
CS4617 Computer Architecture
Lecture10: Pipelining (continued)

Reference: Appendix C, Hennessy & Patterson

Dr J Vaughan

October 13, 2014

1/29



MIPS data path implementation (unpipelined)

Copyright © 2011, Elsevier Inc. All rights Reserved. 14

Figure C.21 The implementation of the MIPS data path allows every instruction to be executed in 4 or 5 clock cycles. 
Although the PC is shown in the portion of the data path that is used in instruction fetch and the registers are shown in the portion of 
the data path that is used in instruction decode/register fetch, both of these functional units are read as well as written by an 
instruction. Although we show these functional units in the cycle corresponding to where they are read, the PC is written during the 
memory access clock cycle and the registers are written during the write-back clock cycle. In both cases, the writes in later pipe 
stages are indicated by the multiplexer output (in memory access or write-back), which carries a value back to the PC or registers. 
These backward-flowing signals introduce much of the complexity of pipelining, since they indicate the possibility of hazards.

Copyright c© 2011, Elsevier Inc. All rights reserved

2/29



Basic Pipeline for MIPS

I Figure C21 is adapted by adding interstage registers to
become the pipeline shown in Figure C22.

I The pipeline registers carry data and control from one stage
to the next

I Values are copied along the registers until no longer needed

I The temporary registers used in the unpipelined processor are
unsuitable as the values they contain could be overwritten
before being completely used

I All registers needed to hold values temporarily between clock
cycles within one instruction are contained in pipeline registers

I The pipeline registers carry data and control from one stage
to the next

I A value needed in a later stage must be copied between
pipeline registers until it is no longer needed

3/29



MIPS data path implementation (pipelined)

Copyright © 2011, Elsevier Inc. All rights Reserved. 15

Figure C.22 The data path is pipelined by adding a set of registers, one between each pair of pipe stages. The registers serve to 
convey values and control information from one stage to the next. We can also think of the PC as a pipeline register, which sits 
before the IF stage of the pipeline, leading to one pipeline register for each pipe stage. Recall that the PC is an edge-triggered 
register written at the end of the clock cycle; hence, there is no race condition in writing the PC. The selection multiplexer for the 
PC has been moved so that the PC is written in exactly one stage (IF). If we didn’t move it, there would be a conflict when a branch 
occurred, since two instructions would try to write different values into the PC. Most of the data paths flow from left to right, which 
is from earlier in time to later. The paths flowing from right to left (which carry the register write-back information and PC 
information on a branch) introduce complications into our pipeline.

Copyright c© 2011, Elsevier Inc. All rights reserved

4/29



2

I Using just one temporary register as in the unpipelined data
path could cause values to be overwritten before all uses were
completed

I For example, the field for a register operand for a write in a
word or ALU operation comes from MEM/WB rather than
IF/ID

I Any actions taken on behalf of an instruction occur between a
pair of pipeline registers

I Figure C23 shows pipeline stage activities for various
instruction types

I Actions in stages 1 and 2 are independent of instruction type
as the instruction has not been decoded yet

5/29



MIPS pipeline IF & ID stage events

Stage Any Instruction

IF IF/ID.IR← Mem[PC];

IF/ID.NPC, PC ← (if ((EX/MEM.opcode == branch) &
EX/MEM.cond){EX/MEM.ALUOutput} else {PC+4});

ID ID/EX.A← Regs[IF/ID.IR[rs]]; ID/EX.B← Regs[IF/ID.IR[rt]];

ID/EX.NPC← IF/ID.NPC; ID/EX.IR← IF/ID.IR;

ID/EX.Imm← sign-extend(IF/ID.IR[immediate field]);

Table: Figure C.23(a): Events on stages IF and ID of the MIPS pipeline

6/29



MIPS pipeline EX, MEM and WB events

Stage ALU Instruction Load or Store Instruction Branch Instruction

EX EX/MEM.IR← ID/EX.IR; EX/MEM.IR to ID/EX.IR

EX/MEM.ALUOutput← EX/MEM.ALUOutput← EX/MEM.ALuOutput←
ID/EX.A func ID/EX.B; ID/EX.A + ID/EX.Imm; ID/EX.NPC +

or (ID/EX,Imm << 2);

EX/MEM.ALUOutput←
ID/EX.A op ID/EX,Imm;

EX/MEM.B← ID/EX.B; EX/MEM.cond←
(ID/EX.A == 0);

MEM MEM/WB.IR← EX/MEM.IR; MEM/WB.IR← EX/MEM.IR;

MEM/WB.ALUoutput← MEM/WB.LMD←
EX/MEM.ALUOutput; Mem[EX/MEM.ALUOutput];

or
Mem[EX/MEM.ALUOutput]
← EX/MEM.B;

WB Regs[MEM/WB.IR[rd]]← For load only:
MEM/WB.ALUOutput; Regs [MEM/WB.IR[rt]]←
Or MEM/WB.LMD;
Regs[MEM/WB.IR[rt]]←
MEM/WB.ALUOutput;

Table: Figure C.23(b): Events on stages EX, MEM and WB of the MIPS
pipeline

7/29



Figure C.23: Actions in the stages that are specific to the
pipeline organization

I In IF, in addition to fetching the instruction and computing the new PC,
we store the incremented PC both into the PC and into a pipeline register
(NPC) for later use in computing the branch-target address

I This structure is the same as the organization in Figure C.22, where the
PC is updated in IF from one of two sources

I In ID, we fetch the registers, extend the sign of the lower 16 bits of the
IR (the immediate field), and pass along the IR and NPC

I During EX, we perform an ALU operation or an address calculation; we
pass along the IR and the B register (if the instruction is a store)

I We also set the value of cond to 1 if the instruction is a taken branch

I During the MEM phase, we cycle the memory, write the PC if needed,
and pass along values needed in the final pipe stage

I Finally, during WB, we update the register field from either the ALU
output or the loaded value

I For simplicity, we always pass the entire IR from one stage to the next,
although as an instruction proceeds down the pipeline, less and less of the
IR is needed

8/29



MIPS pipeline control

I To control the simple pipeline, control the four multiplexers in
the data path of Figure C22

I IF stage multiplexer controlled by EX/MEM.cond field
I Chooses either PC+4 or EX/MEM.ALUOutput (the branch

target) to write to the PC

I ALU stage multiplexers controlled by ID/EX.IR field
I Top multiplexer set by whether or not instruction is a branch
I Lower multiplexer set by whether or not instruction type is

reg-reg ALU

I WB stage multiplexer controlled by whether instruction is
Load or ALU operation

I Fifth multiplexer not shown in Figure C22

I Refer to Figure A22 for instruction formats

9/29



MIPS instruction formats

Copyright © 2011, Elsevier Inc. All rights Reserved. 14

Figure A.22 Instruction layout for MIPS. All instructions are encoded in one of three types, with common fields in the same 
location in each format.

Copyright c© 2011, Elsevier Inc. All rights reserved

10/29



Write-back stage: the 5th multiplexer

I The destination field for WB is in a different place depending
on instruction type

I Reg-reg ALU: rd ← rx funct rt
Rd in bit positions 16-20 (counting from left)

I ALU immediate: rt ← rs Op immediate
Rt in bit positions 11-15 (counting from left)

I Reg-reg ALU: rt ← mem[rs + immediate]
Rt in bit positions 11-15 (counting from left)

I The fifth multiplexer is needed to select either rd or rt as the
specifier field for the register destination.

11/29



Implementing control for the MIPS pipeline

I Instruction issue: letting an instruction move from ID to EX
of a pipeline

I An instruction that has passed from ID to EX is said to have
issued

I In MIPS pipeline, all data hazards can be checked during ID

I If a hazard exists, the instruction is stalled before it is issued

I Any forwarding necessary can be determined during ID

I Detecting interlocks early in the pipeline reduces hardware
complexity since the hardware never has to suspend an
instruction that has updated the state of the processor unless
the entire processor has stalled

I An alternative approach is to detect the hazard/forwarding at
the beginning of a clock cycle that uses an operand (EX and
MEM for this pipeline)

12/29



Example: Different approaches

1. Interlock for read after write (RAW) hazard
I Source from load instruction (load interlock);
I Check in ID

2. Forwarding paths to ALU inputs
I Do during EX

Figure C24 shows different circumstances that must be handled

13/29



MIPS pipeline hazard detection comparisons

Situation Example code se-
quence

Action

No dependence LD R1,45(R2) No hazard possible because no dependence
DADD R5,R6,R7 exists on R1 in the immediately following
DSUB R8,R6,R7 three instructions
OR R9,R6,R7

Dependence LD R1,45(R2) Comparators detect the use of R1 in the DADD
requiring stall DADD R5,R1,R7 and stall the DADD (and DSUB and OR) before

DSUB R8,R6,R7 the DADD begins EX
OR R9,R6,R7

Dependence LD R1,45(R2) Comparators detect use of R1 in DSUB and
overcome by DADD R5,R6,R7 forward result of load to ALU in time for DSUB
forwarding DSUB R8,R1,R7 to begin EX

OR R9,R6,R7

Dependence
with

LD R1,45(R2) No action required because the read of R1 by

accesses in or-
der

DADD R5,R6,R7 OR occurs in the second half of the 1D phase,

DSUB R8,R6,R7 while the write of the loaded data occurred in
OR R9,R1,R7 the first half

Table: Figure C.24: Situations that the pipeline hazard detection
hardware can see by comparing the destination and sources of adjacent
instructions

14/29



Figure C.24: Legend

I Situations that the pipeline hazard detection hardware can see
by comparing the destination and sources of adjacent
instructions

I This table indicates that the only comparison needed is
between the destination and the sources on the two
instructions following the instruction that wrote the
destination

I In the case of a stall, the pipeline dependences will look like
the third case once execution continues

I Of course, hazards that involve R0 can be ignored since the
register always contains 0, and the test above could be
extended to do this

15/29



Load Interlock

I RAW hazard with source instruction = Load

I Load instruction is in EX when instruction that needs the data
is in ID

I All possible hazards can be described in a small table that can
translate directly to an implementation

I Figure C25 shows a table that detects all load interlocks when
the instruction using the load result is in ID

16/29



MIPS pipeline hazard detection comparisons

Opcode field of ID/EX
(ID/EX .IR0..5)

Opcode field of IF/ID (IF/ID.NR0..5) Matching operand fields

Load Register-register ALU ID/EX.IR[rt] == IF/ID.IR[rs]

Load Register-register ALU ID/EX.IR[rt] == IF/ID.IR[rt]

Load Load, store, ALU immediate, or branch ID/EX.IR[rt] == IF/ID.IR[rs]

Table: Figure C.25: The logic to detect the need for load interlocks
during the ID stage of an instruction requires three comparisons

17/29



Figure C.25: Legend

I The logic to detect the need for load interlocks during the ID
stage of an instruction requires three comparisons

I Lines 1 and 2 of the table test whether the load destination
register is one of the source registers for a register-register
operation in ID

I Line 3 of the table determines if the load destination register
is a source for a load or store effective address, an ALU
immediate, or a branch test

I Remember that the IF/ID register holds the state of the
instruction in ID, which potentially uses the load result, while
ID/EX holds the state of the instruction in EX, which is the
load instruction

18/29



After hazard has been detected

I Control unit must insert the stall and prevent instruction in IF
and ID from advancing

I All control information is carried in the pipeline registers

I The instruction itself is carried and this is sufficient as all
control is derived from it.

I Thus, when a hazard is detected

1. Change the control portion of the ID/EX pipeline register to
all zeros a NOP

2. Recirculate the contents of the IF/ID registers to hold the
stalled instruction

I In a pipeline with more complex hazards, apply the same
ideas: detect the hazard by comparing some set of pipeline
registers and shift in NOPs to prevent incorrect execution.

19/29



Forwarding Logic

I Similar to hazard treatment, but more cases to consider

I Pipeline register contain the data to be forwarded.

I Pipeline register contain source and destination register fields

I Forwarding is from ALU or data memory output to the ALU
input, the data memory input, or the zero detection unit

I Can implement the forwarding by a comparison of the
destination registers of the IR contained in the EX/MEM and
MEM/WB registers.

I Figure C26 shows comparisons and possible forwarding when
the destination of the forwarded result is an ALU input for the
instruction currently in EX

20/29



MIPS pipeline forwarding comparisons (a)
Pipeline reg-
ister contain-
ing source in-
struction

Opcode
of source
instruction

Pipeline
register
containing
destination
instruction

Opcode of
destination
instruction

Destination
of forwarded
result

Comparison
(if equal then
forward)

EX/MEM Register- reg-
ister ALU

ID/EX Register-
register ALU,
ALU immedi-
ate, load, store,
branch

Top ALU in-
put

EX/MEM.IR[rd]
==
ID/EX.IR[rs]

EX/MEM Register- reg-
ister ALU

ID/EX Register-
register ALU

Bottom ALU
input

EX/MEM.IR[rd]
==
ID/EX.IR[rt]

MEM/WB Register-
register ALU

ID/EX Register-
register ALU,
ALU immedi-
ate, load, store,
branch

Top ALU in-
put

MEM/WB.IR[rd]
==
ID/EX.IR[rs]

MEM/WB Register-
register ALU

ID/EX Register-
register ALU

Bottom ALU
input

MEM/WB.IR[rd]
==
ID/EX.IR[rt]

EX/MEM ALU immedi-
ate

ID/EX Register-
register ALU,
ALU immedi-
ate, load, store,
branch

Top ALU in-
put

EX/MEM.IR[rt]
==
ID/EX.IR[rs]

Table: Figure C.26(a): Forwarding of data to the two ALU inputs (for the instruction in EX)
21/29



MIPS pipeline forwarding comparisons(b)
Pipeline reg-
ister contain-
ing source in-
struction

Opcode
of source
instruction

Pipeline
register
containing
destination
instruction

Opcode of
destination
instruction

Destination
of forwarded
result

Comparison
(if equal then
forward)

EX/MEM ALU immedi-
ate

ID/EX Register-
register ALU

Bottom ALU
input

EX/MEM.IR[rt]
==
ID/EX.IR[rt]

MEM/WB ALU immedi-
ate

ID/EX Register-
register ALU,
ALU imme-
diate, load,
store, branch

Top ALU in-
put

MEM/WB.IR[rt]
==
ID/EX.IR[rs]

MEM/WB ALU immedi-
ate

ID/EX Register-
register ALU

Bottom ALU
input

MEM/WB.IR[rt]
==
ID/EX.IR[rt]

MEM/WB Load ID/EX Register-
register ALU,
ALU imme-
diate, load,
store, branch

Top ALU in-
put

MEM/WB.IR[rt]
==
ID/EX.IR[rs]

MEM/WB Load ID/EX Register-
register ALU

Bottom ALU
input

MEM/WB.IR[rt]
==
ID/EX.IR[rt]

Table: Figure C.26(b): Forwarding of data to the two ALU inputs (for the instruction in EX)

22/29



Figure C.26: Legend

I Forwarding of data to the two ALU inputs (for the instruction in EX) can occur
from the ALU result (in EX/MEM or in MEM/WB) or from the load result in
MEM/WB

I There are 10 separate comparisons needed to tell whether a forwarding
operation should occur

I The top and bottom ALU inputs refer to the inputs corresponding to the first
and second ALU source operands, respectively, and are shown explicitly in
Figure C.21 and in Figure C.27

I Remember that the pipeline latch for destination instruction in EX is ID/EX,
while the source values come from the ALUOutput portion of EX/MEM or
MEM/WB or the LMD portion of MEM/WB

I There is one complication not addressed by this logic: dealing with multiple
instructions that write the same register

I For example, during the code sequence DADD R1, R2, R3; DADDI R1, R1, #2;
DSUB R4, R3, R1, the logic must ensure that the DSUB instruction uses the
result of the DADDI instruction rather than the result of the DADD instruction

I The logic shown above can be extended to handle this case by simply testing
that forwarding from MEM/WB is enabled only when forwarding from
EX/MEM is not enabled for the same input

I Because the DADDI result will be in EX/MEM, it will be forwarded, rather than
the DADD result in MEM/WB

23/29



Forwarding needs

I Comparators and combinational logic to enable forwarding
path

I Enlarged multiplexers at ALU inputs

I Connections from pipeline registers used to forward results

I Figure C.27 shows relevant segments of the pipelined data
path.

I MIPS hazard detection and forwarding is relatively simple

I A floating-point extension is more complicated

24/29



MIPS result forwarding

Copyright © 2011, Elsevier Inc. All rights Reserved. 16

Figure C.27 Forwarding of results to the ALU requires the addition of three extra inputs on each ALU multiplexer and the 
addition of three paths to the new inputs. The paths correspond to a bypass of: (1) the ALU output at the end of the EX, (2) the 
ALU output at the end of the MEM stage, and (3) the memory output at the end of the MEM stage.

Copyright c© 2011, Elsevier Inc. All rights reserved

25/29



Dealing with branches in the pipeline

I BEQ, BNE =⇒ test register for equality to another register, which may be R0

I Consider only BEQZ and BNEZ (zero test)

I Can complete decision by end of ID by moving the zero test into that cycle

I To take advantage of an early branch decision, must compute PC and NPC early

I Extra adder needed to calculate branch-target address during ID, because ALU
is not usable until EX.

I Figure C.28 shows the revised pipeline data path

I Now only 1-clock cycle stall on branches

I However, an ALU instruction followed by a branch on its result will cause a data
hazard stall

I Figure C.29 shows the branch part of the revised pipeline table from Figure C.23

I Some processors have more expensive branch hazards due to longer times
required for calculation of the branch condition and the destination

I For example, this can occur if there are separate decode and register fetch stages

I The branch delay (length of control hazard) can become a significant branch
penalty

I In general, the deeper the pipeline, the worse the branch penalty

26/29



Reducing the branch hazard stall

Copyright © 2011, Elsevier Inc. All rights Reserved. 17

Figure C.28 The stall from branch hazards can be reduced by moving the zero test and branch-target calculation into the ID 
phase of the pipeline. Notice that we have made two important changes, each of which removes 1 cycle from the 3-cycle stall for 
branches. The first change is to move both the branch-target address calculation and the branch condition decision to the ID cycle. 
The second change is to write the PC of the instruction in the IF phase, using either the branch-target address computed during ID or 
the incremented PC computed during IF. In comparison, Figure C.22 obtained the branch-target address from the EX/MEM register 
and wrote the result during the MEM clock cycle. As mentioned in Figure C.22, the PC can be thought of as a pipeline register (e.g., 
as part of ID/IF), which is written with the address of the next instruction at the end of each IF cycle.

Copyright c© 2011, Elsevier Inc. All rights reserved

27/29



MIPS Revised pipeline structure

Pipe stage Branch instruction

IF IF/ID.IR← Mem[PC];
IF/ID.NPC, PC← (if ((IF/ID.opcode == branch) & (Regs[IF/ID.IR6..10] op 0))
{IF/ID.NPC + sign-extended (IF/ID.IR[immediate field] << 2)} else {PC + 4});

ID ID/EX.A← Regs[IF/ID.IR6..10]; ID/EX.B← Regs[IF/ID.IR11..15];
ID/EX.IR← IF/ID.IR;

ID/EX.Imm← (IF/ID.IR16)16##IF/ID.IR16..31

EX

MEM

WB

Table: Figure C.29: Revised pipeline structure based on the original in
Figure C.23

28/29



Figure C.29 Legend: revised pipeline structure is based on
the original in Figure C.23

I It uses a separate adder, as in Figure C.28, to compute the branch-target
address during ID

I The operations that are new or have changed are in bold
I Because the branch-target address addition happens during ID, it will happen

for all instructions; the branch condition (Regs[IF/ID.IR6..10] op 0) will also be
done for all instructions

I The selection of the sequential PC or the branch-target PC still occurs during
IF, but it now uses values from the ID stage that correspond to the values set by
the previous instruction

I This change reduces the branch penalty by 2 cycles:
I one from evaluating the branch target and condition earlier

I and one from controlling the PC selection on the same clock rather than

on the next clock
I Since the value of cond is set to 0, unless the instruction in ID is a taken

branch, the processor must decode the instruction before the end of ID
I Because the branch is done by the end of ID, the EX, MEM, and WB stages are

unused for branches
I An additional complication arises for jumps that have a longer offset than

branches
I We can resolve this by using an additional adder that sums the PC and lower 26

bits of the IR after shifting left by 2 bits

29/29


