
CS4617 Computer Architecture
Lecture 3: Memory Hierarchy 1

Dr J Vaughan

September 15, 2014

1/25



Important terms

Cache fully associative write allocate

Virtual memory dirty bit unified cache

Memory stall cycles block offset misses per instruction

Direct mapped write-back block

Valid hit data cache locality

Block address hit time address trace

Table: Memory terms

2/25



Important terms (ctd)

Write-through Cache miss Set

Instruction cache Page fault Random replacement

Average memory
access time

Miss rate Index field

Cache hit n-way set associative No-write allocate

Page Least recently used Write buffer

Miss penalty Tag field Write stall

Table: Memory terms

3/25



Term definitions 1

Cache The first level of memory met when the address
leaves the processor. The word cache is often used to
mean buffering commonly-used items for re-use

Cache hit Success: finding a referenced item in cache

Cache miss Failure: the required item is not in the cache

Block The fixed number of bytes of main memory that is
copied to the cache in one transfer operation. This
transfer happens when a cache miss occurs

Temporal locality A referenced item is likely to be referenced again
in the near future

Spatial locality Other data in the same block as a referenced item
are likely to be needed soon

4/25



Term definitions 2

Virtual memory The extension of memory to an address space that
encompasses the physical residence on disk of some
programs and data

Page A fixed-size block of virtual memory address space,
usually in the range 1K to 4K.
A page is either in main memory or on disk

Page fault An interrupt generated when the processor references
a page that is neither in cache nor in main memory

5/25



Term definitions 3

Memory stall cycles Number of cycles during which processor is
stalled waiting for a memory access

Miss penalty Cost per cache miss

Address trace A record of instruction and data references with a
count of the number of accesses and miss totals

6/25



Term definitions 4

I CPU execution time =
(CPU clock cycles + Memory stall cycles) × clock cycle time
Assumes CPU clock cycles include time to handle a cache hit
and that the processor is stalled during a cache miss

I Memory stall cycles = Number of misses × Miss penalty
= IC × Misses

Instruction × Miss penalty

= IC × Memory accesses
Instruction × Miss rate × Miss penalty

where IC = instruction count

I Miss rate
Fraction of cache accesses that miss =
Number of accesses that miss

Number of accesses

I Miss rates and miss penalties are different for reads and writes
but are averaged here

7/25



Example

I Computer cycles per instruction (CPI), is 1.0 when all memory
accesses are cache hits. The only data accesses are loads and
stores, representing a total of 50% of the instructions.
If the miss penalty is 25 clock cycles and the miss rate is 2%,
how much faster would the computer be if all instructions
were cache hits?

8/25



Solution

If all accesses are cache hits:

I CPU execution time =
(CPU clock cycles + Memory stall cycles) × Clock cycle =
(IC × CPI + 0) × Clock cycle = IC × 1.0 × Clock cycle

With real cache:

I Memory stall cycles =
IC × Memory accesses

Instruction × Miss rate × Miss penalty
= IC × (1 + 0.5) × 0.02 × 25 = IC × 0.75
where (1 + 0.5) represents 1 instruction access and 0.5 data
accesses per instruction

9/25



Solution (continued)

I Total performance:
CPU execution timecache
= (IC × 1.0 + IC × 0.75) × Clock cycle time
= 1.75 × IC × Clock cycle time
Performance ratio = CPU execution timecache

CPU execution time

= 1.75×IC×Clock cycle time
1.0×IC×Clock cycle time

= 1.75

I So computer with no cache misses is 1.75 times faster

10/25



Misses per instruction

I Misses
Instruction = Miss rate×Memory accesses

Instruction count

= Miss rate × Memory accesses
Instruction

I This formula is useful when the average number of memory
accesses per instruction is known
It allows conversion of miss rate into misses per instruction
and vice versa

I In the last example,
Misses

Instruction

= Miss rate × Memory accesses
Instruction

= 0.02 × 1.5 = 0.03

11/25



Example

I Same data as previous example

I What is memory stall time in terms of instruction count?

I Assume miss rate of 30 per 1000 instructions

Answer

I Memory stall cycles
= Number of misses × Miss penalty
= IC × Misses

Instruction × Miss penalty
= IC × 0.75

12/25



Four Memory Hierarchy Questions

Q1: Block placement Where can a block be placed in the upper
level?

Q2: Block identification How is a block found if it is in the upper
level?

Q3: Block replacement Which block should be replaced on a miss?

Q4: Write strategy What happens on a write?

13/25



Q1: Where can a block be placed in cache?
Three organisations

Direct mapping Line = (Block address) mod (Number of blocks in
cache)

Associative mapping Block can be placed in any line

Set-associative mapping n lines per set = n-way set
Set = block address mod Number of sets in cache
Place block in any set line

14/25



Mapping

I Direct mapping = 1-way set-associative

I Associative with m blocks = m-way set associative
I Most processor caches are either

I Direct mapped
I 2-way set associative
I 4-way set associative

15/25



Q2: How is a block found if it is in cache?

I A tag on every block frame gives the block address

I All possible tags are searched in parallel for tag of required
block

I A valid bit used to indicate if block contents are valid

I If the valid bit is not set, there is no match

16/25



Memory address from processor

I Address =< Block address >< Block offset >

I Block address =< Tag >< Index >

I Index field selects set

I Tag field used to search in set for a hit

I Offset selects data when block found

17/25



Q3: Which block should be replaced on a cache miss?

I Direct mapping
I Only 1 block frame checked for a hit, only that block can be

replaced

I Fully associative or set associative
I Choice of which block to replace

18/25



Replacement strategies

I Random
I Selects block for replacement randomly

I LRU
I Relies on locality

I FIFO
I LRU is difficult to calculate so the oldest block is selected for

replacement

19/25



Q4: What happens on a write?

I Reads dominate processor cache access

I All instruction fetches are reads

I Most instructions do not write to memory
I Make common case fast

I Optimize for reads

20/25



Common case is easy to make fast

I Read block from cache at the same time that the tag is read
and compared

I Block read begins as soon as block address is available

I If read is a hit, requested part of block is passed to CPU
immediately

I If read is a miss, no benefit, no harm, just ignore the value
read

21/25



Write

I Tag checking and block modification cannot occur in parallel

I Therefore, writes take longer than reads

I Processor specifies size of write (between 1 and 8 bytes) so
only that part of the block can be changed

I Reads can access more bytes than necessary without difficulty

22/25



Write policies

I Write-through
I Information written to the block in cache and to lower-level

memory

I Write-back
I Only write to block in lower-level memory if dirty bit set when

block is replaced

23/25



Advantages of write-back

I Writes occur at the speed of cache memory

I Multiple writes within a block require only 1 write to
lower-level memory

I So write-back uses less memory bandwidth which is useful in
multiprocessors

I Write-back uses the memory hierarchy and interconnect less
than write-through so it saves power and is appropriate for
embedded applications

24/25



Advantages of write-through

I Easier to implement than write-back

I Cache is always clean so misses never cause a write to the
lower level

I Next lower level has current copy of data which simplifies data
coherence

I Data coherence is important for multiprocessors and I/O

I Multilevel caches make write-through more viable for the
upper-level caches as the writes need only propagate to the
next lower level rather than all the way to main memory

25/25


	Memory Hierarchy 1

