
Assembly Language J. Vaughan

Page 1 of 4

Lecture Notes on Assembly Language - J. Vaughan
13. Instructions and data

From the NASM Manual:

Key to Operand Specifications
The instruction descriptions in this appendix specify their operands using the
following notation:
• Registers: reg8 denotes an 8−bit general purpose register, reg16 denotes a 16−bit
general purpose register, and reg32 a 32−bit one. fpureg denotes one of the eight
FPU stack registers,
mmxreg denotes one of the eight 64−bit MMX registers, and segreg denotes a
segment register. In addition, some registers (such as AL, DX or ECX) may be
specified explicitly.
• Immediate operands: imm denotes a generic immediate operand. imm8 , imm16
and imm32 are used when the operand is intended to be a specific size. For some of
these instructions, NASM needs an explicit specifier: for example, ADD ESP,16
could be interpreted as either
ADD r/m32,imm32 or ADD r/m32,imm8 . NASM chooses the former by default, and
so you must specify ADD ESP,BYTE 16 for the latter.
• Memory references: mem denotes a generic memory reference; mem8 , mem16 ,
mem32 , mem64 and mem80 are used when the operand needs to be a specific
size. Again, a specifier is needed in some cases: DEC [address] is ambiguous and
will be rejected by NASM. You must specify DEC BYTE [address] , DEC WORD
[address] or DEC DWORD [address]
• Restricted memory references: one form of the MOV instruction allows a memory
address to be specified without allowing the normal range of register combinations
and effective address processing. This is denoted by memoffs8 , memoffs16 and
memoffs32 .
• Register or memory choices: many instructions can accept either a register or a
memory reference as an operand. r/m8 is a shorthand for reg8/mem8 ; similarly
r/m16 and r/m32 .
r/m64 is MMX−related, and is a shorthand for mmxreg/mem64 .

Assembly Language J. Vaughan

Page 2 of 4

Key to Opcode Descriptions
This appendix also provides the opcodes which NASM will generate for each form of
each instruction. The opcodes are listed in the following way:
• A hex number, such as 3F, indicates a fixed byte containing that number.
A hex number followed by +r, such as C8+r , indicates that one of the operands to
the instruction is a register, and the ʻregister valueʼ of that register should be added to
the hex number to produce the generated byte. For example, EDX has register value
2, so the code C8+r , when the register operand is EDX, generates the hex byte CA.
Register values for specific registers are given in section B.2.1.
• A hex number followed by +cc, such as 40+cc , indicates that the instruction name
has a condition code suffix, and the numeric representation of the condition code
should be added to the hex number to produce the generated byte. For example, the
code 40+cc , when the instruction contains the NE condition, generates the hex byte
45. Condition codes and their numeric representations are given in section B.2.2.
• A slash followed by a digit, such as /2, indicates that one of the operands to the
instruction is a memory address or register (denoted mem or r/m, with an optional
size). This is to be encoded as an effective address, with a ModR/M byte, an optional
SIB byte, and an optional displacement, and the spare (register) field of the ModR/M
byte should be the digit given (which will be from 0 to 7, so it fits in three bits). The
encoding of effective addresses is given in section B.2.5.
• The code /r combines the above two: it indicates that one of the operands is a
memory address or r/m, and another is a register, and that an effective address
should be generated with the spare (register) field in the ModR/M byte being equal to
the ʻregister valueʼ of the register operand. The encoding of effective addresses is
given in section B.2.5; register values are given in section B.2.1.
• The codes ib, iw and id indicate that one of the operands to the instruction is an
immediate value, and that this is to be encoded as a byte, little−endian word or
little−endian doubleword respectively.
• The codes rb, rw and rd indicate that one of the operands to the instruction is an
immediate value, and that the difference between this value and the address of the
end of the instruction is to be encoded as a byte, word or doubleword respectively.
Where the form rw/rd appears, it indicates that either rw or rd should be used
according to whether assembly is being performed in BITS 16 or BITS 32 state
respectively.
• The codes ow and od indicate that one of the operands to the instruction is a
reference to the contents of a memory address specified as an immediate value: this
encoding is used in some forms of the MOV instruction in place of the standard
effective−address mechanism. The displacement is encoded as a word or
doubleword. Again, ow/od denotes that ow or od should be chosen according to the
BITS setting.
• The codes o16 and o32 indicate that the given form of the instruction should be
assembled with operand size 16 or 32 bits. In other words, o16 indicates a 66 prefix
in BITS 32 state, but generates no code in BITS 16 state; and o32 indicates a 66
prefix in BITS 16 state but generates nothing in BITS 32 .
• The codes a16 and a32, similarly to o16 and o32, indicate the address size of the
given form of the instruction. Where this does not match the BITS setting, a 67
prefix is required.

Assembly Language J. Vaughan

Page 3 of 4

Data Movement

MOV: Move Data
MOV r/m8,reg8 ; 88 /r [8086]
MOV r/m16,reg16 ; o16 89 /r [8086]
MOV r/m32,reg32 ; o32 89 /r [386]
MOV reg8,r/m8 ; 8A /r [8086]
MOV reg16,r/m16 ; o16 8B /r [8086]
MOV reg32,r/m32 ; o32 8B /r [386]
MOV reg8,imm8 ; B0+r ib [8086]
MOV reg16,imm16 ; o16 B8+r iw [8086]
MOV reg32,imm32 ; o32 B8+r id [386]
MOV r/m8,imm8 ; C6 /0 ib [8086]
MOV r/m16,imm16 ; o16 C7 /0 iw [8086]
MOV r/m32,imm32 ; o32 C7 /0 id [386]
MOV AL,memoffs8 ; A0 ow/od [8086]
MOV AX,memoffs16 ; o16 A1 ow/od [8086]
MOV EAX,memoffs32 ; o32 A1 ow/od [386]
MOV memoffs8,AL ; A2 ow/od [8086]
MOV memoffs16,AX ; o16 A3 ow/od [8086]
MOV memoffs32,EAX ; o32 A3 ow/od [386]
MOV r/m16,segreg ; o16 8C /r [8086]
MOV r/m32,segreg ; o32 8C /r [386]
MOV segreg,r/m16 ; o16 8E /r [8086]
MOV segreg,r/m32 ; o32 8E /r [386]
MOV reg32,CR0/2/3/4 ; 0F 20 /r [386]
MOV reg32,DR0/1/2/3/6/7 ; 0F 21 /r [386]
MOV reg32,TR3/4/5/6/7 ; 0F 24 /r [386]
MOV CR0/2/3/4,reg32 ; 0F 22 /r [386]
MOV DR0/1/2/3/6/7,reg32 ; 0F 23 /r [386]
MOV TR3/4/5/6/7,reg32 ; 0F 26 /r [386]

MOV copies the contents of its source (second) operand into its destination (first)
operand.

Arithmetic

B.4.3 ADD: Add Integers

ADD r/m8,reg8 ; 00 /r [8086]
ADD r/m16,reg16 ; o16 01 /r [8086]
ADD r/m32,reg32 ; o32 01 /r [386]
ADD reg8,r/m8 ; 02 /r [8086]
ADD reg16,r/m16 ; o16 03 /r [8086]
ADD reg32,r/m32 ; o32 03 /r [386]
ADD r/m8,imm8 ; 80 /7 ib [8086]
ADD r/m16,imm16 ; o16 81 /7 iw [8086]
ADD r/m32,imm32 ; o32 81 /7 id [386]
ADD r/m16,imm8 ; o16 83 /7 ib [8086]
ADD r/m32,imm8 ; o32 83 /7 ib [386]
ADD AL,imm8 ; 04 ib [8086]
ADD AX,imm16 ; o16 05 iw [8086]
ADD EAX,imm32 ; o32 05 id [386]

Assembly Language J. Vaughan

Page 4 of 4

ADD performs integer addition: it adds its two operands together, and leaves the
result in its destination (first) operand. The destination operand can be a register or a
memory location. The source operand can be a register, a memory location or an
immediate value.
The flags are set according to the result of the operation: in particular, the carry flag
is affected and can be used by a subsequent ADC instruction.
In the forms with an 8−bit immediate second operand and a longer first operand, the
second operand is considered to be signed, and is sign−extended to the length of the
first operand. In these cases, the BYTE qualifier is necessary to force NASM to
generate this form of the instruction.

ADC: Add with Carry

ADC r/m8,reg8 ; 10 /r [8086]
ADC r/m16,reg16 ; o16 11 /r [8086]
ADC r/m32,reg32 ; o32 11 /r [386]
ADC reg8,r/m8 ; 12 /r [8086]
ADC reg16,r/m16 ; o16 13 /r [8086]
ADC reg32,r/m32 ; o32 13 /r [386]
ADC r/m8,imm8 ; 80 /2 ib [8086]
ADC r/m16,imm16 ; o16 81 /2 iw [8086]
ADC r/m32,imm32 ; o32 81 /2 id [386]
ADC r/m16,imm8 ; o16 83 /2 ib [8086]
ADC r/m32,imm8 ; o32 83 /2 ib [386]
ADC AL,imm8 ; 14 ib [8086]
ADC AX,imm16 ; o16 15 iw [8086]
ADC EAX,imm32 ; o32 15 id [386]

ADC performs integer addition: it adds its two operands together, plus the value of the
carry flag, and leaves the result in its destination (first) operand. The destination
operand can be a register or a memory location. The source operand can be a
register, a memory location or an immediate value.
The flags are set according to the result of the operation: in particular, the carry flag
is affected and can be used by a subsequent ADC instruction.
In the forms with an 8−bit immediate second operand and a longer first operand, the
second operand is considered to be signed, and is sign−extended to the length of the
first operand. In these cases, the BYTE qualifier is necessary to force NASM to
generate this form of the instruction.
To add two numbers without also adding the contents of the carry flag, use ADD.

