is f (Miss rateL1) and will be varied by changing
the L1 cache. Use the global cache miss rate to evaluate L2
cache

25/37

Parameters of L2 caches

I Speed of L1 cache affects processor clock rate

I Speed of L2 cache affects Miss penaltyL1

L2 questions:

I Will L2 cache lower the average memory access time part of
CPI?

I How much does it cost?
I What should the size of L2 cache be?

I Everything in L1 is likely to be in L2 also =⇒ |L2| >> |L1|
I If |L2| just a little bigger than |L1|, the local miss rate,

Miss rateL2 will be high
I Does set associativity make sense for L2 caches?

26/37

Example

I Impact of L2 cache associativity on Miss penaltyL2
I Hit timeL2 for direct mapping = 10 clock cycles

I 2-way set associativity increases hit time by 0.1 clock cycles to
10.1 clock cycles (∵ ↑circuit complexity)

I Local Miss rateL2 for direct mapping = 25%

I Local Miss rateL2 for 2-way set associativity = 20%

I Miss penaltyL2 = 200 clock cycles

27/37

Answer

For a direct-mapped L2 cache,
Miss penalty1−way L2 = 10 + 0.25× 200
= 60 clock cycles
Miss penalty2−way L2 = 10.1 + 0.2× 200
= 50.1 clock cycles
In practice, L2 caches are usually synchronized with the processor
and L1 cache.
Thus, Hit timeL2 must be an integral number of cycles: 10 or 11
clock cycles in this example
Miss penalty2−way L2 = 10 + 0.2× 200
= 50 clock cycles
or
Miss penalty2−way L2 = 11 + 0.2× 200
= 51 clock cycles
So Miss penaltyL2 can be reduced by reducing Miss rateL2

28/37

Inclusion and exclusion

I Are L1 data in the L2 cache?

I Multilevel inclusion
I L1 data are always in the L2 cache

I Inclusion is desirable because consistency between I/O and
caches can be checked just by examining L2 cache. If there are
smaller blocks for a smaller L1 cache and larger blocks for a
larger L2 cache (as in the Pentium 4: 64 byte/128 byte), then
inclusion can be maintained with more work on an L2 miss:

I L2 cache must invalidate all L1 blocks that map onto the L2
block to be replaced

I This causes a higher L1 miss rate

I Because of this complexity, many designers keep the block
size the same at all cache levels

29/37

Exclusion

I If L2 cache is only slightly bigger than L1 cache, use
Multilevel exclusion

I L1 data never in L2

I Cache missL1 causes a swap of blocks between L1 and L2
instead of replacement

I This prevents wasting space in L2 cache

I Example: AMD Opteron

I L1 cache design is simpler if there is a compatible L2 cache

30/37

Example

I Write-through at L1 is less risky (in terms of time penalty) if
there is write-back at L2 (to reduce the cost of repeated
writes) and multilevel inclusion is used

I Cache design: balance fast hits and few misses

I L2 cache: hit rate lower than L1

I L2 cache: concentrate on fewer misses

I This leads to larger caches and techniques to reduce the miss
rate, such as higher associativity and larger blocks

31/37

Optimization 5: Give priority to read misses over writes to
reduce the miss penalty

I Serve reads before writes have been completed

I Consider the complexities of a write buffer

I Write buffer of appropriate size is important for write-through
cache

I Memory access is complicated because the write buffer may
hold the updated value of a location needed on a read miss

32/37

Example

SW R3, 512(R0); M[512]← R3 (cache index 0)
LW R1, 1024(R0); R1← M[1024] (cache index 0)
LW R2, 512(R0); R2← M[512] (cache index 0)

I Assume direct-mapped write-through cache that maps 512
and 1024 to the same block

I Assume 4-word write-through buffer, not checked on a read
miss

I Is value in R2 always equal to value in R3?

33/37

Answer

This is a read-after-write data hazard
M[512]← R3 ;(cache index 0) Writes to write buffer before M[512]
R1← M[1024] ;(cache index 0) Cache miss because of direct
mapping
R2← M[512] ;(cache index 0) Cache miss: loads R2 from L2
cache
But L2 may not have been updated from the write buffer at the
time that the Load R2 instruction is executed
Approaches to dealing with read-after-write data hazard

1. Read miss waits until write buffer is empty

2. Check write buffer contents on a read miss. If there are no
conflicts and memory is available, let the read miss continue

All desktop and server processes use approach 2 and give reads
priority over writes

34/37

Reducing costs with write-back cache

If a read miss causes replacement of a dirty block

I Normally, write out dirty block, than read memory

I Instead, copy dirty block to buffer, read memory, write out
dirty block

I This reduces processor waiting time on read

I Allowance must also be made for read-after-write data hazard

35/37

Optimization 6: Avoid address translation during indexing
of cache to reduce hit time

I Hit time can affect processor clock rate

I Even in processors that take several cycles to access cache,
cache access time can limit clock cycle rate

I Cache must deal with translation of virtual address from
processor to physical memory address

I Make common case fast =⇒ use virtual addresses for cache
→ virtual cache

I Cache that uses physical addresses → physical cache

36/37

Cache hit time

I There are two tasks:
I Index the cache
I Compare addresses

I Index the cache: physical or virtual address?

I Tag comparison: physical or virtual address?

I Full virtual addressing for both indices and tags eliminates
translation time from a cache hit

I However, potential problems with virtual cache are:
I Page-level protection is part of virtual to physical address

translation
I Cache flushing on process switch because virtual addresses are

different to physical addresses
I Aliasing due to different processes using different virtual

addresses for the same physical address

37/37

	Memory Hierarchy 3

