Assembly Language J. Vaughan

Lecture Notes on Assembly Language - J. Vaughan

18. Shifts and Rotates

SHL, SHR: Bitwise Logical Shifts

SHL r/m8,1 ; DO /4 [8086]
SHL r/m8,CL ; D2 /4 [8086]
SHL r/m8, imm8 ; CO /4 ib [186]
SHL r/mlé6,1 ; olé D1 /4 [8086]
SHL r/ml6,CL ; ol6é D3 /4 [8086]
SHL r/mlé6,imm38 ; 0ol6 Cl /4 ib [186]
SHL r/m32,1 ; 032 D1 /4 [386]
SHL r/m32,CL ; 032 D3 /4 [386]
SHL r/m32,imm8 ; 032 C1 /4 ib [386]
SHR r/m8,1 ; DO /5 [8086]
SHR r/m8,CL ; D2 /5 [8086]
SHR r/m8,imm8 ; CO /5 ib [186]
SHR r/mlé6,1 ; olée D1 /5 [8086]
SHR r/mlé6,CL ; olée D3 /5 [8086]
SHR r/ml6,imm8 ; olé C1 /5 ib [186]
SHR r/m32,1 ; 032 D1 /5 [386]
SHR r/m32,CL ; 032 D3 /5 [386]
SHR r/m32, imm8 ; 032 Cl1 /5 ib [386]

SHL and SHR perform a logical shift operation on the given source/destination (first)
operand. The vacated bits are filled with zero.

A synonym for SHL is SAL (see section B.4.283). NASM will assemble either one to
the same code, but NDISASM will always disassemble that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom five
bits of the shift count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a c1 byte) form of SHL
foo,1 byusing a BYTE prefix: SHL. foo,BYTE 1 . Similarly with SHR.

SAL, SAR: Bitwise Arithmetic Shifts

SAL r/m8,1 ; DO /4 [8086]
SAL r/m8,CL ; D2 /4 [8086]
SAL r/m8,imm8 ; CO /4 ib [186]
SAL r/mlé6,1 ; olé D1 /4 [8086]
SAL r/ml6,CL ; ol6 D3 /4 [8086]
SAL r/ml6,imm8 ; ol6 Cl /4 ib [186]
SAL r/m32,1 ; 032 D1 /4 [386]
SAL r/m32,CL ; 032 D3 /4 [386]
SAL r/m32,imm8 ; 032 C1 /4 ib [386]
SAR r/m8,1 ; DO /7 [8086]
SAR r/m8,CL ; D2 /7 [8086]
SAR r/m8,imm8 ; CO /7 ib [186]
SAR r/ml6,1 ; ol6 D1 /7 [8086]
SAR r/mlé6,CL ; olée D3 /7 [8086]
SAR r/ml6,imm8 ; olé C1 /7 ib [186]
SAR r/m32,1 ; 032 D1 /7 [386]
SAR r/m32,CL ; 032 D3 /7 [386]
SAR r/m32,imm8 ; 032 Cl /7 ib [386]

SAL and SAR perform an arithmetic shift operation on the given source/destination
(first) operand.

The vacated bits are filled with zero for SAL, and with copies of the original high bit of
the source operand for SAR.

Page 1 of 5

Assembly Language J. Vaughan

SAL is a synonym for SHL (see section B.4.290). NASM will assemble either one to
the same code, but NDISASM will always disassemble that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom five
bits of the shift count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a C1 byte) form of SAL
foo,1 by using a BYTE prefix: SAL foo,BYTE 1 . Similarly with SAR.

ROL, ROR: Bitwise Rotate

ROL r/m8,1 ; DO /0 [8086]
ROL r/m8,CL ; D2 /0 [8086]
ROL r/m8,imm8 ; CO /0 ib [186]
ROL r/ml6,1 ; olée D1 /0 [8086]
ROL r/ml6,CL ; olée D3 /0 [8086]
ROL r/ml6,imm8 ; oleé C1 /0 ib [186]
ROL r/m32,1 ; 032 D1 /0 [386]
ROL r/m32,CL ; 032 D3 /0 [386]
ROL r/m32,imm8 ; 032 C1 /0 ib [386]
ROR r/m8,1 ; DO /1 [8086]
ROR r/m8,CL ; D2 /1 [8086]
ROR r/m8,imm8 ; CO /1 ib [186]
ROR r/ml6,1 ; olé D1 /1 [8086]
ROR r/mlé6,CL ; 0l6 D3 /1 [8086]
ROR r/ml6,imm8 ; olé Cl1 /1 ib [186]
ROR r/m32,1 ; 032 D1 /1 [386]
ROR r/m32,CL ; 032 D3 /1 [386]
ROR r/m32, imm8 ; 032 C1 /1 ib [386]

ROL and ROR perform a bitwise rotation operation on the given source/destination
(first) operand.

Thus, for example, in the operation ROL AL, 1, an 8-bit rotation is performed in
which AL is shifted left by 1 and the original top bit of AL moves round into the low bit.
The number of bits to rotate by is given by the second operand. Only the bottom five
bits of the rotation count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a C1 byte) form of ROL
foo,1 by using a BYTE prefix: ROL foo,BYTE 1 . Similarly with ROR.

RCL, RCR: Bitwise Rotate through Carry Bit

RCL r/m8,1 ; DO /2 [8086]
RCL r/m8,CL ; D2 /2 [8086]
RCL r/m8,imm8 ; CO /2 ib [186]
RCL r/ml6,1 ; 0l6 D1 /2 [8086]
RCL r/ml6,CL ; olée D3 /2 [8086]
RCL r/ml6,imm8 ; 0l6 C1 /2 ib [186]
RCL r/m32,1 ; 032 D1 /2 [386]
RCL r/m32,CL ; 032 D3 /2 [386]
RCL r/m32,imm8 ; 032 Cl1 /2 ib [386]
RCR r/m8,1 ; DO /3 [8086]
RCR r/m8,CL ; D2 /3 [8086]
RCR r/m8, imm8 ; CO /3 ib [186]
RCR r/mlé6,1 ; olé D1 /3 [8086]
RCR r/mlé6,CL ; 0l6 D3 /3 [8086]
RCR r/ml6,imm8 ; ol6 Cl /3 ib [186]
RCR r/m32,1 ; 032 D1 /3 [386]
RCR r/m32,CL ; 032 D3 /3 [386]
RCR r/m32, imm8 ; 032 C1 /3 ib [386]

RCL and RCR perform a 9-bit, 17-bit or 33-bit bitwise rotation operation, involving
the given source/destination (first) operand and the carry bit. Thus, for example, in
the operation RCL AL, 1, a 9-bit rotation is performed in which AL is shifted left by
1, the top bit of AL moves into the carry flag, and the original value of the carry flag is

Page 2 of 5

Assembly Language J. Vaughan

placed in the low bit of AL.

The number of bits to rotate by is given by the second operand. Only the bottom five
bits of the rotation count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a C1 byte) form of RCL
foo,1 by using a BYTE prefix: RCL. foo,BYTE 1 . Similarly with RCR.

Shifting the DX:AX register pair

Routine to shift the DX:AX registers LEFT by a number of bits specified in the ECX
register. The bits to be shifted are already in the registers.

; Example: Shift left by 4 bits

mov ecx, 4
shftlp shl dx, 1 ; shift dx
shl ax, 1 ; shift ax
adc dx, 0 ; move the carry from ax into dx
loop shftlp

Shift the DX:AX registers RIGHT by a number of bits specified in the ECX register.
; Example: Shift right by 4 bits

mov ecx, 4
shftlp shrax, 1 ; shift ax
shr dx, 1 ; shift dx
jnc cntnu ; no bit shifted from dx
or ah, 0x40 ; move the carry from dx into ax

cntnu loop shftlp

Shift the EDX:EAX registers LEFT by an amount specified in ECX.
; Example: Shift left by 4 bits

mov ecx, 4
shftlp shledx, 1 ; shift dx
shl eax, 1 ; shift ax
adc edx, 0 ; move the carry from ax into dx
loop shftlp

Shift the EDX:EAX registers RIGHT by an amount specified in ECX.
; Example: Shift right by 4 bits

mov ecx, 4
shftlp shreax, 1 ; shift eax
shr edx, 1 ; shift edx
jnc cntnu ; no bit shifted from edx

or ax, 0x4000 ; move the carry from edx into eax
cntnu loop shftlp

19. String Instructions
MOVSB , MOVSW ,MOVSD : Move String

MOVSB ; Ad [8086]
MOVSW ; ol6 A5 [8086]
MOVSD : 032 A5 [386]

MOVSB copies the byte at [DS:SI] or [DS:ESI] to [ES:DI] or [ES:EDI] . It
then increments or decrements (depending on the direction flag: increments if the
flag is clear, decrements if it is set) ST and DI (or ESI and EDI).

Page 3 of 5

Assembly Language J. Vaughan

The registers used are ST and DI if the address size is 16 bits, and ESI and EDT if it
is 32 bits. If you need to use an address size not equal to the current BITS setting,
you can use an explicit alé6 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using
a segment register name as a prefix (for example, es movsb). The use of ES for the
store to [DI] or [EDI] cannot be overridden.

Movsw and MOVSD work in the same way, but they copy a word or a doubleword
instead of a byte, and increment or decrement the addressing registers by 2 or 4
instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX — again, the address
size chooses which) times.

LODSB , LODSW , LODSD : Load from String

LODSB ; AC [8086]
LODSW ; 0l6 AD [8086]
LODSD ; 032 AD [386]

LODSB loads a byte from [DS:SI] or [DS:ESI] into AL. It then increments or
decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set) ST or EST.

The register used is SI if the address size is 16 bits, and EST if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit al6 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using
a segment register name as a prefix (for example, ES LODSB).

Lobsw and LOoDSD work in the same way, but they load a word or a doubleword
instead of a byte, and increment or decrement the addressing registers by 2 or 4
instead of 1.

STOSB , STOSW , STOSD : Store Byte to String

STOSB ; AA [8086]
STOSW ; 0l6 AB [8086]
STOSD ; 032 AB [386]

STOSB stores the byte in AL at [ES:DI] or [ES:EDI], and sets the flags
accordingly. It then increments or decrements (depending on the direction flag:
increments if the flag is clear, decrements if it is set) DI (or EDI).

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit al6 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of Es for the
storeto [DI] or [EDI] cannot be overridden.

STOSW and STOSD work in the same way, but they store the word in AX or the
doubleword in EAX instead of the byte in AL, and increment or decrement the
addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX — again, the address
size chooses which) times.

CMPSB , CMPSW , CMPSD : Compare Strings

CMPSB ; A6 [8086]
CMPSW ; ol6 A7 [8086]
CMPSD ; 032 A7 [386]

CMPSB compares the byte at [DS:SI] or [DS:ESI] with the byte at [ES:DI] or
[ES:EDI] , and sets the flags accordingly. It then increments or decrements
(depending on the direction flag: increments if the flag is clear, decrements if it is set)
SI and DI (or ESI and EDI).

Page 4 of 5

Assembly Language J. Vaughan

The registers used are ST and DI if the address size is 16 bits, and ESI and EDT if it
is 32 bits. If you need to use an address size not equal to the current BITS setting,
you can use an explicit al6 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using
a segment register name as a prefix (for example, ES CMPSB). The use of ES for the
load from [DI] or [EDI] cannot be overridden.

cMPswW and cMPSD work in the same way, but they compare a word or a doubleword
instead of a byte, and increment or decrement the addressing registers by 2 or 4
instead of 1.

The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to
repeat the instruction up to CX (or ECX — again, the address size chooses which)
times until the first unequal or equal byte is found.

SCASB , SCASW , SCASD : Scan String

SCASB ; AE [8086]
SCASW ; 0l6 AF [8086]
SCASD ; 032 AF [386]

SCASB compares the byte in AL with the byte at [ES:DI] or [ES:EDI] , and sets
the flags accordingly. It then increments or decrements (depending on the direction
flag: increments if the flag is clear, decrements if it is set) DI (or EDI).

The register used is DI if the address size is 16 bits, and EDTI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit al6 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the
load from [DI] or [EDI] cannot be overridden.

SCASW and SCASD work in the same way, but they compare a word to AX or a
doubleword to EAX instead of a byte to AL, and increment or decrement the
addressing registers by 2 or 4 instead of 1.

The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to
repeat the instruction up to CX (or ECX — again, the address size chooses which)
times until the first unequal or equal byte is found.

Page 5 of 5

