
Assembly Language J. Vaughan

Page 1 of 5

Lecture Notes on Assembly Language - J. Vaughan

16. If statements

if (a == b) { statements }

 mov eax, dword[a]

 mov ebx, dword[b]

cmp eax, ebx

 jnz continue

 ; statements

continue:

if (a == b) { statements1 }
else { statements2 }

 mov eax, dword[a]

 mov ebx, dword[b]

 cmp eax, ebx

 jnz else

 ; statements1

 jmp continue

else:

 ; statements2

continue:

Assembly Language J. Vaughan

Page 2 of 5

if (a == b) { statements1 }
else if (c == d) { statements2 }
else { statements3 }

 mov eax, dword[a]

 mov ebx, dword[b]

 cmp eax, ebx

 jnz elseif

 ; statements1

 jmp continue

elseif:

 mov eax, dword[c]

 mov ebx, dword[d]

 cmp eax, ebx

 jnz else

 ; statements2

 jmp continue

else:

 ; statements3

continue:

if (a > b) { statements }

 mov eax, dword[a]

 mov ebx, dword[b]

 cmp eax, ebx

 jc continue ; a< b

 jz continue ; a== b

 ; statements

continue:

Assembly Language J. Vaughan

Page 3 of 5

if (a < b) { statements }

 mov eax, dword[a]

 mov ebx, dword[b]

 cmp eax, ebx

 jnc continue

 ; statements

continue:

if (a >= b) { statements }

 mov eax, dword[a]

 mov ebx, dword[b]

 cmp eax, ebx

 jc continue

 ; statements

continue:

if (a <= b) { statements }

 mov eax, dword[a]

 mov ebx, dword[b]

 cmp eax, ebx

 jz perform ; a == b

 jc perform ; a < b

 jmp continue

perform:

 ; statements

continue:

Assembly Language J. Vaughan

Page 4 of 5

17. Loops

while (a == b) { statements }

 mov eax, dword[a]

 mov ebx, dword[b]

while: cmp eax, ebx

 jnz continue

 ; statements

 jmp while

continue:

for (expr1; a == b; expr3) { statements }
is equivalent to
expr1;
while (a==b) {
 statements;
 expr2;
}

for (i=0; i <100; i++) { statements }

 mov word[i], 0

for: mov ax, word[i]

 cmp ax, 100

 jnc continue

 ; statements

 inc word[i]

 jmp for

continue:

Assembly Language J. Vaughan

Page 5 of 5

do { statements } while (a == b)

dowhile:

 ; statements

 mov eax, dword[a]

 mov ebx, dword[b]

 cmp eax, ebx

 jz dowhile

continue:

for (i=0; i <100; i++) { statements }
 using the LOOP instruction

 mov ecx, 100

for:

 ; statements

 LOOP for

continue:

Note that this is not exactly the same as the previous implementation.

Note also the following quote from the NASM manual:

" LOOP decrements its counter register (either CX or ECX – if one is not specified
explicitly, the BITS setting dictates which is used) by one, and if the counter does
not become zero as a result of this operation, it jumps to the given label. The jump
has a range of 128 bytes.
LOOPE (or its synonym LOOPZ) adds the additional condition that it only jumps if the
counter is nonzero and the zero flag is set. Similarly, LOOPNE (and LOOPNZ) jumps
only if the counter is nonzero and the zero flag is clear."

"The BITS directive specifies whether NASM should generate code designed to run
on a processor operating in 16−bit mode, or code designed to run on a processor
operating in 32−bit mode. The syntax is BITS 16 or BITS 32 .

In most cases, you should not need to use BITS explicitly. The aout , coff , elf
and win32 object formats, which are designed for use in 32−bit operating systems,
all cause NASM to select 32−bit mode by default."

