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Computer Architecture 
Arithmetic 
Number bases 

Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at 

conversions among them and between each of them and decimal. 

Binary 

Base-two, or binary, contains the digits 0 and 1. 

To convert a decimal number to binary, divide repeatedly by 2 until a quotient of zero is 

produced, keeping track of the remainders and the order in which they occur. Then arrange 

the remainders in reverse order of production, so that the last remainder becomes the most 

significant binary digit (bit) and the first remainder becomes the least significant bit. 

Example 

Convert Decimal 79 to Binary: 

79/2 = 39 Remainder 1 Least Significant Bit (LSB) 

39/2 = 19  Remainder 1 

19/2 = 9 Remainder 1 

9/2 = 4 Remainder 1 

4/2 = 2 Remainder 0 

2/2 = 1 Remainder 0 

1/2 = 0 Remainder 1 Most Significant Bit (MSB) 

Thus 79D = 1001111B 

To convert a binary number to decimal, note that every bit position has a weighting. If we 

number the bit positions from the right, labeling the rightmost (least significant) bit position 

as position zero, then the weighting of each position is 2 to the power of the bit position. The 

value of each bit position is the digit in that position multiplied by the corresponding 

weighting. The decimal value of the binary number is the sum of all the bit position values. 

Example 

Convert the Binary number 1001111B to Decimal: 
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1 * 2^0 = 1 * 1 = 1 

1 * 2^1 = 1 * 2 = 2 

1 * 2^2 = 1 * 4 = 4 

1 * 2^3 = 1 * 8 = 8 

0 * 2^4 = 0 * 16 = 0 

0 * 2^5 = 0 * 32 = 0 

1 * 2^6 = 1 * 64 = 64 

Add 1 + 2 + 4 + 8 + 64 = 79 

Thus 1001111B = 79D 

 

Octal 

Base-eight, or octal, contains the digits 0, 1, 2, 3, 4, 5, 6 and 7. 

To convert a decimal number to octal, divide repeatedly by 8 until a quotient of zero is 

produced, keeping track of the remainders and the order in which they occur. Then arrange 

the remainders in reverse order of production, so that the last remainder becomes the most 

significant octal digit and the first remainder becomes the least significant octal digit. 

Example 

Convert Decimal 119 to Octal: 

119/8 = 14 Remainder 7 Least Significant Digit 

14/8 = 1 Remainder 6 

1/8 = 0 Remainder 1 Most Significant Digit 

Thus 119 D = 167Q 

To convert an octal number to decimal, note that every octal digit position has a 

weighting. If we number the digit positions from the right, labeling the rightmost (least 

significant) digit position as position zero, then the weighting of each position is 8 to the 

power of the digit position. The value of each digit position is the digit in that position 

multiplied by the corresponding weighting. The decimal value of the octal number is the sum 

of all the octal digit position values. 
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Example 

Convert the Octal number 167Q to Decimal: 

7 * 8^0 = 7 * 1 = 7 

6 * 8^1 = 6 * 8 = 48 

1 * 8^2 = 1 * 64 = 64 

Add 64 + 48 + 7 = 119 

Thus 167Q = 119D 

 

Hexadecimal 

Base-sixteen, or hexadecimal, contains the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, 

and F. 

To convert a decimal number to hexadecimal, divide repeatedly by sixteen until a quotient 

of zero is produced, keeping track of the remainders and the order in which they occur. Then 

arrange the remainders in reverse order of production, so that the last remainder becomes the 

most significant hexadecimal digit and the first remainder becomes the least significant bit. 

Example 

Convert Decimal 1015 to Hexadecimal: 

1015/16 = 63 Remainder 7 Least Significant Digit 

63/16 = 3 Remainder 15 = hex digit F 

3/16 = 0 Remainder 3 Most Significant Digit 

Thus 1015 D = 3F7H 

To convert a hexadecimal number to decimal, note that every bit position has a weighting. 

If we number the hexadecimal digit positions from the right, labeling the rightmost (least 

significant) digit position as position zero, then the weighting of each position is sixteen 

(16D) to the power of the digit position. The value of each digit position is the digit in that 

position multiplied by the corresponding weighting. The decimal value of the hexadecimal 

number is the sum of all the digit position values. 

Example 
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Convert the Hexadecimal number 3F7H to Decimal: 

7 * 16^0 = 7 * 1 = 7 

F * 16^1 = 15 * 16 = 240 

3 * 16^2 = 3 * 256 = 768 

Add 768 + 240 + 7 = 1015 

Thus 3F7H = 1015D 

 

Natural numbers 

An 8-bit value has 2^8 = 256 different states corresponding to the bit patterns 00000000 to 

11111111. Several interpretations of the bit patterns are possible. If they are viewed as labels, 

then 256 distinct labels exist. If the patterns are viewed as natural numbers, then there are 256 

of these, ranging from 0 to 255. The binary number corresponding to decimal 256 is the 9-bit 

value 100000000. The ninth bit represents an overflow from the eighth bit position, and in 

x86 processors it sets the carry flag so that this overflow can be detected within a program. 

Note that the 8 register bits are all set to zero. 

A 16-bit value has 2^16 = 65536 different states. If viewed as labels, then 65536 labels 

exist, ranging from 0000 0000 0000 0000 to 1111 1111 1111 1111. Therefore a 16-bit 

memory address can distinguish between 2^16 = 2^6 * 2^10 = 64K memory locations. 

Viewed as natural numbers, 16-bit values range from 0 to 65535. Any number greater than 

this represents an overflow that must be handled by appropriate program actions. 

Integers 

A pattern of digits in any number base can be viewed as an integer, having possibly 

positive, negative or zero value. 

The inclusion of negative numbers in a system gives rise to some interesting possibilities. 

Usually, the same quantity of positive and negative numbers is desired, at least 

approximately. In the decimal system, we are accustomed to using the “+” and “-“ signs to 

distinguish between positive and negative quantities. This is known as a signed magnitude 

system, and we have been conditioned into ignoring the resulting two zero values, +0 and -0. 

We have been trained from an early age to perform decimal subtractions by referring to a 

set of tables committed to memory. Multiple-digit subtractions are dealt with by borrowing a 
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ten from the next-most-significant digit place if necessary and possible. If the minuend is 

greater than the subtrahend, a positive difference is generated naturally. If the subtrahend is 

greater than the minuend, we have been taught to swap the subtrahend and minuend and 

reverse the sign of the result. 

We can, however, also perform subtraction by combining a complement operation with an 

addition. The nine's complement of a decimal number is formed by subtracting each digit of 

the number from 9 and placing the result in the same digit position. 

Thus, to form the nine's complement of 256, we do 999 - 256 = 743. 

The ten's complement of a decimal number is its nine's complement plus 1. 

Thus, the ten's complement of 256 is 743 + 1 = 744. 

The sum of 256 and ten's complement (256) = 256 + 744 = 1]000. If we restrict our 

operations to three decimal digits, the 1 can be ignored and we have formed the additive 

inverse of a decimal number by calculating its ten's complement. 

So, to subtract 73 from 85, we can add: 85 + 27 = 1]12. Note that, since we have 

performed our operations on two digits, the third digit that is formed must be ignored (for the 

moment). If we want four digits in the answer (i.e. the difference), both the minuend and the 

subtrahend must be represented to four digits from the beginning. 

For a four-digit representation of the difference between 85 and 73, we proceed as 

follows: 85 - 73 = 0085 - 0073 = 0085 + {ten's complement(0073)} = 0085 + {9926 + 1} = 

0085 + 9927 = 1]0012. 

The difference 73 - 85 can be formed in the same way: 73 - 85 = 0073 - 0085 = 0073 + 

{9914 + 1} = 0073 + 9915 = 9988. So what is this? Well, you notice that the negatives of 

0073 and 0085 are 9927 and 9915 respectively. So we can deduce that the leading digits of a 

negative number in ten's complement form will be 9 before the significant digits of the 

number. Therefore, 9988 is a negative number in ten's complement form. Its signed-

magnitude representation is -{ten's complement(9988)} = -(0011 + 1) = -12. 

You may note that the ten's complement operation is itself based on subtraction, so that 

performing subtraction by ten's complement addition in decimal numbers does not yield any 

advantage. However, the binary number system is different in that respect. 

In the binary system, a fixed number of bits corresponds to a fixed number of possible 

states. If we choose to use some states to represent negative numbers, then there will be fewer 
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positive numbers in our system as a consequence. 

For instance, with 8-bit numbers, the leftmost bit (MSB) can be used as a sign bit, with 0 

as a plus sign and 1 as a minus sign. This leaves 7 bits for the magnitude. The range of 

numbers that can be represented will then be -127 .. -0 +0 .. +127, a completely symmetric 

representation with 256 states and two zeroes. Then, adding -5 to +5 gives 10000101 + 

000000101 = 100001010 which is -10 in decimal. Another example is adding -127 to +127, 

which either gives overflow or the number +126, depending on how it is handled. 

Another approach is to use the complement of a number as its negative form, so that 

+0 = 00000000; -0 = 11111111 

+1 = 00000001; -1 = 11111110 

+126 = 01111110; -126 = 10000001 

+127 = 01111111; -127 = 10000000 

Again, this is a symmetric system. The 256 states include two values for zero. This system 

has the advantage that adding +n to -n results in a zero value. The system is known as the 

one’s complement system. Note that the negative numbers all have a 1 in the MSB position. 

In an attempt to eliminate the duplicate zero, consider an extension of the one’s 

complement representation. In this third way of treating negative numbers, we modify the 

one’s complement approach by adding 1 to the one’s complement of a number. The resulting 

system is known as the two’s complement representation. Using this approach, the positive 

integers are the same as in the one’s complement system 

+0 = 00000000; -0 = 11111111 + 1 = 1 0000 0000, the same as + 0 if we ignore the carry. 

+1 = 00000001; -1 = 11111110 + 1 = 1111 1111 

+126 = 01111110; -126 = 10000001 + 1 = 1000 0010 

+127 = 01111111; -127 = 10000000 + 1 = 1000 0001 

The one negative code that does not appear above is 1000 0000.   

-127 = 1000 0001 - 1 = -128 = 1000 0000. 

So the two’s complement system represents numbers  -128 .. -1 0 1 .. 127. 

Therefore it is an asymmetrical system, having 1 zero in its 256 states. 

In general, n bits can represent 2^n states. 
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If natural numbers are represented, the range is 0 .. 2^n - 1 

For signed integers, the range is -2^(n-1) .. +2^(n-1) - 1 

Converting between negative and positive numbers in the two’s complement system 

involves the same operation in both directions. 

Example 

Express -5 in its 8-bit two’s complement form 

+5 = 00000101; -5 = 11111010 + 1 = 11111011 

What is the magnitude of the 8-bit two’s complement number 11111011? 

one’s complement(11111011) = 00000100. Add 1 –> 00000101 

Answer: the magnitude of the number is 5. 

Subtraction can be implemented by two’s complement addition. Instead of a hardware 

subtractor, the number being subtracted can be complemented, incremented and added to the 

other number. 

Example 

Perform the calculation 119D -79D by two’s complement addition 

119D = 167Q from the decimal-to-octal conversion example above. 

167Q = 001 110 111 = 01110111 

79D = 0100 1111B from the decimal-to-binary conversion example above. 

-79D = 1011 0000 + 1 = 1011 0001 

119D + (-79D) = 0111 0111 + 1011 0001 = [1] 0010 1000 = 2^5 + 2^3 = 40 

This is the correct result, but note that there is a carry out of bit 7, indicating (incorrectly) 

a borrow from the next more significant byte position. 

Perform the calculation 79D -119D by two’s complement addition. 

-119D = 1’s complement(0111 0111) + 1 = 1000 1000 + 1 = 1000 1001 

79D + (-119D) = 0100 1111 + 1000 1001 = [0] 1101 1000 

What is this number? It is negative (1 in MSB position), so its magnitude is obtained by 

getting its 2’s complement: 0010 0111 + 1 = 0010 1000 = 2^5 + 2^3 = 40. 
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Thus the answer is correct, but no borrow is being generated for use by higher byte 

positions if desired. 

Thus it can be seen that, if subtraction is performed by two’s complement addition, an 

incorrect borrow will result. Some processors (for example, the Intel 8085) compensate for 

this by complementing the carry flag internally after a subtraction (two’s complement) 

operation. 

Examples 

397 - 46, 16 bits 

397/8 = 49 R 5 

49/8 = 6 R 1 

=> 397D = 615Q = 1 1000 1101B = 018DH 

46/8 = 5R6 => 46D = 56Q = 10 1110B = 002EH 

-46 = 2's complement (0000 0000 0010 1110) = 1111 1111 1101 0010 

397 - 46 = 0000 0001 1000 1101 + 1111 1111 1101 0010 = 0000 0001 0101 1111 = 15FH = 

256 + 5*16 + 15 = 256 + 80 + 15 = 351 decimal. 


