
Assembly Language J. Vaughan

Page 1 of 17

Lecture Notes on Assembly Language - J. Vaughan
13. Instructions and data (ctd)
From the NASM Manual:

AND: Bitwise AND
AND r/m8,reg8 ; 20 /r [8086]
AND r/m16,reg16 ; o16 21 /r [8086]
AND r/m32,reg32 ; o32 21 /r [386]
AND reg8,r/m8 ; 22 /r [8086]
AND reg16,r/m16 ; o16 23 /r [8086]
AND reg32,r/m32 ; o32 23 /r [386]
AND r/m8,imm8 ; 80 /4 ib [8086]
AND r/m16,imm16 ; o16 81 /4 iw [8086]
AND r/m32,imm32 ; o32 81 /4 id [386]
AND r/m16,imm8 ; o16 83 /4 ib [8086]
AND r/m32,imm8 ; o32 83 /4 ib [386]
AND AL,imm8 ; 24 ib [8086]
AND AX,imm16 ; o16 25 iw [8086]
AND EAX,imm32 ; o32 25 id [386]
AND performs a bitwise AND operation between its two operands (i.e. each bit of the
result is 1 if and only if the corresponding bits of the two inputs were both 1), and
stores the result in the destination (first) operand. The destination operand can be a
register or a memory location. The source operand can be a register, a memory
location or an immediate value.
In the forms with an 8−bit immediate second operand and a longer first operand, the
second operand is considered to be signed, and is sign−extended to the length of the
first operand. In these cases, the BYTE qualifier is necessary to force NASM to
generate this form of the instruction.

CALL: Call Subroutine
CALL imm ; E8 rw/rd [8086]
CALL imm:imm16 ; o16 9A iw iw [8086]
CALL imm:imm32 ; o32 9A id iw [386]
CALL FAR mem16 ; o16 FF /3 [8086]
CALL FAR mem32 ; o32 FF /3 [386]
CALL r/m16 ; o16 FF /2 [8086]
CALL r/m32 ; o32 FF /2 [386]
CALL calls a subroutine, by means of pushing the current instruction pointer (IP)
and optionally CS as well on the stack, and then jumping to a given address.
CS is pushed as well as IP if and only if the call is a far call, i.e. a destination
segment address is specified in the instruction. The forms involving two
colon−separated arguments are far calls; so are the CALL FAR mem forms.
The immediate near call takes one of two forms (call imm16/imm32 , determined
by the current segment size limit. For 16−bit operands, you would use CALL
0x1234, and for 32−bit operands you would use CALL 0x12345678 . The value
passed as an operand is a relative offset.
You can choose between the two immediate far call forms (CALL imm:imm) by the
use of the WORD and DWORD keywords: CALL WORD 0x1234:0x5678) or
CALL DWORD 0x1234:0x56789abc .
The CALL FAR mem forms execute a far call by loading the destination address out
of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand
size), and 16 bits of segment. The operand size may be overridden using CALL

Assembly Language J. Vaughan

Page 2 of 17

WORD FAR mem or CALL DWORD FAR mem .
The CALL r/m forms execute a near call (within the same segment), loading the
destination address out of memory or out of a register. The keyword NEAR may be
specified, for clarity, in these forms, but is not necessary. Again, operand size can be
overridden using CALL WORD mem or CALL DWORD mem .
As a convenience, NASM does not require you to call a far procedure symbol by
coding the cumbersome CALL SEG routine:routine , but instead allows the
easier synonym CALL FAR routine .
The CALL r/m forms given above are near calls; NASM will accept the NEAR
keyword (e.g. CALL NEAR [address]), even though it is not strictly necessary.

CBW, CWD, CDQ, CWDE: Sign Extensions
CBW ; o16 98 [8086]
CWDE ; o32 98 [386]
CWD ; o16 99 [8086]
CDQ ; o32 99 [386]
All these instructions sign−extend a short value into a longer one, by replicating the
top bit of the original value to fill the extended one.
CBW extends AL into AX by repeating the top bit of AL in every bit of AH. CWDE
extends AX into EAX. CWD extends AX into DX:AX by repeating the top bit of AX
throughout DX, and CDQ extends EAX into EDX:EAX .

CLC, CLD, CLI, CLTS: Clear Flags
CLC ; F8 [8086]
CLD ; FC [8086]
CLI ; FA [8086]
CLTS ; 0F 06 [286,PRIV]
These instructions clear various flags. CLC clears the carry flag; CLD clears the
direction flag; CLI clears the interrupt flag (thus disabling interrupts); and CLTS
clears the task−switched (TS) flag in CR0.
To set the carry, direction, or interrupt flags, use the STC, STD and STI instructions.
To invert the carry flag, use CMC.

CMC: Complement Carry Flag
CMC ; F5 [8086]
CMC changes the value of the carry flag: if it was 0, it sets it to 1, and vice versa.

CMP: Compare Integers
CMP r/m8,reg8 ; 38 /r [8086]
CMP r/m16,reg16 ; o16 39 /r [8086]
CMP r/m32,reg32 ; o32 39 /r [386]
CMP reg8,r/m8 ; 3A /r [8086]
CMP reg16,r/m16 ; o16 3B /r [8086]
CMP reg32,r/m32 ; o32 3B /r [386]
CMP r/m8,imm8 ; 80 /7 ib [8086]
CMP r/m16,imm16 ; o16 81 /7 iw [8086]
CMP r/m32,imm32 ; o32 81 /7 id [386]
CMP r/m16,imm8 ; o16 83 /7 ib [8086]
CMP r/m32,imm8 ; o32 83 /7 ib [386]
CMP AL,imm8 ; 3C ib [8086]
CMP AX,imm16 ; o16 3D iw [8086]
CMP EAX,imm32 ; o32 3D id [386]

CMP performs a ʻmentalʼ subtraction of its second operand from its first operand, and
affects the flags as if the subtraction had taken place, but does not store the result of
the subtraction anywhere.
In the forms with an 8−bit immediate second operand and a longer first operand, the

Assembly Language J. Vaughan

Page 3 of 17

second operand is considered to be signed, and is sign−extended to the length of the
first operand. In these cases, the BYTE qualifier is necessary to force NASM to
generate this form of the instruction.
The destination operand can be a register or a memory location. The source can be a
register, memory location or an immediate value of the same size as the destination.

CMPSB , CMPSW , CMPSD : Compare Strings
CMPSB ; A6 [8086]
CMPSW ; o16 A7 [8086]
CMPSD ; o32 A7 [386]
CMPSB compares the byte at [DS:SI] or [DS:ESI] with the byte at [ES:DI] or
[ES:EDI] , and sets the flags accordingly. It then increments or decrements
(depending on the direction flag: increments if the flag is clear, decrements if it is set)
SI and DI (or ESI and EDI). The registers used are SI and DI if the address size is
16 bits, and ESI and EDI if it is 32 bits. If you need to use an address size not equal
to the current BITS setting, you can use an explicit a16 or a32 prefix.
The segment register used to load from [SI] or [ESI] can be overridden by using
a segment register name as a prefix (for example, ES CMPSB). The use of ES for the
load from [DI] or [EDI] cannot be overridden.
CMPSW and CMPSD work in the same way, but they compare a word or a doubleword
instead of a byte, and increment or decrement the addressing registers by 2 or 4
instead of 1.
The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to
repeat the instruction up to CX (or ECX – again, the address size chooses which)
times until the first unequal or equal byte is found.

DEC: Decrement Integer
DEC reg16 ; o16 48+r [8086]
DEC reg32 ; o32 48+r [386]
DEC r/m8 ; FE /1 [8086]
DEC r/m16 ; o16 FF /1 [8086]
DEC r/m32 ; o32 FF /1 [386]
DEC subtracts 1 from its operand. It does not affect the carry flag: to affect the carry
flag, use
SUB something,1 (see section B.4.305). DEC affects all the other flags according
to the result.
This instruction can be used with a LOCK prefix to allow atomic execution.
See also INC.

DIV: Unsigned Integer Divide
DIV r/m8 ; F6 /6 [8086]
DIV r/m16 ; o16 F7 /6 [8086]
DIV r/m32 ; o32 F7 /6 [386]
DIV performs unsigned integer division. The explicit operand provided is the divisor;
the dividend
and destination operands are implicit, in the following way:
For DIV r/m8 , AX is divided by the given operand; the quotient is stored in AL and
the remainder in AH.
For DIV r/m16 , DX:AX is divided by the given operand; the quotient is stored in AX
and the remainder in DX.
For DIV r/m32 , EDX:EAX is divided by the given operand; the quotient is stored in
EAX and the remainder in EDX.
Signed integer division is performed by the IDIV instruction.

Assembly Language J. Vaughan

Page 4 of 17

HLT: Halt Processor
HLT ; F4 [8086,PRIV]
HLT puts the processor into a halted state, where it will perform no more operations
until restarted by an interrupt or a reset.
On the 286 and later processors, this is a privileged instruction.

IDIV: Signed Integer Divide
IDIV r/m8 ; F6 /7 [8086]
IDIV r/m16 ; o16 F7 /7 [8086]
IDIV r/m32 ; o32 F7 /7 [386]
IDIV performs signed integer division. The explicit operand provided is the divisor;
the dividend and destination operands are implicit, in the following way:
For IDIV r/m8 , AX is divided by the given operand; the quotient is stored in AL and
the remainder in AH.
For IDIV r/m16 , DX:AX is divided by the given operand; the quotient is stored in
AX and the remainder in DX.
For IDIV r/m32 , EDX:EAX is divided by the given operand; the quotient is stored
in EAX and the remainder in EDX.
Unsigned integer division is performed by the DIV instruction.

IMUL: Signed Integer Multiply
IMUL r/m8 ; F6 /5 [8086]
IMUL r/m16 ; o16 F7 /5 [8086]
IMUL r/m32 ; o32 F7 /5 [386]
IMUL reg16,r/m16 ; o16 0F AF /r [386]
IMUL reg32,r/m32 ; o32 0F AF /r [386]
IMUL reg16,imm8 ; o16 6B /r ib [186]
IMUL reg16,imm16 ; o16 69 /r iw [186]
IMUL reg32,imm8 ; o32 6B /r ib [386]
IMUL reg32,imm32 ; o32 69 /r id [386]
IMUL reg16,r/m16,imm8 ; o16 6B /r ib [186]
IMUL reg16,r/m16,imm16 ; o16 69 /r iw [186]
IMUL reg32,r/m32,imm8 ; o32 6B /r ib [386]
IMUL reg32,r/m32,imm32 ; o32 69 /r id [386]
IMUL performs signed integer multiplication. For the single−operand form, the other
operand and destination are implicit, in the following way:
For IMUL r/m8 , AL is multiplied by the given operand; the product is stored in AX.
For IMUL r/m16 , AX is multiplied by the given operand; the product is stored in
DX:AX .
For IMUL r/m32 , EAX is multiplied by the given operand; the product is stored in
EDX:EAX .
The two−operand form multiplies its two operands and stores the result in the
destination (first) operand. The three−operand form multiplies its last two operands
and stores the result in the first operand.
The two−operand form with an immediate second operand is in fact a shorthand for
the three−operand form, as can be seen by examining the opcode descriptions: in
the two−operand form, the code /r takes both its register and r/m parts from the
same operand (the first one).
In the forms with an 8−bit immediate operand and another longer source operand,
the immediate operand is considered to be signed, and is sign−extended to the
length of the other source operand.
In these cases, the BYTE qualifier is necessary to force NASM to generate this form
of the instruction.
Unsigned integer multiplication is performed by the MUL instruction.

Assembly Language J. Vaughan

Page 5 of 17

IN: Input from I/O Port
IN AL,imm8 ; E4 ib [8086]
IN AX,imm8 ; o16 E5 ib [8086]
IN EAX,imm8 ; o32 E5 ib [386]
IN AL,DX ; EC [8086]
IN AX,DX ; o16 ED [8086]
IN EAX,DX ; o32 ED [386]
IN reads a byte, word or doubleword from the specified I/O port, and stores it in the
given destination register. The port number may be specified as an immediate value
if it is between 0 and 255, and otherwise must be stored in DX. See also OUT.

INC: Increment Integer
INC reg16 ; o16 40+r [8086]
INC reg32 ; o32 40+r [386]
INC r/m8 ; FE /0 [8086]
INC r/m16 ; o16 FF /0 [8086]
INC r/m32 ; o32 FF /0 [386]
INC adds 1 to its operand. It does not affect the carry flag: to affect the carry flag, use
ADD something,1 . INC affects all the other flags according to the result.
This instruction can be used with a LOCK prefix to allow atomic execution.
See also DEC.

INSB, INSW, INSD: Input String from I/O Port
INSB ; 6C [186]
INSW ; o16 6D [186]
INSD ; o32 6D [386]
INSB inputs a byte from the I/O port specified in DX and stores it at [ES:DI] or
[ES:EDI] . It then increments or decrements (depending on the direction flag:
increments if the flag is clear, decrements if it is set) DI or EDI.
The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit a16 or a32 prefix.
Segment override prefixes have no effect for this instruction: the use of ES for the
load from [DI] or [EDI] cannot be overridden.
INSW and INSD work in the same way, but they input a word or a doubleword
instead of a byte, and increment or decrement the addressing register by 2 or 4
instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address
size chooses which) times.
See also OUTSB , OUTSW and OUTSD.

INT: Software Interrupt
INT imm8 ; CD ib [8086]
INT causes a software interrupt through a specified vector number from 0 to 255.
The code generated by the INT instruction is always two bytes long: although there
are short forms
for some INT instructions, NASM does not generate them when it sees the INT
mnemonic. In order to generate single−byte breakpoint instructions, use the INT3 or
INT1 instructions instead.
INT3, INT1, ICEBP , INT01 : Breakpoints
INT1 ; F1 [P6]
ICEBP ; F1 [P6]
INT01 ; F1 [P6]
INT3 ; CC [8086]
INT03 ; CC [8086]
INT1 and INT3 are short one−byte forms of the instructions INT 1 and INT 3.

Assembly Language J. Vaughan

Page 6 of 17

They perform a similar function to their longer counterparts, but take up less code
space. They are used as breakpoints by debuggers.
INT1 , and its alternative synonyms INT01 and ICEBP , is an instruction used by
in−circuit
emulators (ICEs). It is present, though not documented, on some processors down to
the 286, but is only documented for the Pentium Pro. INT3 is the instruction
normally used as a breakpoint by debuggers.
INT3 , and its synonym INT03 , is not precisely equivalent to INT 3 : the short form,
since it is designed to be used as a breakpoint, bypasses the normal IOPL checks in
virtual−8086 mode, and also does not go through interrupt redirection.

INTO: Interrupt if Overflow
INTO ; CE [8086]
INTO performs an INT 4 software interrupt (see section B.4.122) if and only if the
overflow flag is set.

IRET, IRETW , IRETD : Return from Interrupt
IRET ; CF [8086]
IRETW ; o16 CF [8086]
IRETD ; o32 CF [386]
IRET returns from an interrupt (hardware or software) by means of popping IP (or
EIP), CS and the flags off the stack and then continuing execution from the new
CS:IP .
IRETW pops IP, CS and the flags as 2 bytes each, taking 6 bytes off the stack in
total. IRETD pops EIP as 4 bytes, pops a further 4 bytes of which the top two are
discarded and the bottom two go into CS, and pops the flags as 4 bytes as well,
taking 12 bytes off the stack.
IRET is a shorthand for either IRETW or IRETD , depending on the default BITS
setting at the time.

Jcc: Conditional Branch
Jcc imm ; 70+cc rb [8086]
Jcc NEAR imm ; 0F 80+cc rw/rd [386]
The conditional jump instructions execute a near (same segment) jump if and only if
their
conditions are satisfied. For example, JNZ jumps only if the zero flag is not set.
The ordinary form of the instructions has only a 128−byte range; the NEAR form is a
386 extension
to the instruction set, and can span the full size of a segment. NASM will not override
your choice
of jump instruction: if you want Jcc NEAR , you have to use the NEAR keyword.
The SHORT keyword is allowed on the first form of the instruction, for clarity, but is
not necessary.
For details of the condition codes, see section B.2.2.

JCXZ, JECXZ : Jump if CX/ECX Zero
JCXZ imm ; a16 E3 rb [8086]
JECXZ imm ; a32 E3 rb [386]
JCXZ performs a short jump (with maximum range 128 bytes) if and only if the
contents of the CX register is 0. JECXZ does the same thing, but with ECX.

JMP: Jump
JMP imm ; E9 rw/rd [8086]
JMP SHORT imm ; EB rb [8086]

Assembly Language J. Vaughan

Page 7 of 17

JMP imm:imm16 ; o16 EA iw iw [8086]
JMP imm:imm32 ; o32 EA id iw [386]
JMP FAR mem ; o16 FF /5 [8086]
JMP FAR mem32 ; o32 FF /5 [386]
JMP r/m16 ; o16 FF /4 [8086]
JMP r/m32 ; o32 FF /4 [386]
JMP jumps to a given address. The address may be specified as an absolute
segment and offset, or as a relative jump within the current segment.
JMP SHORT imm has a maximum range of 128 bytes, since the displacement is
specified as only 8 bits, but takes up less code space. NASM does not choose when
to generate JMP SHORT for you: you must explicitly code SHORT every time you
want a short jump.
You can choose between the two immediate far jump forms (JMP imm:imm) by the
use of the WORD and DWORD keywords: JMP WORD 0x1234:0x5678) or JMP
DWORD 0x1234:0x56789abc .
The JMP FAR mem forms execute a far jump by loading the destination address out
of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand
size), and 16 bits of segment. The operand size may be overridden using JMP
WORD FAR mem or JMP DWORD FAR mem .
The JMP r/m forms execute a near jump (within the same segment), loading the
destination address out of memory or out of a register. The keyword NEAR may be
specified, for clarity, in these forms, but is not necessary. Again, operand size can be
overridden using JMP WORD mem or JMP DWORD mem .
As a convenience, NASM does not require you to jump to a far symbol by coding the
cumbersome JMP SEG routine:routine , but instead allows the easier synonym JMP
FAR routine.
The CALL r/m forms given above are near calls; NASM will accept the NEAR
keyword (e.g. CALL NEAR [address]), even though it is not strictly necessary.

LEA: Load Effective Address
LEA reg16,mem ; o16 8D /r [8086]
LEA reg32,mem ; o32 8D /r [386]
LEA, despite its syntax, does not access memory. It calculates the effective address
specified by its second operand as if it were going to load or store data from it, but
instead it stores the calculated address into the register specified by its first operand.
This can be used to perform quite complex calculations (e.g. LEA
EAX,[EBX+ECX*4+100]) in one instruction.
LEA, despite being a purely arithmetic instruction which accesses no memory, still
requires square brackets around its second operand, as if it were a memory
reference.
The size of the calculation is the current address size, and the size that the result is
stored as is the current operand size. If the address and operand size are not the
same, then if the addressing mode was 32−bits, the low 16−bits are stored, and if the
address was 16−bits, it is zero−extended to 32−bits before storing.

LODSB , LODSW , LODSD : Load from String
LODSB ; AC [8086]
LODSW ; o16 AD [8086]
LODSD ; o32 AD [386]
LODSB loads a byte from [DS:SI] or [DS:ESI] into AL. It then increments or
decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set) SI or ESI.

Assembly Language J. Vaughan

Page 8 of 17

The register used is SI if the address size is 16 bits, and ESI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit a16 or a32 prefix.
The segment register used to load from [SI] or [ESI] can be overridden by using
a segment register name as a prefix (for example, ES LODSB).
LODSW and LODSD work in the same way, but they load a word or a doubleword
instead of a byte, and increment or decrement the addressing registers by 2 or 4
instead of 1.

LOOP, LOOPE , LOOPZ , LOOPNE , LOOPNZ : Loop with Counter
LOOP imm ; E2 rb [8086]
LOOP imm,CX ; a16 E2 rb [8086]
LOOP imm,ECX ; a32 E2 rb [386]
LOOPE imm ; E1 rb [8086]
LOOPE imm,CX ; a16 E1 rb [8086]
LOOPE imm,ECX ; a32 E1 rb [386]
LOOPZ imm ; E1 rb [8086]
LOOPZ imm,CX ; a16 E1 rb [8086]
LOOPZ imm,ECX ; a32 E1 rb [386]
LOOPNE imm ; E0 rb [8086]
LOOPNE imm,CX ; a16 E0 rb [8086]
LOOPNE imm,ECX ; a32 E0 rb [386]
LOOPNZ imm ; E0 rb [8086]
LOOPNZ imm,CX ; a16 E0 rb [8086]
LOOPNZ imm,ECX ; a32 E0 rb [386]
LOOP decrements its counter register (either CX or ECX – if one is not specified
explicitly, the BITS setting dictates which is used) by one, and if the counter does
not become zero as a result of this operation, it jumps to the given label. The jump
has a range of 128 bytes.
LOOPE (or its synonym LOOPZ) adds the additional condition that it only jumps if the
counter is nonzero and the zero flag is set. Similarly, LOOPNE (and LOOPNZ) jumps
only if the counter is nonzero and the zero flag is clear.

MOV: Move Data
MOV r/m8,reg8 ; 88 /r [8086]
MOV r/m16,reg16 ; o16 89 /r [8086]
MOV r/m32,reg32 ; o32 89 /r [386]
MOV reg8,r/m8 ; 8A /r [8086]
MOV reg16,r/m16 ; o16 8B /r [8086]
MOV reg32,r/m32 ; o32 8B /r [386]
MOV reg8,imm8 ; B0+r ib [8086]
MOV reg16,imm16 ; o16 B8+r iw [8086]
MOV reg32,imm32 ; o32 B8+r id [386]
MOV r/m8,imm8 ; C6 /0 ib [8086]
MOV r/m16,imm16 ; o16 C7 /0 iw [8086]
MOV r/m32,imm32 ; o32 C7 /0 id [386]
MOV AL,memoffs8 ; A0 ow/od [8086]
MOV AX,memoffs16 ; o16 A1 ow/od [8086]
MOV EAX,memoffs32 ; o32 A1 ow/od [386]
MOV memoffs8,AL ; A2 ow/od [8086]
MOV memoffs16,AX ; o16 A3 ow/od [8086]
MOV memoffs32,EAX ; o32 A3 ow/od [386]
MOV r/m16,segreg ; o16 8C /r [8086]
MOV r/m32,segreg ; o32 8C /r [386]
MOV segreg,r/m16 ; o16 8E /r [8086]
MOV segreg,r/m32 ; o32 8E /r [386]
MOV reg32,CR0/2/3/4 ; 0F 20 /r [386]
MOV reg32,DR0/1/2/3/6/7 ; 0F 21 /r [386]
MOV reg32,TR3/4/5/6/7 ; 0F 24 /r [386]

Assembly Language J. Vaughan

Page 9 of 17

MOV CR0/2/3/4,reg32 ; 0F 22 /r [386]
MOV DR0/1/2/3/6/7,reg32 ; 0F 23 /r [386]
MOV TR3/4/5/6/7,reg32 ; 0F 26 /r [386]

MOV copies the contents of its source (second) operand into its destination (first)
operand.
In all forms of the MOV instruction, the two operands are the same size, except for
moving between a segment register and an r/m32 operand. These instructions are
treated exactly like the corresponding 16−bit equivalent (so that, for example, MOV
DS,EAX functions identically to MOV DS,AX but saves a prefix when in 32−bit
mode), except that when a segment register is moved into a 32−bit destination, the
top two bytes of the result are undefined.
MOV may not use CS as a destination.
CR4 is only a supported register on the Pentium and above.
Test registers are supported on 386/486 processors and on some non−Intel Pentium
class processors.

MOVSB , MOVSW , MOVSD : Move String
MOVSB ; A4 [8086]
MOVSW ; o16 A5 [8086]
MOVSD ; o32 A5 [386]
MOVSB copies the byte at [DS:SI] or [DS:ESI] to [ES:DI] or [ES:EDI] . It
then increments or decrements (depending on the direction flag: increments if the
flag is clear, decrements if it is set) SI and DI (or ESI and EDI).
The registers used are SI and DI if the address size is 16 bits, and ESI and EDI if it
is 32 bits. If you need to use an address size not equal to the current BITS setting,
you can use an explicit a16 or a32 prefix.
The segment register used to load from [SI] or [ESI] can be overridden by using
a segment register name as a prefix (for example, es movsb). The use of ES for the
store to [DI] or [EDI] cannot be overridden.
MOVSW and MOVSD work in the same way, but they copy a word or a doubleword
instead of a byte, and increment or decrement the addressing registers by 2 or 4
instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address
size chooses which) times.

MUL: Unsigned Integer Multiply
MUL r/m8 ; F6 /4 [8086]
MUL r/m16 ; o16 F7 /4 [8086]
MUL r/m32 ; o32 F7 /4 [386]
MUL performs unsigned integer multiplication. The other operand to the multiplication,
and the destination operand, are implicit, in the following way:
For MUL r/m8 , AL is multiplied by the given operand; the product is stored in AX.
For MUL r/m16 , AX is multiplied by the given operand; the product is stored in
DX:AX
For MUL r/m32 , EAX is multiplied by the given operand; the product is stored in
EDX:EAX .
Signed integer multiplication is performed by the IMUL instruction.

NEG, NOT: Two’s and One’s Complement
NEG r/m8 ; F6 /3 [8086]
NEG r/m16 ; o16 F7 /3 [8086]
NEG r/m32 ; o32 F7 /3 [386]
NOT r/m8 ; F6 /2 [8086]
NOT r/m16 ; o16 F7 /2 [8086]

Assembly Language J. Vaughan

Page 10 of 17

NOT r/m32 ; o32 F7 /2 [386]
NEG replaces the contents of its operand by the twoʼs complement negation (invert all
the bits and then add one) of the original value. NOT, similarly, performs oneʼs
complement (inverts all the bits).

NOP: No Operation
NOP ; 90 [8086]
NOP performs no operation. Its opcode is the same as that generated by XCHG
AX,AX or XCHG EAX,EAX (depending on the processor mode; see section
B.4.333).

OR: Bitwise OR
OR r/m8,reg8 ; 08 /r [8086]
OR r/m16,reg16 ; o16 09 /r [8086]
OR r/m32,reg32 ; o32 09 /r [386]
OR reg8,r/m8 ; 0A /r [8086]
OR reg16,r/m16 ; o16 0B /r [8086]
OR reg32,r/m32 ; o32 0B /r [386]
OR r/m8,imm8 ; 80 /1 ib [8086]
OR r/m16,imm16 ; o16 81 /1 iw [8086]
OR r/m32,imm32 ; o32 81 /1 id [386]
OR r/m16,imm8 ; o16 83 /1 ib [8086]
OR r/m32,imm8 ; o32 83 /1 ib [386]
OR AL,imm8 ; 0C ib [8086]
OR AX,imm16 ; o16 0D iw [8086]
OR EAX,imm32 ; o32 0D id [386]
OR performs a bitwise OR operation between its two operands (i.e. each bit of the
result is 1 if and only if at least one of the corresponding bits of the two inputs was 1),
and stores the result in the destination (first) operand.
In the forms with an 8−bit immediate second operand and a longer first operand, the
second operand is considered to be signed, and is sign−extended to the length of the
first operand. In these cases, the BYTE qualifier is necessary to force NASM to
generate this form of the instruction.

OUT: Output Data to I/O Port
OUT imm8,AL ; E6 ib [8086]
OUT imm8,AX ; o16 E7 ib [8086]
OUT imm8,EAX ; o32 E7 ib [386]
OUT DX,AL ; EE [8086]
OUT DX,AX ; o16 EF [8086]
OUT DX,EAX ; o32 EF [386]
OUT writes the contents of the given source register to the specified I/O port. The port
number may be specified as an immediate value if it is between 0 and 255, and
otherwise must be stored in DX.
See also IN.

OUTSB , OUTSW , OUTSD : Output String to I/O Port
OUTSB ; 6E [186]
OUTSW ; o16 6F [186]
OUTSD ; o32 6F [386]
OUTSB loads a byte from [DS:SI] or [DS:ESI] and writes it to the I/O port
specified in DX. It then increments or decrements (depending on the direction flag:
increments if the flag is clear, decrements if it is set) SI or ESI.
The register used is SI if the address size is 16 bits, and ESI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit a16 or a32 prefix.
The segment register used to load from [SI] or [ESI] can be overridden by using

Assembly Language J. Vaughan

Page 11 of 17

a segment register name as a prefix (for example, es outsb).
OUTSW and OUTSD work in the same way, but they output a word or a doubleword
instead of a byte, and increment or decrement the addressing registers by 2 or 4
instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address
size chooses which) times.

POP: Pop Data from Stack
POP reg16 ; o16 58+r [8086]
POP reg32 ; o32 58+r [386]
POP r/m16 ; o16 8F /0 [8086]
POP r/m32 ; o32 8F /0 [386]
POP CS ; 0F [8086,UNDOC]
POP DS ; 1F [8086]
POP ES ; 07 [8086]
POP SS ; 17 [8086]
POP FS ; 0F A1 [386]
POP GS ; 0F A9 [386]
POP loads a value from the stack (from [SS:SP] or [SS:ESP]) and then
increments the stack pointer.
The address−size attribute of the instruction determines whether SP or ESP is used
as the stack pointer: to deliberately override the default given by the BITS setting,
you can use an a16 or a32 prefix.
The operand−size attribute of the instruction determines whether the stack pointer is
incremented by 2 or 4: this means that segment register pops in BITS 32 mode will
pop 4 bytes off the stack and discard the upper two of them. If you need to override
that, you can use an o16 or o32 prefix.
The above opcode listings give two forms for general−purpose register pop
instructions: for example, POP BX has the two forms 5B and 8F C3 . NASM will
always generate the shorter form when given POP BX . NDISASM will disassemble
both.
POP CS is not a documented instruction, and is not supported on any processor
above the 8086 (since they use 0Fh as an opcode prefix for instruction set
extensions). However, at least some 8086 processors do support it, and so NASM
generates it for completeness.

POPAx : Pop All General−Purpose Registers
POPA ; 61 [186]
POPAW ; o16 61 [186]
POPAD ; o32 61 [386]
POPAW pops a word from the stack into each of, successively, DI, SI, BP, nothing (it
discards a word from the stack which was a placeholder for SP), BX, DX, CX and AX. It
is intended to reverse the operation of PUSHAW (see section B.4.264), but it ignores
the value for SP that was pushed on the stack by PUSHAW .
POPAD pops twice as much data, and places the results in EDI, ESI, EBP, nothing
(placeholder
for ESP), EBX, EDX, ECX and EAX. It reverses the operation of PUSHAD .
POPA is an alias mnemonic for either POPAW or POPAD , depending on the current
BITS setting.
Note that the registers are popped in reverse order of their numeric values in
opcodes.

POPFx : Pop Flags Register
POPF ; 9D [8086]
POPFW ; o16 9D [8086]

Assembly Language J. Vaughan

Page 12 of 17

POPFD ; o32 9D [386]
POPFW pops a word from the stack and stores it in the bottom 16 bits of the flags
register (or the whole flags register, on processors below a 386).
POPFD pops a doubleword and stores it in the entire flags register.
POPF is an alias mnemonic for either POPFW or POPFD , depending on the current
BITS setting.
See also PUSHF

PUSH: Push Data on Stack
PUSH reg16 ; o16 50+r [8086]
PUSH reg32 ; o32 50+r [386]
PUSH r/m16 ; o16 FF /6 [8086]
PUSH r/m32 ; o32 FF /6 [386]
PUSH CS ; 0E [8086]
PUSH DS ; 1E [8086]
PUSH ES ; 06 [8086]
PUSH SS ; 16 [8086]
PUSH FS ; 0F A0 [386]
PUSH GS ; 0F A8 [386]
PUSH imm8 ; 6A ib [186]
PUSH imm16 ; o16 68 iw [186]
PUSH imm32 ; o32 68 id [386]
PUSH decrements the stack pointer (SP or ESP) by 2 or 4, and then stores the given
value at [SS:SP] or [SS:ESP] .
The address−size attribute of the instruction determines whether SP or ESP is used
as the stack pointer: to deliberately override the default given by the BITS setting,
you can use an a16 or a32 prefix.
The operand−size attribute of the instruction determines whether the stack pointer is
decremented by 2 or 4: this means that segment register pushes in BITS 32 mode
will push 4 bytes on the stack, of which the upper two are undefined. If you need to
override that, you can use an o16 or o32 prefix.
The above opcode listings give two forms for general−purpose register push
instructions: for example, PUSH BX has the two forms 53 and FF F3 . NASM will
always generate the shorter form when given PUSH BX . NDISASM will disassemble
both.
Unlike the undocumented and barely supported POP CS , PUSH CS is a perfectly
valid and sensible instruction, supported on all processors.
The instruction PUSH SP may be used to distinguish an 8086 from later processors:
on an 8086, the value of SP stored is the value it has after the push instruction,
whereas on later processors it is the value before the push instruction.

PUSHAx : Push All General−Purpose Registers
PUSHA ; 60 [186]
PUSHAD ; o32 60 [386]
PUSHAW ; o16 60 [186]
PUSHAW pushes, in succession, AX, CX, DX, BX, SP, BP, SI and DI on the stack,
decrementing the stack pointer by a total of 16.
PUSHAD pushes, in succession, EAX, ECX, EDX, EBX, ESP, EBP, ESI and EDI on the
stack, decrementing the stack pointer by a total of 32.
In both cases, the value of SP or ESP pushed is its original value, as it had before the
instruction was executed.
PUSHA is an alias mnemonic for either PUSHAW or PUSHAD , depending on the
current BITS setting.
Note that the registers are pushed in order of their numeric values in opcodes.
See also POPA.

Assembly Language J. Vaughan

Page 13 of 17

PUSHFx : Push Flags Register
PUSHF ; 9C [8086]
PUSHFD ; o32 9C [386]
PUSHFW ; o16 9C [8086]
PUSHFW pushes the bottom 16 bits of the flags register (or the whole flags register,
on processors below a 386) onto the stack.
PUSHFD pushes the entire flags register onto the stack.
PUSHF is an alias mnemonic for either PUSHFW or PUSHFD , depending on the
current BITS setting.
See also POPF

RET, RETF, RETN: Return from Procedure Call
RET ; C3 [8086]
RET imm16 ; C2 iw [8086]
RETF ; CB [8086]
RETF imm16 ; CA iw [8086]
RETN ; C3 [8086]
RETN imm16 ; C2 iw [8086]
RET, and its exact synonym RETN , pop IP or EIP from the stack and transfer control
to the new address. Optionally, if a numeric second operand is provided, they
increment the stack pointer by a further imm16 bytes after popping the return
address.
RETF executes a far return: after popping IP/EIP, it then pops CS, and then
increments the stack pointer by the optional argument if present.

ROL, ROR: Bitwise Rotate
ROL r/m8,1 ; D0 /0 [8086]
ROL r/m8,CL ; D2 /0 [8086]
ROL r/m8,imm8 ; C0 /0 ib [186]
ROL r/m16,1 ; o16 D1 /0 [8086]
ROL r/m16,CL ; o16 D3 /0 [8086]
ROL r/m16,imm8 ; o16 C1 /0 ib [186]
ROL r/m32,1 ; o32 D1 /0 [386]
ROL r/m32,CL ; o32 D3 /0 [386]
ROL r/m32,imm8 ; o32 C1 /0 ib [386]
ROR r/m8,1 ; D0 /1 [8086]
ROR r/m8,CL ; D2 /1 [8086]
ROR r/m8,imm8 ; C0 /1 ib [186]
ROR r/m16,1 ; o16 D1 /1 [8086]
ROR r/m16,CL ; o16 D3 /1 [8086]
ROR r/m16,imm8 ; o16 C1 /1 ib [186]
ROR r/m32,1 ; o32 D1 /1 [386]
ROR r/m32,CL ; o32 D3 /1 [386]
ROR r/m32,imm8 ; o32 C1 /1 ib [386]
ROL and ROR perform a bitwise rotation operation on the given source/destination
(first) operand.
Thus, for example, in the operation ROL AL,1 , an 8−bit rotation is performed in
which AL is shifted left by 1 and the original top bit of AL moves round into the low bit.
The number of bits to rotate by is given by the second operand. Only the bottom five
bits of the rotation count are considered by processors above the 8086.
You can force the longer (286 and upwards, beginning with a C1 byte) form of ROL
foo,1 by using a BYTE prefix: ROL foo,BYTE 1 . Similarly with ROR.

SAL, SAR: Bitwise Arithmetic Shifts
SAL r/m8,1 ; D0 /4 [8086]
SAL r/m8,CL ; D2 /4 [8086]
SAL r/m8,imm8 ; C0 /4 ib [186]

Assembly Language J. Vaughan

Page 14 of 17

SAL r/m16,1 ; o16 D1 /4 [8086]
SAL r/m16,CL ; o16 D3 /4 [8086]
SAL r/m16,imm8 ; o16 C1 /4 ib [186]
SAL r/m32,1 ; o32 D1 /4 [386]
SAL r/m32,CL ; o32 D3 /4 [386]
SAL r/m32,imm8 ; o32 C1 /4 ib [386]
SAR r/m8,1 ; D0 /7 [8086]
SAR r/m8,CL ; D2 /7 [8086]
SAR r/m8,imm8 ; C0 /7 ib [186]
SAR r/m16,1 ; o16 D1 /7 [8086]
SAR r/m16,CL ; o16 D3 /7 [8086]
SAR r/m16,imm8 ; o16 C1 /7 ib [186]
SAR r/m32,1 ; o32 D1 /7 [386]
SAR r/m32,CL ; o32 D3 /7 [386]
SAR r/m32,imm8 ; o32 C1 /7 ib [386]
SAL and SAR perform an arithmetic shift operation on the given source/destination
(first) operand.
The vacated bits are filled with zero for SAL, and with copies of the original high bit of
the source operand for SAR.
SAL is a synonym for SHL (see section B.4.290). NASM will assemble either one to
the same code, but NDISASM will always disassemble that code as SHL.
The number of bits to shift by is given by the second operand. Only the bottom five
bits of the shift count are considered by processors above the 8086.
You can force the longer (286 and upwards, beginning with a C1 byte) form of SAL
foo,1 by using a BYTE prefix: SAL foo,BYTE 1 . Similarly with SAR.

SBB: Subtract with Borrow
SBB r/m8,reg8 ; 18 /r [8086]
SBB r/m16,reg16 ; o16 19 /r [8086]
SBB r/m32,reg32 ; o32 19 /r [386]
SBB reg8,r/m8 ; 1A /r [8086]
SBB reg16,r/m16 ; o16 1B /r [8086]
SBB reg32,r/m32 ; o32 1B /r [386]
SBB r/m8,imm8 ; 80 /3 ib [8086]
SBB r/m16,imm16 ; o16 81 /3 iw [8086]
SBB r/m32,imm32 ; o32 81 /3 id [386]
SBB r/m16,imm8 ; o16 83 /3 ib [8086]
SBB r/m32,imm8 ; o32 83 /3 ib [386]
SBB AL,imm8 ; 1C ib [8086]
SBB AX,imm16 ; o16 1D iw [8086]
SBB EAX,imm32 ; o32 1D id [386]
SBB performs integer subtraction: it subtracts its second operand, plus the value of
the carry flag, from its first, and leaves the result in its destination (first) operand. The
flags are set according to the result of the operation: in particular, the carry flag is
affected and can be used by a subsequent SBB instruction.
In the forms with an 8−bit immediate second operand and a longer first operand, the
second operand is considered to be signed, and is sign−extended to the length of the
first operand. In these cases, the BYTE qualifier is necessary to force NASM to
generate this form of the instruction.
To subtract one number from another without also subtracting the contents of the
carry flag, use SUB.

SCASB , SCASW , SCASD : Scan String
SCASB ; AE [8086]
SCASW ; o16 AF [8086]
SCASD ; o32 AF [386]
SCASB compares the byte in AL with the byte at [ES:DI] or [ES:EDI] , and sets
the flags accordingly. It then increments or decrements (depending on the direction

Assembly Language J. Vaughan

Page 15 of 17

flag: increments if the flag is clear, decrements if it is set) DI (or EDI).
The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit a16 or a32 prefix.
Segment override prefixes have no effect for this instruction: the use of ES for the
load from [DI] or [EDI] cannot be overridden.
SCASW and SCASD work in the same way, but they compare a word to AX or a
doubleword to EAX instead of a byte to AL, and increment or decrement the
addressing registers by 2 or 4 instead of 1.
The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to
repeat the instruction up to CX (or ECX – again, the address size chooses which)
times until the first unequal or equal byte is found.

SHL, SHR: Bitwise Logical Shifts
SHL r/m8,1 ; D0 /4 [8086]
SHL r/m8,CL ; D2 /4 [8086]
SHL r/m8,imm8 ; C0 /4 ib [186]
SHL r/m16,1 ; o16 D1 /4 [8086]
SHL r/m16,CL ; o16 D3 /4 [8086]
SHL r/m16,imm8 ; o16 C1 /4 ib [186]
SHL r/m32,1 ; o32 D1 /4 [386]
SHL r/m32,CL ; o32 D3 /4 [386]
SHL r/m32,imm8 ; o32 C1 /4 ib [386]
SHR r/m8,1 ; D0 /5 [8086]
SHR r/m8,CL ; D2 /5 [8086]
SHR r/m8,imm8 ; C0 /5 ib [186]
SHR r/m16,1 ; o16 D1 /5 [8086]
SHR r/m16,CL ; o16 D3 /5 [8086]
SHR r/m16,imm8 ; o16 C1 /5 ib [186]
SHR r/m32,1 ; o32 D1 /5 [386]
SHR r/m32,CL ; o32 D3 /5 [386]
SHR r/m32,imm8 ; o32 C1 /5 ib [386]
SHL and SHR perform a logical shift operation on the given source/destination (first)
operand. The vacated bits are filled with zero.
A synonym for SHL is SAL (see section B.4.283). NASM will assemble either one to
the same code, but NDISASM will always disassemble that code as SHL.
The number of bits to shift by is given by the second operand. Only the bottom five
bits of the shift count are considered by processors above the 8086.
You can force the longer (286 and upwards, beginning with a C1 byte) form of SHL
foo,1 by using a BYTE prefix: SHL foo,BYTE 1 . Similarly with SHR.

STC, STD, STI: Set Flags
STC ; F9 [8086]
STD ; FD [8086]
STI ; FB [8086]
These instructions set various flags. STC sets the carry flag; STD sets the direction
flag; and STI sets the interrupt flag (thus enabling interrupts).
To clear the carry, direction, or interrupt flags, use the CLC, CLD and CLI instructions.
To invert the carry flag, use CMC

STOSB , STOSW , STOSD : Store Byte to String
STOSB ; AA [8086]
STOSW ; o16 AB [8086]
STOSD ; o32 AB [386]
STOSB stores the byte in AL at [ES:DI] or [ES:EDI] , and sets the flags
accordingly. It then increments or decrements (depending on the direction flag:
increments if the flag is clear, decrements if it is set) DI (or EDI).

Assembly Language J. Vaughan

Page 16 of 17

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an
explicit a16 or a32 prefix.
Segment override prefixes have no effect for this instruction: the use of ES for the
store to [DI] or [EDI] cannot be overridden.
STOSW and STOSD work in the same way, but they store the word in AX or the
doubleword in EAX instead of the byte in AL, and increment or decrement the
addressing registers by 2 or 4 instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address
size chooses which) times.

SUB: Subtract Integers
SUB r/m8,reg8 ; 28 /r [8086]
SUB r/m16,reg16 ; o16 29 /r [8086]
SUB r/m32,reg32 ; o32 29 /r [386]
SUB reg8,r/m8 ; 2A /r [8086]
SUB reg16,r/m16 ; o16 2B /r [8086]
SUB reg32,r/m32 ; o32 2B /r [386]
SUB r/m8,imm8 ; 80 /5 ib [8086]
SUB r/m16,imm16 ; o16 81 /5 iw [8086]
SUB r/m32,imm32 ; o32 81 /5 id [386]
SUB r/m16,imm8 ; o16 83 /5 ib [8086]
SUB r/m32,imm8 ; o32 83 /5 ib [386]
SUB AL,imm8 ; 2C ib [8086]
SUB AX,imm16 ; o16 2D iw [8086]
SUB EAX,imm32 ; o32 2D id [386]
SUB performs integer subtraction: it subtracts its second operand from its first, and
leaves the result in its destination (first) operand. The flags are set according to the
result of the operation: in particular, the carry flag is affected and can be used by a
subsequent SBB instruction.
In the forms with an 8−bit immediate second operand and a longer first operand, the
second operand is considered to be signed, and is sign−extended to the length of the
first operand. In tBYTE qualifier is necessary to force NASM to generate this form of
the instruction.

TEST: Test Bits (notional bitwise AND)
TEST r/m8,reg8 ; 84 /r [8086]
TEST r/m16,reg16 ; o16 85 /r [8086]
TEST r/m32,reg32 ; o32 85 /r [386]
TEST r/m8,imm8 ; F6 /0 ib [8086]
TEST r/m16,imm16 ; o16 F7 /0 iw [8086]
TEST r/m32,imm32 ; o32 F7 /0 id [386]
TEST AL,imm8 ; A8 ib [8086]
TEST AX,imm16 ; o16 A9 iw [8086]
TEST EAX,imm32 ; o32 A9 id [386]
TEST performs a ʻmentalʼ bitwise AND of its two operands, and affects the flags as if
the operation had taken place, but does not store the result of the operation
anywhere.

XCHG: Exchange
XCHG reg8,r/m8 ; 86 /r [8086]
XCHG reg16,r/m8 ; o16 87 /r [8086]
XCHG reg32,r/m32 ; o32 87 /r [386]
XCHG r/m8,reg8 ; 86 /r [8086]
XCHG r/m16,reg16 ; o16 87 /r [8086]
XCHG r/m32,reg32 ; o32 87 /r [386]
XCHG AX,reg16 ; o16 90+r [8086]
XCHG EAX,reg32 ; o32 90+r [386]

Assembly Language J. Vaughan

Page 17 of 17

XCHG reg16,AX ; o16 90+r [8086]
XCHG reg32,EAX ; o32 90+r [386]
XCHG exchanges the values in its two operands. It can be used with a LOCK prefix
for purposes of multi−processor synchronisation.
XCHG AX,AX or XCHG EAX,EAX (depending on the BITS setting) generates the
opcode 90h, and so is a synonym for NOP.

XLATB : Translate Byte in Lookup Table
XLAT ; D7 [8086]
XLATB ; D7 [8086]
XLATB adds the value in AL, treated as an unsigned byte, to BX or EBX, and loads
the byte from the
resulting address (in the segment specified by DS) back into AL.
The base register used is BX if the address size is 16 bits, and EBX if it is 32 bits. If
you need to use
an address size not equal to the current BITS setting, you can use an explicit a16 or
a32 prefix.
The segment register used to load from [BX+AL] or [EBX+AL] can be overridden
by using a
segment register name as a prefix (for example, es xlatb).

XOR: Bitwise Exclusive OR
XOR r/m8,reg8 ; 30 /r [8086]
XOR r/m16,reg16 ; o16 31 /r [8086]
XOR r/m32,reg32 ; o32 31 /r [386]
XOR reg8,r/m8 ; 32 /r [8086]
XOR reg16,r/m16 ; o16 33 /r [8086]
XOR reg32,r/m32 ; o32 33 /r [386]
XOR r/m8,imm8 ; 80 /6 ib [8086]
XOR r/m16,imm16 ; o16 81 /6 iw [8086]
XOR r/m32,imm32 ; o32 81 /6 id [386]
XOR r/m16,imm8 ; o16 83 /6 ib [8086]
XOR r/m32,imm8 ; o32 83 /6 ib [386]
XOR AL,imm8 ; 34 ib [8086]
XOR AX,imm16 ; o16 35 iw [8086]
XOR EAX,imm32 ; o32 35 id [386]
XOR performs a bitwise XOR operation between its two operands (i.e. each bit of the
result is 1 if and only if exactly one of the corresponding bits of the two inputs was 1),
and stores the result in the destination (first) operand.
In the forms with an 8−bit immediate second operand and a longer first operand, the
second operand is considered to be signed, and is sign−extended to the length of the
first operand. In these cases, the BYTE qualifier is necessary to force NASM to
generate this form of the instruction.
The MMX instruction PXOR (see section B.4.266) performs the same operation on the
64−bit MMX registers.

