
CS4617 Computer Architecture
Lecture 4: Memory Hierarchy 2

Dr J Vaughan

September 17, 2014

1/25



Write stall

I Occurs when processor must wait for writes to complete
during write-through

I Write stalls can be reduced by using a write buffer

I Processor execution overlapped with memory updating

I Write stalls still possible with write buffers

2/25



Two options on a write miss

I Write allocate: A cache line is allocated on the miss, followed
by the write actions

I No-write allocate: Write misses do not affect cache. The
block is modified in lower-level memory and stays out of cache
until a read attempt occurs.

3/25



Example

I Fully associative write-back cache, initially empty
I The following sequence of Memory operation [address] occurs

I Write Mem [100]
I Write Mem [100]
I Write Mem [200]
I Write Mem [200]
I Write Mem [100]

Compare number of hits and misses for no-write allocate with
write allocate

4/25



Solution

I No-write allocate: address 100 not in cache
I Miss on write [100], no allocation on write
I Miss on write [100]
I Address 200 not in cache
I Miss on read [200], line allocated
I Hit on write [200]
I Miss on write [100]

I Total: 4 misses, 1 hit

5/25



Solution

I Write allocate
I Miss on write [100], line allocated
I Hit on write [100]
I Miss on read [200], line allocated
I Hit on write [200]
I Hit on write [100]

I Total: 2 misses, 3 hits

I Write-back caches tend to use write allocate

I Write-through caches tend to use no-write allocate

6/25



Cache performance

Average memory access time = Hit time+Miss rate×Miss penalty
Example

Size (kB) Instruction
Cache

Data Cache Unified Cache

16 3.82 40.9 51.0

32 1.36 38.4 43.3

Table: Misses per 1000 instructions for instructions, data and unified
caches of different sizes (from Fig. B.6 Hennessy & Patterson)

Which has the lower miss rate: a 16kB instruction cache with a
16kB data cache or a 32kB unified cache?

7/25



Cache performance example: assumptions

I Assume 36% of instructions are data transfers

I Assume a hit takes 1 clock cycle

I Assume miss penalty is 100 clock cycles

I A load or store hit takes 1 extra clock cycle on a unified cache
if there is only one cache port to satisfy two simultaneous
requests.

I Assume write-through caches with a write buffer and ignore
stalls due to the write buffer

8/25



Cache performance example: Solution for split cache

Miss rate =
Misses

1000 instructions
/1000

Memory accesses
Instruction

Each instruction access comprises 1 memory access, so
Miss rate16kB instruction = 3.82/1000

1.0 = 0.004 misses/memory access
36% instructions are data transfers, so
Miss rate16kB data = 40.9/1000

0.36 = 0.114 misses/memory access

9/25



Cache performance example: Solution for unified cache

Unified miss rate needs to account for instruction and data accesses
Miss rate32kB unified = 43.3/1000

1.0+0.36 = 0.0318 misses/memory access
From Fig. B.6, 74% of memory accesses are instruction references.
The overall miss rate for split caches is
(74%× 0.004) + (26%× 0.114) = 0.0326
Thus, a 32kB unified cache has a lower effective miss rate than
two 16kB caches.

10/25



Cache performance example: solution (ctd)

Average memory access time =
%instructions× (Hit time + Instruction miss rate×Miss penalty) +
%data× (Hit time + Data miss rate ×Miss penalty)
Average memory access timesplit =
74%× (1 + 0.004× 200) + 26%× (1 + 0.114× 200) =
(74%× 1.8) + (26%× 23.8) = 1.332 + 6.188 = 7.52
Average memory access timeunified =
74%× (1 + 0.0318× 200) + 26%× (1 + 1 + 0.0318× 200) =
74%× 7.36) + (26%× 8.36) = 5.446 + 2.174 = 7.62
Thus the split caches in this example (2 memory ports per clock
cycle) have a better average memory access time despite the worse
effective miss rate.
Note that the miss penalty is 200 cycles here even though the
problem stated it as 100 cycles. Also note the addition of an extra
cycle in the 1-port unified cache to allow for conflict resolution
between the instruction fetch and memory operand fetch/store
units.

11/25



Average memory access time and processor performance

I If processor executes in-order, average memory access time
due to cache misses predicts processor performance

I Processor stalls during misses and memory stall time
correlates well with average memory access time

I CPU time = (CPU execution clock cycles +
Memory stall clock cycles)× Clock cycle time

I Clock cycles for a cache hit are usually included in CPU
execution clock cycles

12/25



Example

I In-order execution computer

I Cache miss penalty 200 clock cycles

I Instructions take 1 clock cycle if memory stalls are ignored

I Average miss rate = 2%

I Average 1.5 memory references per instruction

I Average 30 cache misses per 1000 instructions

I Calculate misses per instruction and miss rate

13/25



Answer

CPU time =
IC × (CPIexecution + Memory stall clock cycles

Instruction )× Clock cycle time
CPU timewith cache

= IC × [1.0 + (30/1000× 200)]× Clock cycle time
= IC × 7.0× Clock cycle time

14/25



Answer (continued)

I Calculating performance using miss rate

CPU time
= IC × (CPIexecution + Miss rate × Memory accesses

Instruction ×
Miss penalty)× Clock cycle time
CPU timewith cache

= IC × (1.0 + (1.5× 2%× 200))× Clock cycle time
= IC × 7.0× Clock cycle time

I Thus clock cycle time and instruction count are the same,
with or without a cache

I CPI ranges from 1.0 for a “perfect cache” to 7.0 for a cache
that can miss.

I With no cache, CPI increases further to 1.0 + 200× 1.5 = 301

15/25



Cache behaviour is important in processors with low CPI
and high clock rates

I The lower the CPIexecution, the higher the relative impact of a
fixed number of cache miss clock cycles

I When calculating CPI, the cache miss penalty is measured in
processor clock cycles for a miss

I Thus, even if memory hierarchies for 2 computers are the
same, the processor with the higher clock rate has a larger
number of clock cycles per miss and therefore a higher
memory portion of CPI

16/25



Example: Impact of different cache organisations on
processor performance

I CPI with perfect cache = 1.6

I Clock cycle time = 0.35ns

I Memory references per instruction = 1.4

I Size of caches = 128kB

I Cache block size = 64 bytes =⇒ 6-bit offset into block
I Cache organisations

I Direct mapped
I 2-way associative =⇒ 2 blocks/set =⇒ 128 bytes/set =⇒

1k sets =⇒ 10-bit index

17/25



Example (ctd)

I For set-associative cache, tags are compared in parallel. Both
are fed to a multiplexor and one is selected if there is a tag
match and the valid bit is set (Fig. B.5 Hennessy &
Patterson)

I Speed of processor ∝ speed of cache hit

I Assume processor clock cycle time must be stretched × 1.35
to allow for the selection multiplexor in the set associative
cache

I Cache miss penalty = 65ns

I Hit time = 1 clock cycle

I Miss rate of direct-mapped 128kB cache = 2.1%

I Miss rate of 2-way set associative 128kB cache = 1.9%
I Calculate

1. Average memory access time
2. Processor performance

18/25



Solution: Average memory access time

Average memory access time = Hit time+Miss rate×Miss penalty
Average memory access time1−way

= 0.35 + (0.021× 65) = 1.72ns
Average memory access time2−way

= 0.35× 1.35 + (0.019× 65)
= 1.71ns
Note the stretching factor of 1.35 to allow for the multiplexer in
the 2-way associative cache.
Average memory access time is better for the 2-way set-associative
cache.

19/25



Solution: Processor performance

CPU time =
IC × (CPIexecution + Misses

Instruction ×Miss penalty)× Clock cycle time
= IC × [(CPIexecution × Clock cycle time)
+(Miss rate × Memory accesses

Instruction ×Miss penalty × Clock cycle time)]
Substitute 65ns for (Miss penalty × Clock cycle time)
CPU time1−way = IC × [1.6×0.35+(0.021×1.4×65)] = 2.47× IC
CPU time2−way = IC × [1.6× 0.35× 1.35 + (0.019× 1.4× 65)]
= 2.49× IC
Relative performance is

CPU time2−way

CPU time1−way
= 2.49

2.47 = 1.01

Direct mapping is slightly better since the clock cycle is stretched
for all instructions in the case of 2-way set-associative mapping,
even thought there are fewer misses. Direct-mapped cache is also
easier to build.

20/25



Miss penalty for out-of-order execution processors

Define the delay in this case to be the total miss latency minus
that part of the latency that is overlapped with other productive
processor operations.
Memory stall cycles

Instruction

= Misses
Instruction × (Total miss latency − Overlapped miss latency)

I Out-of-order (OOO) execution processors are complex

I Must consider what is start and end of a memory operation in
an OOO processor

I Must decide length of latency overlap: what is the start of
overlap with processor or when is a memory operation stalling
the processor?

21/25



Out-of-order execution processors

I In an OOO processor, only committed operations are seen at
the retirement pipeline stage

I Define a processor as being stalled in a clock cycle if it does
not retire the maximum possible number of instructions in
that cycle

I Attribute the stall to the first instruction that could not be
retired

I Note that applying an optimisation to improve a stall time
may not improve execution time because another type of stall
previously hidden behind the targeted stall could be revealed

22/25



Out-of-order execution processors (ctd)

I OOO processors can tolerate some cache miss delays without
losing performance

I Simulation is normally used in the evaluation of memory
hierarchy effects on OOO processor performance.

I The start of a memory operation can be measured from the
time the memory instruction is queued in the instruction
window, or when the address is generated or when the
instruction is sent to the memory system. It is important to
use the same convention in all calculations when making
comparisons

23/25



Example

I Same as previous example, but this time the processor with
the longer cycle time is OOO and still has a direct-mapped
cache. In spite of direct mapping (no multiplexer needed), the
stretch factor of 1.35 is applied to give a longer cycle time

I Assume that 30% of the 65ns miss penalty can be overlapped,
so that the average CPU memory stall time is 45.5ns

24/25



Solution

Average memory access time1−way ,OOO

= 0.35× 1.35 + (0.021× 45.5)
= 1.43ns
CPU time1−way ,OOO

= IC × [1.6× 0.35× 1.35 + (0.021× 1.4× 45.5)]
= 2.09× IC
This compares to 2.47× IC and 2.49× IC for the direct and 2-way
in-order cases respectively.
Thus, even with a slower clock cycle time and a higher miss rate,
the OOO computer can be faster if it can hide 30% of the miss
penalty.

25/25


	Memory Hierarchy 2

