
CS4617 Computer Architecture
Lecture 1

Dr J Vaughan

September 8, 2014

1/32

Introduction

“Today less than $500 will purchase a mobile computer that has
more performance, more main memory and more disk storage than
a computer bought in 1985 for $1 million.”
Hennessy & Patterson

2/32

Advances in technology

I Innovations in computer design

I Microprocessors took advantage of improvements in IC
technology

I Led to increased number of computers being based on
microprocessors

3/32

Marketplace changes

I Assembly language programming largely unnecessary except
for special uses

I Reduced need for object code compatibility

I Operating systems standardised on a few such as Unix/Linux,
MicroSoft Windows, MacOS

I Lower cost and risk of producing a new architecture

4/32

RISC architectures, early 1980s

I Exploited instruction-level parallelism

I Pipelining, multiple instruction issue

I Exploited caches

5/32

RISC raised performance standards

I DEC VAX could not keep up

I Intel adapted by translating 80x86 to RISC internally

I Hardware overhead of translation negligible with large
transistor counts

I When transistors and power restricted, as in mobile phones,
pure

I RISC dominates

I ARM

6/32

Effects of technological growth

1. Increased computing power

2. New classes of computer
I Microprocessors −→ PCs, workstations
I Smartphones, tablets
I Mobile client services −→ server warehouses

3. Moore’s Law: microprocessor-based computers dominate
across entire range of computers

4. Software development can exchange performance for
productivity

I Performance has improved ×25000 since 1978
I C, C++
I Java, C#
I Python, Ruby

5. Applications have evolved; speech, sound, video now more
important

7/32

Limits

I Now, single-processor performance improvement has dropped
to less than 22% per year

I Problems: Limit to amount of IC power than can be
dissipated by air- cooling

I Limited amount of exploitable instruction-level parallelism in
programs

I 2004: Intel cancelled its high-performance one-processor
projects

I Future in several processors per chip

8/32

Parallelism

I ILP succeeded by DLP, TLP, RLP

I Data-level parallelism (DLP)

I Thread-level parallelism (TLP)

I Request-level parallelism (RLP)

I DLP, TLP, RLP require programmer awareness and
intervention

I ILP is automatic; programmer need not be aware

9/32

Classes of computers

I Personal Mobile Device (PMD)

I Desktop

I Server

I Clusters/Warehouse-scale computers

I Embedded

10/32

Two kinds of parallelism in applications

I Data-level parallelism (DLP): many data items can be
operated on at the same time

I Task-level parallelism (TLP): tasks can operate independently
and in parallel

11/32

Four ways to exploit parallelism in hardware

1. ILP exploits DLP in pipelining and speculative execution

2. Vector processors and Graphics Processing units use DLP by
applying one instruction to many data items in parallel

3. Thread-level parallelism uses DLP and task-level parallelism in
cooperative processing of data by parallel threads.

4. Request-level parallelism: Parallel operation of tasks that are
mainly independent of each other

12/32

Flynn’s parallel architecture classifications

I Single instruction stream, single data stream (SISD)

I Single instruction stream, multiple data streams (SIMD)

I Multiple instruction streams, single data stream (MISD)

I Multiple instruction streams, multiple data streams (MIMD)

I SISD: One processor, ILP possible

I SIMD: Vector processors, GPU, DLP

I MISD: No computer of this type exists
I MIMD: Many processors:

I Tightly-coupled - TLP
I Loosely-coupled - RLP

13/32

Instruction Set Architecture (ISA): class determinants

I Memory Addressing

I Addressing Modes

I Types and sizes of operands

I Operations

I Control flow

I ISA encoding

14/32

Class of ISA

I General-purpose architectures: operands in registers or
memory locations

I Register-memory ISA: 80x86

I Load-store ISA: ARM, MIPS

15/32

Memory addressing

I Byte addressing

I Alignment: Byte/Word/doubleword: Required?

I Efficiency: Faster if bytes aligned?

16/32

Dependability

I Service Level Agreement (SLA) guarantees a dependable level
of service provided

I States of service with respect to an SLA

1. Service accomplishment: service delivered
2. Service interruption: delivered service less than SLA

I State transitions
I Failure (state 1 to state 2)
I Restoration (state 2 to state 1)

I Module Reliability measures time to failure from an initial
instant

I Mean time to failure (MTTF) is a reliability measure

I Failure rate = 1/MTTF = failures in time (FIT)

I Service Interruption Time = Mean time to repair (MTTR)

I Mean time between failures (MTBF) = MTTF + MTTR

17/32

Module availability

I A measure of service accomplishment

I For non-redundant systems with repair,
Module availability = MTTF

MTTF+MTTR

18/32

Example: Disk subsystem

I 10 disks, each with MTTF = 1000000 hours

I 1 ATA controller, MTTF = 500000 hours

I 1 power supply, MTTF = 200000 hours

I 1 fan, MTTF = 200000 hours

I 1 ATA cable, MTTF = 1000000 hours

I Assume lifetimes are exponentially distributed and failures are
independent

I Calculate system MTTF

19/32

Solution

I

Failure ratesystem =
10

1000000
+

1

500000
+

1

200000

+
1

2000000
+

1

1000000

=
10 + 2 + 5 + 5 + 1

1000000
=

23

1000000

I The rate of failure, FIT (failures in time) is reported as the
numbers of failures per 109 hours, so here the system failure
rate is 23000 FIT

I MTTFsystem = 1
Failure ratesystem

= 109

23000 = 43500 hours =
just under 5 years

20/32

Redundancy

I To cope with failure, use time or resource redundancy

I Time: Repeat the operation

I Resource: Other components take over from failed component

I Assume dependability restored fully after repair/replacement

21/32

Example: redundancy

I Add 1 redundant power supply to previous system

I Assume component lifetimes are exponentially distributed

I Assume component failures are independent

I MTTF for redundant power supplies is the mean time until
one fails divided by the chance that the second fails before the
first is replaced

I If the chance of a second failure is small, MTTF for the pair is
large

I Calculate MTTF

22/32

Solution to redundant power supply example

I Mean time until one failure = MTTFpower supply/2

I MTTR divided by (mean time until the other power supply
fails) gives an approximation of Prob(second failure)

I

MTTFpower supply pair =
MTTFpower supply/2

MTTRpower supply

MTTFpower supply

=
MTTF 2

power supply/2

MTTRpower supply

=
MTTF 2

power supply/2

2×MTTRpower supply

I MTTFpower supply pair ≈ 850000000 ≈ 4150 times more
reliable

23/32

Measuring performance

I Response time = tfinish − tstart

I Throughput = Number of tasks completed per unit time

I “X is n times faster than Y”

I Execution timeY
Execution timeX

= n

I n =
1

PerformanceY
1

PerformanceX

I n = PerformanceX
PerformanceY

24/32

Suites of benchmark programs to evaluate performance

I EEMBC: Electronic Design News Embedded Microprocessor
Benchmark Consortium

I 41 kernels to compare performance of embedded applications

I SPEC: Standard Performance Evaluation Corporation
I www.spec.org
I SPEC benchmarks cover many application classes
I SPEC 2006: Desktop benchmark, 12 integer benchmarks, 17

floating point benchmarks
I SPEC Web: Web server benchmark
I SPECSFS: Network file system performance,

throughput-oriented

I TPC: Transaction Processing Council
I www.tpc.org
I Measure ability of a system to handle database transactions
I TPC-C: Complex query environment
I TPC-H: Unrelated queries
I TPC-E: Online transaction processing (OLTP)

25/32

Comparing performance

I Normalise execution times to a reference computer

I SPECRatio = Execution time on reference computer
Execution time on computer being measured

I If SPECRatio of computer A on a benchmark is 1.25 times
higher than computer B, then

I

1.25 =
SPECRatioA

SPECRatioB

=

Executiontimereference
ExecutiontimeA

Executiontimereference
ExecutionB

=
ExecutiontimeB

ExecutiontimeA

=
PerformanceA

PerformanceB

26/32

Combining SPECRatios

I To combine the SPECRatios for different benchmark
programs, use the geometric mean

I Geometric mean = n
√∏n

i=1 SPECRatioi

27/32

Design principles for better computer performance

I Take advantage of parallelism

I Principle of locality
I Focus on the common case

I Amdahl’s Law highlights the limited benefits accruing from
subsystem performance improvements

28/32

Exploit parallelism

I Server benchmark improvement: spread requests among
several processors and disks
Scalability: ability to expand the number of processors and
number of disks

I Individual processors
Pipelining: instruction-level parallelism

I Digital design
I Set-associative cache
I Carry-lookahead ALU

29/32

Principle of Locality

I Program execution concentrates within a small range of
address space and that range changes only intermittently.

I Temporal locality
I Spatial locality

30/32

Focus on the common case

I In a design trade-off, favour the frequent case

I Example: optimise the Fetch & Decode unit before the
multiplication unit

I Example: optimise for no overflow since it is more common
than overflow

31/32

Amdahl’s Law

I Speedup =
Execution time for entire task without using enhancement

Execution time for entire task using enhancement when possible

I Speedupoverall = Execution timeold
Execution timenew

I Speedupoverall = 1

(1−Fractionenhanced)+
Fractionenhanced
Speedupenhanced

32/32

	Introduction

